首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
2.
Specific binding sites for 2-[125I] iodomelatonin, a selective radiolabeled melatonin receptor ligand, were detected and characterized in rat adrenal membranes. Saturation studies demonstrated that 2-[125I]iodomelatonin binds to a single class of sites with an affinity constant (Kd) of 541 pM and a total binding capacity (Bmax) of 3.23 fmol/mg protein. Competition experiments revealed that the relative order of potency of compounds tested was as follows: 6-chloromelatonin greater than 2-iodomelatonin greater than melatonin greater than 5-methoxytryptamine greater than 5-methoxytryptophol. The highest density of binding sites was found in membranes from nuclear (0.76 fmol/mg protein) and mitochondrial (1.82 fmol/mg protein) subcellular fractions.  相似文献   

3.
P P Lee  S F Pang 《Life sciences》1992,50(2):117-125
Utilizing 2-[125I]iodomelatonin as the radioligand, melatonin binding sites were identified and characterized in the jejunum of ducks. These sites were found to be reversible, saturable, specific and exhibited high affinity for melatonin. Scatchard analyses have established the equilibrium dissociation constant (Kd) for tissues collected during mid-photophase to be 40.9 +/- 7 pM and the maximum quantity of binding sites (Bmax) to be 2.0 +/- 0.4 fmol/mg protein while Kd of samples collected during mid-scotophase was found to be 54.1 +/- 10 pM with a corresponding Bmax of 1.5 +/- 0.3 fmol/mg protein. These Kd values are in good proximity to the kinetically derived equilibrium dissociation constant of 47.3 +/- 20 pM. No significant difference in Kd or Bmax was detected between the mid-light and mid-dark samples. Pharmacological profile of these binding sites, developed by their interactions with other indoles and compounds, indicated that these binding sites are highly specific for melatonin. Subcellularly, different densities of binding sites were localized to various fractions in the following order: nuclear greater than microsomal greater than mitochondrial greater than cytosolic. These binding sites in the jejunum might be the receptors accountable for promoting paracrine activities for the locally synthesized gastrointestinal melatonin and/or responsible for eliciting hormonal actions via interactions with melatonin of pineal origin.  相似文献   

4.
The characteristics of the binding sites labeled by the radioligand 2-[125I]iodomelatonin were compared in chicken neuronal retina and retinal pigment epithelium (RPE). Specific binding of 2-[125I]iodomelatonin in both sites was stable, saturable, reversible, and of high affinity. Scatchard analysis revealed an affinity constant (KD) of 446 +/- 55 pM and a total number of binding sites (Bmax) of 25.4 +/- 2.2 fmol/mg of protein for neuronal retina. For RPE the KD was 34.1 +/- 2.2 pM and the Bmax 59.5 +/- 5.2 fmol/mg of protein. Competition experiments with various melatonin analogues gave the following order of affinities: 2-iodomelatonin greater than 2-chloromelatonin greater than melatonin greater than 6-chloromelatonin greater than 6-hydroxymelatonin greater than N-acetylserotonin greater than 6-methoxyharmalan greater than 5-hydroxytryptamine. Linear regression of log Ki values from neuronal retina and RPE gave a highly significant correlation (r = 0.994, n = 8; p less than 0.001). GTP inhibited specific binding to RPE membranes in a concentration-dependent manner, but not in neuronal retinal membranes. The present results strongly suggest that a single type of melatonin receptor is found in neuronal retina and RPE, and that the site in RPE is coupled to a guanine nucleotide-binding regulatory protein (G protein), but that in neuronal retina is not.  相似文献   

