首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B Aroeti  Y I Henis 《Biochemistry》1986,25(16):4588-4596
A method to quantitate viral envelope-cell fusion at the single-cell level is presented. The method is based on the incorporation of nonquenching concentrations of a fluorescent lipid probe into the viral envelope; fluorescence photobleaching recovery (FPR) is then applied to measure the lateral mobilization of the probe in the cell membrane following fusion. In adsorbed (unfused) viral envelopes, the probe is constricted to the envelope and is laterally immobile on the micrometer scale of FPR. After fusion, the envelope lipids intermix with the plasma membrane, the probe becomes laterally mobile, and the fraction of fused viral envelopes can be extracted from the fraction of mobile probe molecules. The method has several advantages: (i) It clearly distinguishes fused from internalized envelopes, as probes in the latter are immobile in FPR studies; (ii) focusing the laser beam on specific regions of the cell enables region-specific measurements of the fusion level; (iii) one cell is measured at a time, enabling studies on the distribution of the fusion level within the cell population. The new method was employed to study fusion of reconstituted Sendai virus envelopes (RSVE) containing N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine with several cell types. Experiments with human erythrocytes demonstrated that the lateral mobilization measured is due to fusion and not the result of exchange processes. The extent of RSVE-erythrocyte fusion determined by FPR was similar to that measured by two other independent methods (fluorescence dequenching and removal of adsorbed RSVE by dithiothreitol).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Y I Henis  O Gutman 《FEBS letters》1988,228(2):281-284
Two independent methods demonstrated that resealed human erythrocyte ghosts undergo Sendai virus-mediated cell-cell fusion to a much lower degree (about 4%) than intact erythrocytes, in spite of similar levels of viral envelope-cell fusion in the two preparations. Fluorescence photobleaching recovery (FPR) showed similar lateral mobilities of the viral glycoproteins following fusion with either ghosts or whole erythrocytes. It is suggested that although viral glycoprotein mobilization in the cell membrane is essential for cell-cell fusion, the target cell properties are also important; in the absence of the required cellular parameters, the mobilization may not be a sufficient condition.  相似文献   

3.
B Aroeti  Y I Henis 《Biochemistry》1988,27(15):5654-5661
In order to investigate the requirement for lateral mobilization of viral envelope glycoproteins on the cell surface in the induction of cell-cell fusion, we employed fluorescence photobleaching recovery to study the effect of the fusion temperature on the lateral mobilization of Sendai virus glycoproteins in the human erythrocyte membrane. As the fusion temperature was reduced below 37 degrees C (to 31 or 25 degrees C), the rates of virus-cell fusion, the accompanying hemolysis, and cell-cell fusion were all slowed down. However, the plateau (final level) after the completion of fusion was significantly reduced at lower fusion temperatures only in the case of cell-cell fusion, despite the rather similar final levels of virus-cell fusion. A concomitant decrease as a function of the fusion temperature was observed in the fraction of cell-associated viral glycoproteins that became laterally mobile in the erythrocyte membrane during fusion, and a strict correlation was found between the level of laterally mobile viral glycoproteins in the cell membrane and the final extent of cell-cell fusion. The accompanying reduction in the lateral diffusion coefficients (D) of the viral glycoproteins (1.4-fold at 31 degrees C and 1.9-fold at 25 degrees C, as compared to 37 degrees C) does not appear to determine the final level of cell-cell fusion, since fusing the cells with a higher amount of virions at 25 degrees C increased the final level of cell-cell fusion while D remained constant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Z Katzir  O Gutman  Y I Henis 《Biochemistry》1989,28(15):6400-6405
Fusion of human erythrocytes by Sendai virions is accompanied by lateral mobilization of the viral envelope proteins (F, the fusion protein, and HN, the hemagglutinin/neuraminidase protein) in the target cell membrane; the dynamic parameters characterizing the lateral diffusion of F and HN in the fused cell membrane are identical [Henis, Y. I., & Gutman, O. (1987) Biochemistry 26, 812-819; Aroeti, B., & Henis, Y. I. (1988) Biochemistry 27, 5654-5661]. This identity raised the possibility that F and HN diffuse together in the cell membrane in mutual heterocomplexes. In order to investigate the possible formation of F-HN complexes in the target cell membrane, which could be important for the fusion process mediated by the viral envelope proteins, we combined fluorescence photobleaching recovery (FPR) measurements of the lateral mobility of the viral glycoproteins with antibody-mediated cross-linking of F or HN. After fusion, one viral glycoprotein type was immobilized by cross-linking with highly specific bivalent polyclonal IgG. The other glycoprotein type was labeled with fluorescence monovalent Fab' fragments that do not induce cross-linking, and its mobility was measured by FPR. Neither the mobile fraction nor the lateral diffusion coefficient of the Fab'-labeled viral glycoproteins was affected by immobilization of the second viral envelope protein, demonstrating that F and HN diffuse independently in the target cell membrane and are not associated in mutual complexes.  相似文献   

5.
We have recently developed a method to quantitate the fusion of reconstituted viral envelopes with cells by fluorescence photobleaching recovery (FPR) (Aroeti, B & Henis, Y I, Biochemistry 25 (1986) 4588). The method is based on the incorporation of non quenching concentrations of the fluorescent lipid probe N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)phosphatidylethanolamine during the reconstitution of the viral envelopes (the latter probe does not incorporate efficiently into the membrane of native virions). In the present work, we employed the fluorescent dye octadecyl rhodamine B chloride (R18), which can be incorporated directly into the membrane of native enveloped virions, to extend the FPR method to study fusion between native Sendai virions and intact human erythrocytes. The R18 fluorescence was found to be quenched in the viral envelope at the concentration range required for the FPR experiments, possibly due to preferential insertion of the probe into specific domains in the viral membrane. We therefore developed a correction (presented in the Appendix) which takes into account the lower quantum yield of the probe molecules in the membranes of unfused virions in the calculation of the fraction of fused virions from the FPR experiments. The results demonstrate that the method does indeed measure virus-cell fusion, and that the contribution of exchange to the measurements is not significant. The applicability of the method was further verified by the similarity of the results to those obtained independently by fluorescence dequenching measurements, and its ability to measure the distribution of virus-cell fusion within the cell population was demonstrated. These results suggest that the use of R18 can enlarge the scope of the FPR experiments to study the fusion of native virions with cells.  相似文献   

6.
Fluorescence photobleaching recovery has been employed to study the lateral mobility of the Sendai virus envelope glycoproteins (HN, neuraminidase/hemagglutinin protein (HN) fusion protein (F) on the surface of human erythrocytes. Our results indicate that the two viral glycoproteins are laterally immobile on the cell surface prior to fusion, and become mobile during the fusion process. The two fused glycoproteins are mobilized to the same extent (diffusion coefficients of 3.1-3.3 X 10(-10) cm2/sec with mobile fractions of 0.53-0.57 for both HN and F). Their mobilization is blocked under conditions that allow virus adsorption and hemagglutination, but not virus-cell or cell-cell fusion. These findings suggest a possible role for the lateral diffusion of the viral glycoproteins in the mechanism of cell-cell fusion, enabling them to perturb the membranes of adjacent cells and lead to cell-cell fusion.  相似文献   

7.
Fluorescence photobleaching recovery was employed to study the effects of specific immobilization of Sendai virus envelope glycoproteins (F, the fusion protein, and HN, the hemagglutinin-neuraminidase) on the virally mediated fusion of human erythrocytes. Lateral immobilization of varying fractions of F and/or HN (after virus adsorption and hemagglutination, but before fusion) was achieved by cross-linking them with succinyl concanavalin A (inhibiting both F and HN) or with specific rabbit IgG directed against either F or HN. Alternatively, agglutinated cells were treated with low concentrations of the above proteins (inducing only minor inhibition of either mobility or fusion), and immobilization of F and/or HN was induced by cross-linking with a secondary antibody; this protocol ensured a minimal contribution of direct binding to the viral proteins to the inhibition of fusion. Our results demonstrate that lateral immobilization of either F or HN results in a strong inhibition of cell-cell fusion and a much weaker inhibition of virus-cell fusion. The level of cell-cell fusion was directly correlated with the level of laterally mobile viral glycoproteins in the cell membrane (either F or HN). We conclude that lateral mobility of both F and HN in the red cell membrane is essential for cell-cell fusion and that not only F but also HN has a role in this fusion event. The possible reasons for the different dependence of cell-cell and virus-cell fusion on viral glycoprotein mobility are discussed.  相似文献   