5.
Binding of 2-[125I]iodomelatonin to 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS)-solubilized sites from chick forebrain was rapid. reversible, saturable, of high affinity, and of pharmacological selectivity. Scatchard analyses showed that 2-[125I]iodomelatonin binds to a single site with equilibrium dissociation constant (KD) values of 328 +/- 22 (n = 4) and 302 +/- 26 pM (n = 3) and a maximal number of binding sites (Bmax) of 36.2 +/- 2.0 and 49.5 +/- 6.6 fmol/mg of protein in solubilized and membrane fractions, respectively. The KD values obtained from the ratio of kinetic constants (k2/k1) in solubilized and membrane preparations were 228 and 216 pM, respectively. Inhibition studies indicated the following order of pharmacological affinities for both membrane and solubilized sites: 2-iodomelatonin greater than melatonin greater than 6-chloromelatonin much greater than prazosin greater than N-acetylserotonin much greater than serotonin greater than metergoline greater than ketanserin greater than propranolol greater than phentolamine greater than cyproheptadine. Guanyl nucleotides inhibited binding of 2-[125I]iodomelatonin to solubilized and membrane fractions, by converting binding sites from a high-affinity to a low-affinity state. These findings show that solubilized binding sites for melatonin exhibit the specific binding and pharmacological characteristics present in membrane-bound sites. Moreover, the retention of sensitivity to guanine nucleotides in fractions solubilized with CHAPS suggests that this solubilization procedure is suitable for further studies aimed at the isolation, purification, and molecular characterization of active melatonin binding sites.  相似文献   

6.
1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, [125I]iodomelatonin, was examined using an incubation temperature (30 degrees C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing [125I]iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.  相似文献   

7.
Characteristics, day-night changes, guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) modulation, and localization of melatonin binding sites in the brain of a marine teleost, European sea bass Dicentrarchus labrax, were studied by radioreceptor assay using 2-[(125)I]iodomelatonin as a radioligand. The specific binding to the sea bass brain membranes was rapid, stable, saturable and reversible. The radioligand binds to a single class of receptor site with the affinity (Kd) of 9.3 +/-0.6 pM and total binding capacity (Bmax) of 39.08 +/-0.86 fmol/mg protein (mean+/-SEM, n=4) at mid-light under light-dark (LD) cycles of 12:12. Day-night changes were observed neither in the Kd nor in the Bmax under LD 12:12. Treatment with GTPgammaS significantly increased the Kd and decreased the Bmax both at mid-light and mid-dark. The binding sites were highly specific for 2-phenylmelatonin, 2-iodomelatonin, melatonin, and 6-chloromelatonin. Distribution of melatonin binding sites in the sea bass brain was uneven: The Bmax was determined to be highest in mesencephalic optic tectum-tegmentum and hypothalamus, intermediate in telencephalon, cerebellum-vestibulolateral lobe and medulla oblongata-spinal cord, and lowest in olfactory bulbs with the Kd in the low picomolar range. These results indicate that melatonin released from the pineal organ and/or retina plays neuromodulatory roles in the sea bass brain via G protein-coupled melatonin receptors.  相似文献   

8.
Binding of 2-[125I]iodomelatonin in hamster brain synaptosomal membranes at 0 degrees C is rapid, saturable, reversible and sensitive to heat and trypsin treatment. Computer resolution of curvilinear Scatchard plots yielded high- and low-affinity components as follows: Kd1 = 0.32 +/- 0.14 nM, Bmax1 = 5.6 +/- 1.7 fmol/mg protein and Kd2 = 10.5 +/- 3.2 nM, Bmax2 = 123 +/- 33 fmol/mg protein (n = 3). Competition experiments indicated that 2-iodomelatonin and prazosin are the most potent inhibitors of high-affinity binding. Unlike prazosin, several alpha-adrenergic agents and various neurotransmitters were ineffective. These findings suggest that prazosin may be a potent antagonist at a unique, non-alpha-adrenergic, high-affinity binding site for melatonin.  相似文献   