8.
Co-reconstitution of influenza and Sendai virus phospholipids and glycoproteins resulted in the formation of membrane vesicles containing the envelope glycoproteins from both viruses within the same membrane. Reconstituted influenza-Sendai hybrids (RISH) were able to lyse human erythrocytes and fuse with their membranes or with living cultured cells at pH 5.0 as well as at pH 7.4, thus exhibiting the fusogenic properties of both viruses. This was also inferred from experiments showing that the fusogenic activity of RISH was inhibited by anti-influenza as well as by anti-Sendai virus antibodies. Fusion of FISH and of reconstituted influenza (RIVE) or reconstituted Sendai virus envelopes (RSVE) with recipient membranes was determined by the use of fluorescently labeled envelopes and fluorescence dequenching methods. Observations with the fluorescence microscope were used to study localization of fused reconstituted envelopes within living cells. Incubation of RISH and RSVE with living cells at pH 7.4 resulted in the appearance of fluorescence rings around the cell plasma membranes and of intracellular distinct fluorescent spots indicating fusion with cell plasma membranes and with membranes of endocytic vesicles, respectively. The fluorescence microscopy observations clearly showed that RIVE failed to fuse, at pH 7.4, with cultured cell plasma membranes, but fused with membranes of endocytic vesicles.  相似文献   

9.
Co-reconstitution of influenza and Sendai virus phospholipids and glycoproteins resulted in the formation of membrane vesicles containing the envelope glycoproteins from both viruses within the same membrane. Reconstituted influenza-Sendai hybrids (RISH) were able to lyse human erythrocytes and fuse with their membranes or with living cultured cells at pH 5.0 as well as at pH 7.4, thus exhibiting the fusogenic properties of both viruses. This was also inferred from experiments showing that the fusogenic activity of RISH was inhibited by anti-influenza as well as by anti-Sendai virus antibodies. Fusion of FISH and of reconstituted influenza (RIVE) or reconstituted Sendai virus envelopes (RSVE) with recipient membranes was determined by the use of fluorescently labeled envelopes and fluorescence dequenching methods. Observations with the fluorescence microscope were used to study localization of fused reconstituted envelopes within living cells. Incubation of RISH and RSVE with living cells at pH 7.4 resulted in the appearance of fluorescence rings around the cell plasma membranes and of intracellular distinct fluorescent spots indicating fusion with cell plasma membranes and with membranes of endocytic vesicles, respectively. The fluorescence microscopy observations clearly showed that RIVE failed to fuse, at pH 7.4, with cultured cell plasma membranes, but fused with membranes of endocytic vesicles.  相似文献   

10.
Extensive fusion of human erythrocytes agglutinated by Sendai virus was observed after 30 s of incubation at 37 C. Electron microscopy of thin sections failed to reveal the presence of virions, viral fragments, or discrete viral antigens reactive with ferritin-labeled antibody at the sites of fusion. Immuno-freezeetching of membrane surfaces demonstrated the dispersal of viral envelope antigens from what appeared to be original sites of viral attachment. Virus-induced clustering of membrane glycoproteins was interpreted as resulting from interaction of viral antigens with membrane receptor proteins and forming the structural basis for fusion of membranes with one another.  相似文献   