9.
Melatonin receptors were studied in isolated mouse hepatocytes using the 2[(125)I]iodomelatonin binding assay. The binding of 2[(125)I]iodomelatonin to hepatocytes isolated from the mouse using collagenase was stable, saturable, reversible and of high affinity. The equilibrium dissociation constant (K(d)) obtained from saturation studies was 10.0 +/- 0.4 pmol/l (n = 16), which was comparable to the K(d) obtained from kinetics studies (6.9 +/- 1.2 pmol/l, n = 3), and the maximum number of binding sites (B(max)) was 2.9 +/- 0.4 fmol/mg protein (n = 16). The relative order of potency of indoles in competing for 2[(125)I]iodomelatonin binding was 2-iodomelatonin > 2-phenylmelatonin > 6-chloromelatonin > melatonin > 6-hydroxymelatonin > N-acetylserotonin, indicating that the binding was mediated by the ML(1) receptor subtype. The linear Rosenthal plots, the close proximity of the Hill coefficient to unity and the monophasic competition curves suggest that a single class of 2[(125)I]iodomelatonin binding sites is present in the mouse hepatocytes. Guanosine 5'-O-(3-thiotriphosphate) dose-dependently inhibited 2[(125)I]iodomelatonin by lowering the affinity of binding, while no inhibitory effects of adenosine nucleotides were observed, suggesting that the binding sites are G-protein linked. Western immunoblotting was used to identify the melatonin receptor subtype in mouse hepatocytes using anti-Mel(1a) and anti-Mel(1b). Hepatocyte membrane extract reacted with anti-Mel(1b) but not anti-Mel(1a) giving a peptide-blockable band of 36 kD, supporting the hypothesis that the melatonin receptors in mouse hepatocytes are of the Mel(1b) subtype. Melatonin injection and a high plasma glucose level affected 2[(125)I]iodomelatonin binding in the whole mouse liver homogenates. Plasma glucose was elevated by mid-light intraperitoneal injection of melatonin (4 and 40 mg/kg body weight) in a dose-dependent manner with maximum elevation achieved 1 h after injection. 2[(125)I]Iodomelatonin binding at this time showed increased K(d) with no changes in B(max). When the plasma glucose returned to normal within 2 h, the binding remained lowered with increased K(d) but no changes in B(max). Elevation of plasma glucose by 2-deoxyglucose injection (500 mg/kg), on the other hand, decreased the binding by decreasing the B(max) without affecting the K(d). Suppression of plasma glucose by insulin injection (3 IU/kg) did not change the binding. Thus, melatonin may act directly on the liver to elevate the plasma glucose level, and changes in plasma glucose level itself may in turn affect hepatic melatonin binding.  相似文献   

10.
W Kloas  W Hanke 《Peptides》1992,13(2):349-354
Angiotensin II (AII) binding sites were localized and quantified in kidney and adrenal of the frog Rana temporaria by quantitative in vitro autoradiography. AII binding was present in kidney glomeruli and in interrenal tissue of the outer zone of the adrenal gland. Saturation experiments showed that [125I]-[Val5]AII binds to a single class of binding sites with a dissociation constant (Kd) of 548 +/- 125 pM in glomeruli and 593 +/- 185 pM in interrenal tissue (n = 8). The corresponding maximal binding capacities (Bmax) were 2.48 +/- 0.71 and 3.05 +/- 1.02 fmol/mm2, respectively. AII binding was displaced by unlabeled angiotensin analogues in the rank order: [Sar1]AII greater than human AII greater than [125I]-[Val5]AII = [Val5]AII = human AIII much greater than human AI. The AII binding sites in glomeruli and interrenal tissue suggest an influence of AII on glomerular filtration rate and adrenal steroid secretion to take part in osmomineral regulation of the frog.  相似文献   