11.
Lateral motion of the viral envelope proteins in the target cell membrane was shown recently to be essential for cell fusion by Sendai virus (Henis, Y. I., Herman-Barhom, Y., Aroeti, B., and Gutman, O. (1989) J. Biol. Chem. 264, 17119-17125). To explore the mechanism that gives rise to this requirement, we have now investigated the distribution of Sendai virus envelope proteins (F, the fusion protein, and HN, the hemagglutinin/neuraminidase protein) on human erythrocytes in the course of fusion, using fluorescence microscopy and image analysis. In these studies, both the F and the HN proteins were found to accumulate in cell-cell contact regions, on the time scale of the fusion process. We propose that migration of the viral glycoproteins to cell contact regions and accumulation at the contact sites are essential parts of the fusion mechanism and form the basis to the requirement for their lateral motion in the fusion event.  相似文献   

12.
On cell-cell fusion of Ehrlich ascites tumor (EAT) cells with HVJ, HVJ envelopes also fuse with the cell membrane, resulting in integration of the viral envelope glycoproteins into the fused cell membranes. Morphological characterization of the glycoproteins in the plasma membrane and the mode of their internalization were investigated in detail. In the fusion reaction, the glycoproteins were rapidly integrated into the cell membrane within 2 or 3 min on incubation at 37 °C and they remained at the fusion sites, not dispersing widely, during further incubation. Thus they were still present in clusters in the plasma membrane at the end of the fusion reaction. On culture of fused cells in culture medium, internalization of the viral glycoproteins was initiated by formation of coated vesicles and most of the integrated glycoproteins were endocytosed into the cytoplasm within 30 min. Soon after internalization, the coated vesicles fused with each other, losing their coat materials. The intact virions that remained unfused on the cell surface were also internalized, but coat materials did not appear on the inside surface of the cell membrane, unlike in the case of integrated glycoproteins.  相似文献   

13.
The early interactions of LLC-MK2 cell-grown noninfectious Sendai virus and a murine cell line, P815 mastocytoma ascitic cells, were studied by electron microscopy, using the ferritin-conjugated antibody technique with anti-virus glycoprotein serum. For comparison, the interactions of egg-grown infectious Sendai virus with the same cells were also examined. When noninfectious virus was adsorbed to the cells in the cold, the cell membranes become partially invaginated at the site of contact of adsorbed virions, but ferritin-conjugated antibodies did not penetrate into the areas of envelope-cell membrane association. This pattern of virus attachment was similar to that of infectious virus attachment. Upon subsequent incubation at 37 degrees C, most of the adsorbed noninfectious virions were taken into cytoplasmic vesicles and then degraded, although a few virions remained attached to the cell membrane. No evidence of fusion of envelopes of noninfectious virions was obtained. On the other hand, envelopes of infectious virions fused with the cell membrane, and the transferred viral antigens diffused on the cell surfaces and then decreased in number.  相似文献   

14.
Phospholipid liposomes composed of phosphatidylcholine (PC) and cholesterol (chol), bearing the sialoglycoprotein glycophorin (GP), are able to effectively bind Sendai virus particles, but not to be lysed by them. Incorporation of gangliosides (gangl) into the above phospholipid vesicles (yielding liposomes composed of PC/chol/gangl/GP), although not increasing their ability to interact with Sendai virions, rendered them susceptible to the viral lytic activity. This was inferred from the ability of the virus to induce release of carboxyfluorescein (CF) upon interaction at 37 degrees C with liposomes composed of PC/chol/gangl/GP. Lysis of liposomes required the presence of the two viral envelope glycoproteins, namely the hemagglutinin/neuraminidase (HN) and the fusion (F) polypeptides, and was inhibited by phenylmethyl sulfonylfluoride (PMSF), dithiothreitol (DTT) and trypsin, showing that virus-induced lysis of PC/chol/gangl/GP liposomes reflects the fusogenic activity of the virus. Incubation of Sendai virus particles with liposomes containing the acidic phospholipid dicetylphosphate (DCP) but lacking sialic acid containing receptors, also resulted in release of the liposome content. Lysis of these liposomes was due to the activity of the viral HN glycoprotein, therefore not reflecting the natural viral fusogenic activity. Fluorescence dequenching studies, using fluorescently labeled reconstituted Sendai virus envelopes (RSVE), have shown that the viral envelopes are able to fuse with neutral, almost to the same extent, as with negatively charged liposomes. However, fusion with negatively charged liposomes, as opposed to fusion with neutral liposomes, was mediated by the viral HN glycoprotein and not by the viral fusion polypeptide.  相似文献   