11.
A single type of high-affinity binding sites for IL-1 beta was identified in the rat hypothalamus (Kd = 1.0 +/- 0.2 nM) and cerebral cortex (Kd = 1.3 +/- 0.2 nM), but not in the pituitary. The maximum binding capacity (Bmax) in the hypothalamus (Bmax = 75.4 +/- 10.8 fmol/mg protein) was 4 times greater than in the cerebral cortex (Bmax = 17.2 +/- 1.5 fmol/mg protein). Neither various neuropeptides nor IL-2 appeared to influence the binding of [125I]IL-1 beta to the hypothalamic membrane preparations. The potency of unlabeled IL-1 alpha to replace the binding of [125I]IL-1 beta to the hypothalamic membrane preparations was considerably less than that of unlabeled IL-1 beta. These findings indicate that IL-1 beta receptors are heterogeneously distributed in the central nervous system and that IL-1 alpha does not bind with IL-1 beta receptors in the brain.  相似文献   

12.
We have demonstrated specific, high affinity binding of a biologically active Tyr23-monoiodinated derivative of ACTH, [125I][Phe2,Nle4]ACTH 1-24, in rat brain homogenates. Similarly, in metabolically inhibited and noninhibited rat whole brain slices there is a specific "binding-sequestration" process that is dependent on time, protein concentration, and pH. In homogenates, binding curves were best described by a two-site model and provided the following parameters: Kd1 = 0.65 +/- 0.47 nM, Bmax1 = 21 +/- 41 fmol/mg protein; Kd2 = 97 +/- 48 nM, Bmax2 = 3.5 +/- 1.8 pmol/mg protein. In metabolically viable brain slices, concentration-competition curves of [125I][Phe2,Nle4]ACTH 1-24 binding-sequestration can be described by three components (Kd1 = 14 +/- 24 nM, Bmax1 = 50 +/- 95 fmol/mg protein; Kd2 = 2.4 +/- 1.9 microM, Bmax2 = 44 +/- 49 pmol/mg protein; Kd3 = 0.16 +/- 1.0 mM, Bmax3 = 5.3 +/- 54 nmol/mg protein). Metabolic inhibition, by removal of glucose and addition of 100 microM ouabain, abolishes the lowest affinity, highest capacity binding-sequestrian component only (Kd1 = 7.1 +/- 14 nM, Bmax1 = 8.7 +/- 16 fmol/mg protein; Kd2 = 7.4 +/- 4.49 microM, Bmax2 = 37 +/- 27 pmol/mg protein). The two binding-sequestration parameter estimates obtained from metabolically inhibited tissue slices are not significantly different from those of the two higher affinity components obtained with noninhibited tissue. Thus, metabolic inhibition permits demonstration of ACTH receptor binding only, unconfounded by sequestration or internalization of ligand:receptor complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
T Agui  K Matsumoto 《Peptides》1990,11(3):609-611
The vasoactive intestinal peptide (VIP) receptors were identified on the membranes from the rat anterior pituitary gland with [125I]VIP. The dissociation constant (Kd) and the maximal binding capacity (Bmax) values were estimated from the competitive inhibition data. The Kd and Bmax values were 1.05 +/- 0.75 nM and 103 +/- 11 fmol/mg protein, respectively. The order of molar potency of related peptides to inhibit [125I]VIP binding was VIP greater than peptide histidine isoleucine (PHI) greater than secretin greater than glucagon. Glucagon was not effective to inhibit the binding. [125I]VIP binding was effectively inhibited by the addition of guanine nucleotides. The order of molar potency to inhibit the binding was Gpp(NH)p greater than GTP greater than GDP greater than GMP greater than ATP. These results directly suggest the coupling of VIP receptors with guanine nucleotide binding proteins in the anterior pituitary gland.  相似文献   