15.
Sendai and influenza virions are able to fuse with mycoplasmata. Virus-Mycoplasma fusion was demonstrated by the use of fluorescently labeled intact virions and fluorescence dequenching, as well as by electron microscopy. A high degree of fusion was observed upon incubation of both virions with Mycoplasma gallisepticum or Mycoplasma capricolum. Significantly less virus-cell fusion was observed with Acholeplasma laidlawii, whose membrane contains relatively low amounts of cholesterol. The requirement of cholesterol for allowing virus-Mycoplasma fusion was also demonstrated by showing that a low degree of fusion was obtained with M. capricolum, whose cholesterol content was decreased by modifying its growth medium. Fluorescence dequenching was not observed by incubating unfusogenic virions with mycoplasmata. Sendai virions were rendered nonfusogenic by treatment with trypsin, phenylmethylsulfonyl fluoride, or dithiothreitol, whereas influenza virions were made nonfusogenic by treatment with glutaraldehyde, ammonium hydroxide, high temperatures, or incubation at low pH. Practically no fusion was observed using influenza virions bearing uncleaved hemagglutinin. Trypsinization of influenza virions bearing uncleaved hemagglutinin greatly stimulated their ability to fuse with Mycoplasma cells. Similarly to intact virus particles, also reconstituted virus envelopes, bearing the two viral glycoproteins, fused with M. capricolum. However, membrane vesicles, bearing only the viral binding (HN) or fusion (F) glycoproteins, failed to fuse with mycoplasmata. Fusion between animal enveloped virions and prokaryotic cells was thus demonstrated.  相似文献   

16.
Sendai virus particles are able to fuse with Pronase-neuraminidase-treated human erythrocyte membranes as well as with vesicles obtained from chromaffin granules of bovine medulla. Fusion is inferred either from electron microscopic studies or from the observation that incubation of fluorescently labeled (bearing octadecyl Rhodamine B chloride) virions, with right-side-out erythrocyte vesicles (ROV) or with chromaffin granule membrane vesicles (CGMV), resulted in fluorescence dequenching. Fusion of Sendai virions with virus receptor depleted ROV was observed only under hypotonic conditions. Fusion with virus receptor depleted ROV required the presence of the two viral envelope glycoproteins, namely, the HN and F polypeptides. A 3-fold increase in the degree of fluorescence dequenching (virus-membrane fusion) was also obtained upon incubation of Sendai virions with CGMV in medium of low osmotic strength. This increase was not observed with inactivated, unfusogenic Sendai virions. The results of the present work demonstrate that, under hypotonic conditions, fusion between Sendai virions and biological membranes does not require the presence of specific receptors. Such fusion is characterized by the same features as fusion with and infection by Sendai virions of living cultured cells.  相似文献   

17.
Fluorescently labeled (bearing N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine (N-NBD-PE)) reconstituted Sendai virus envelopes (RSVE) were used to study fusion between the viral envelopes and cultured living cells such as lymphoma, Friend erythroleukemia cells (FELC) and L cells. Incubation of fusogenic viruses with the above cell lines resulted in a relatively high degree (40-45%) of fluorescence dequenching. On the other hand, incubation of unfusogenic (trypsin or phenylmethylsulfonylfluoride (PMSF)-treated) RSVE with these cells led to very little (6-9%) fluorescence dequenching. The degree of fluorescence dequenching was linearly correlated to the surface density of the virus-inserted N-NBD-PE molecules. Fluorescence photobleaching recovery experiments showed that fusion of fluorescent RSVE with FELC resulted in an infinite dilution of the fluorescent molecules in the recipient cell membranes. The fluorescent probe 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (N-NBD-Cl) was covalently attached to envelopes of intact Sendai virions without significantly impairing their biological activity. Incubation of fluorescently labeled, intact Sendai virions with cultured cells resulted in about 20% fluorescence dequenching. The present data clearly indicate that fluorescently labeled Sendai virions can be used for a quantitative estimation of the degree of virus-membrane fusion.  相似文献   

18.
Association of the ribosome-inactivating proteins (RIPs): pokeweed antiviral protein (PAP), gelonin, Momordica charantia inhibitor (MCI), with reconstituted Sendai virus envelopes (RSVE) was obtained without detectable loss of activities either of RIPs or of viral envelope glycoproteins. RIPs are inactive towards intact cells, but, once encapsulated in RSVE, they become cytotoxic. The concentration of RSVE-associated PAP, which causes 50% inhibition of protein synthesis by Friend erythroleukemic cells, is 0.5 ng/ml. Substances capable to inhibit the viral activities block the acquired cytotoxicity of RIPs associated to RSVE.  相似文献   

19.
B Aroeti  T M Jovin  Y I Henis 《Biochemistry》1990,29(39):9119-9125
The rotational mobility of Sendai virus envelope glycoproteins (F, the fusion protein, and HN, the hemagglutinin/neuraminidase) was determined by using erythrosin (ER)-labeled monovalent Fab' antibody fragments directed specifically against either F or HN. By use of time-resolved phosphorescence anisotropy, the rotational mobility of Er-Fab'-viral glycoprotein complexes was studied both in the envelopes of unfused virions bound to erythrocyte ghosts and in the target cell membrane after fusion had occurred. The rotational correlation times (phi) of Er-Fab'-labeled F and HN were rather similar in the envelopes of bound unfused virions, but highly different in membranes of fused cells. The different phi values indicate that F and HN diffuse separately in the target cell membrane and for the major part are not complexed together. The temperature dependence of the phi values of the Er-Fab'-viral glycoprotein complexes revealed a breakpoint at 22 degrees C for the F protein both in bound virions and in the membranes of fused cells, and for the HN proteins in the envelopes of bound virions. In all these cases, the phi values increased between 4 and 22 degrees C, demonstrating a reduction in the rate of rotational diffusion. Further elevation of the temperature reversed the direction of the change in phi. This phenomenon may reflect a temperature-dependent microaggregation of F and HN saturating at ca. 22 degrees C and presumably related to the fusion mechanism since the breakpoint temperature correlates closely with the threshold temperature for virus-cell and cell-cell fusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A G Gitman  I Kahane  A Loyter 《Biochemistry》1985,24(11):2762-2768
Anti-human erythrocyte antibodies or insulin molecules were covalently coupled to the glycoproteins (the hemagglutinin/neuraminidase and the fusion polypeptides) of Sendai virus envelopes with N-succinimidyl 3-(2-pyridyldithio)propionate and succinimidyl 4-(p-maleimidophenyl)butyrate as cross-linking reagents. Reconstituted Sendai virus envelopes, bearing covalently attached anti-human erythrocyte antibodies or insulin molecules, were able to bind to but not fuse with virus receptor depleted human erythrocytes (neuraminidase-treated human erythrocytes). Only coreconstitution of Sendai virus glycoproteins, bearing attached anti-human erythrocyte antibodies or insulin molecules with intact, untreated viral glycoproteins, led to the formation of fusogenic, targeted reconstituted Sendai virus envelopes. Binding and fusion of reconstituted Sendai virus envelopes, bearing anti-human erythrocyte antibodies or insulin molecules, with neuraminidase-treated human erythrocytes were blocked by the monovalent fraction, obtained after papain digestion of immunoglobulins, made of anti-human erythrocyte antibodies or free insulin molecules, respectively. The results of this work demonstrate an active role of the viral binding protein (hemagglutinin/neuraminidase polypeptide) in the virus membrane fusion process and show a novel and efficient method for the construction of targeted, fusogenic Sendai virus envelopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号