14.
The characteristics of atrial natriuretic factor (ANF) receptors where studied in rat retinal particulate preparations. Specific 125I-ANF binding to retinal particulate preparations was greater than 90% of total binding and saturable at a density (Bmax) of 40 +/- 8 fmol/mg protein with an apparent dissociation constant (Kd) of 6.0 +/- 2.0 pM (n = 3). Apparent equilibrium conditions were established within 30 min. The Kd value of 125I-ANF binding calculated by kinetic analysis was 4.0 pM. The Bmax of 60 +/- 10 fmol/mg protein and the Kd of 5 +/- 2 pM, calculated by competition analysis, were in close agreement with the values obtained from Scatchard plots or kinetic analysis. The 125I-ANF binding to retinal particulate preparations was not inhibited by 1 microM concentration of somatostatin, vasopressin, vasoactive intestinal peptide, adrenocorticotropin, thyrotropin releasing hormone, or leu-enkephalin. The rank order of potency of the unlabelled atrial natriuretic peptides for competing with specific 125I-ANF (101-126) binding sites was rANF (92-126) greater than rANF (101-126) greater than rANF (99-126) greater than rANF (103-126) greater than Tyro-Atriopeptin I greater than hANF (105-126) greater than rANF (1-126). Similar results have been obtained in peripheral tissues and mammalian brain, indicating that central and peripheral ANF-binding sites have somewhat similar structural requirements. Affinity cross-linking of 125I-ANF to retinal particulate preparations resulted in the labelling of two sites of molecular weight 140 and 66 kDa, respectively. This demonstration of specific high-affinity ANF receptors suggests that the peptide may act as a neurotransmitter or neuromodulator in the retina.  相似文献   

15.
In this study, we have demonstrated that 2-[125I]-iodomelatonin binds specifically to rat ovarian granulosa cell (GC) membranes with high affinity (KD=83 pM; Bmax=3.28 fmol/mg protein). Using immunoblot analysis and an anti-mt1 melatonin receptor antibody, we have also detected mt1 melatonin receptors in rat ovary. Because melatonin has been reported to alter the steroidogenic responses of ovarian tissues to gonadotropins, a physiological role for intra-ovarian melatonin may exist. Thus, in order to investigate a possible intra-ovarian role for melatonin, we have used both an in vivo and in vitro model of follicular development. Treatment of immature (day 21) female rats with estradiol (E; 0.2 mg/d x 3 d; subcutaneous) was used to induce follicular growth. Membranes from both untreated (U) and E-treated animals' ovaries contained high-affinity 2-[125I]-iodomelatonin (I-MEL) binding sites (Kd=83 and 23 pM, respectively). Estradiol treatment in vivo caused a significant decrease (P<0.05) in binding of 2-[125I]-iodomelatonin to ovarian membranes with untreated animals' ovaries having a Bmax=3.28 fmol/mg protein vs. estradiol-treated animals' ovaries having a Bmax=0.92 fmol/mg protein. In addition, following Estradiol treatment, mt1 melatonin receptors in rat ovary were down-regulated (approximately 95%) using immunoblot analysis. Granulosa cells isolated from E-treated rats were further matured in vitro with testosterone (T) and the pituitary gonadotropin follicle-stimulating hormone (FSH). Granulosa cells were cultured with either T (10 ng/ml) or FSH (5.71 ng ovine FSH-20/ml) alone, or both FSH and T for 48 h. There was no statistically significant specific binding of 2-[125I]-iodomelatonin to GC membranes cultured with T or FSH alone. However, following a 48-h exposure to FSH and T in vitro specific 2-[125I]-iodomelatonin binding occurred with total 2-[125I]-iodomelatonin binding =3.15 [corrected] fmol/mg protein. Therefore, the existence of hormonally-regulated expression of high-affinity melatonin binding sites suggests that melatonin may have an important intra-ovarian physiological role.  相似文献   

16.
High-affinity binding sites for mono[125I]iodoapamin were detected in membranes (Kd = 59 pM, Bmax = 24 fmol/mg protein) and cultured cells (Kd = 69 pM, Bmax = 2.8 fmol/mg protein) from rat heart and in membranes from guinea-pig ileum (Kd = 67 pM, Bmax 42 fmol/mg protein) and liver (Kd = 15 pM, Bmax = 43 fmol/mg protein). Binding was stimulated by K+ ions (K0.5 = 0.3-0.5 mM). Covalent labeling with arylazide [125I]iodoapamin derivatives showed that smooth muscle, liver and heart binding molecules are associated with a 85-87-kDa polypeptide. A second strongly labeled 57-kDa component was identified in liver membranes only.  相似文献   

17.
Using [3H]-nitrendipine (Nit) and [125I]-omega conotoxin (w-CTX), the cellular and subcellular distribution of calcium channel subtypes in the homogenates of canine small intestinal circular muscle was studied. Nit. bound to the membranes from the circular smooth muscle cells (PM) and to the synaptosomal membranes from the deep muscular plexus (DMP); the Kd and Bmax values of Nit binding from these two sources were similar (Kd 0.4 +/- 0.16 nM and 0.77 +/- 0.24 nM; Bmax 206 +/- 22 and 192 +/- 39 fmol/mg of protein in DMP and PM respectively). w-CTX, however, bound only to the DMP (Kd 18.41 +/- 7.5 pM, Bmax 265 +/- 36 fmol/mg of protein). In DMP, nifedipine (10(-6) M) failed to interact with the binding of w-CTX; similarly, no modulation of Nit binding with unlabelled w-CTX (10(-7) M) could be detected. Therefore w-CTX and Nit binding sites represent two distinct, non-interactive and differentially distributed binding sites in canine small intestine.  相似文献   

18.
The receptor sites for 1,4-dihydropyridine (DHP) calcium channel ligands were identified and pharmacologically characterized in partially purified canine coronary artery smooth muscle (CSM) membranes (purification factor for 1,4-DHPs 2.8 and 2.2 respectively) using Ca2+ channel agonist (-)-S-[3H]BAYK 8644 and antagonist (+)-[3H]PN 200-110 as radioligands. The beta-adrenergic receptors were identified with (-)-3-[125I]iodocyanopindolol (ICYP). Specific binding of 1,4-DHPs and ICYP to membrane fraction was saturable, reversible and of both high and low affinity. The Kd for 1,4-DHP Ca2+ channel agonist was 0.59 +/- 0.05 and for antagonist 0.35 +/- 0.06 nmol/l and for low affinity binding sites Kd = 9.0 +/- 0.18 and 18.0 +/- 1.1 nmol/l. The high affinity 1,4-DHP binding (Bmax = 265 +/- 21 and 492 +/- 12 fmol/mg protein), showed stereoselectivity, temperature-dependence as well as pharmacological specificity: isoprenaline- and GTP-sensitivity, positive modulation with dilthiazem and negative modulation with verapamil, that is, properties characteristic of 1,4-DHP receptor sites on L-type Ca2+ channels. The low affinity binding sites were characterized as nonselective, temperature independent, dipyridamol-sensitive and represented a nucleoside transporter. The proportion of high affinity binding sites identified in the CSM membranes was 1.85 : 1.0 in favour of the antagonist. Results obtained with [125I]omega Conotoxin GVI A demonstrated that CSM membrane fractions isolated from median layers of coronary artery were devoid of substantial contamination with fragments of neuronal cells.  相似文献   

19.
Pharmacological studies indicate that Syrian hamster melanoma (RPMI 1846) cells possess a melatonin binding site similar to that found in normal hamster cells. A high correlation was observed for a series of compounds between the Ki in hamster hypothalamic membranes vs. RPMI 1846 membranes (r = 0.94, slope = 0.93, P less than 0.01, n = 14). Scatchard analysis of saturation binding of 2-[125I]-iodomelatonin to membranes (at 0 degrees C) indicated: Kd = 0.89 +/- 0.08 nM, Bmax = 6.2 +/- 2.9 fmol/mg protein (n = 3). Melatonin did not alter basal or forskolin-stimulated adenylate cyclase activity in RPMI 1846 membranes or intact cells. Therefore, in contrast to the picomolar-affinity receptor for melatonin in the mammalian hypothalamus and pars tuberalis, the putative nanomolar-affinity receptor is not coupled to adenylate cyclase. The RPMI 1846 cell line provides a useful model system for further studies of signal transduction via the nanomolar-affinity site for melatonin.  相似文献   

20.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号