首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several variations in the nicotinic receptor genes have been identified to be associated with both lung cancer risk and smoking in the genome-wide association (GWA) studies. However, the relationships among these three factors (genetic variants, nicotine dependence, and lung cancer) remain unclear. In an attempt to elucidate these relationships, we applied mediation analysis to quantify the impact of nicotine dependence on the association between the nicotinic receptor genetic variants and lung adenocarcinoma risk. We evaluated 23 single nucleotide polymorphisms (SNPs) in the five nicotinic receptor related genes (CHRNB3, CHRNA6, and CHRNA5/A3/B4) previously reported to be associated with lung cancer risk and smoking behavior and 14 SNPs in the four ‘control’ genes (TERT, CLPTM1L, CYP1A1, and TP53), which were not reported in the smoking GWA studies. A total of 661 lung adenocarcinoma cases and 1,347 controls with a smoking history, obtained from the Environment and Genetics in Lung Cancer Etiology case-control study, were included in the study. Results show that nicotine dependence is a mediator of the association between lung adenocarcinoma and gene variations in the regions of CHRNA5/A3/B4 and accounts for approximately 15% of this relationship. The top two CHRNA3 SNPs associated with the risk for lung adenocarcinoma were rs1051730 and rs12914385 (p-value = 1.9×10−10 and 1.1×10−10, respectively). Also, these two SNPs had significant indirect effects on lung adenocarcinoma risk through nicotine dependence (p = 0.003 and 0.007). Gene variations rs2736100 and rs2853676 in TERT and rs401681 and rs31489 in CLPTM1L had significant direct associations on lung adenocarcinoma without indirect effects through nicotine dependence. Our findings suggest that nicotine dependence plays an important role between genetic variants in the CHRNA5/A3/B4 region, especially CHRNA3, and lung adenocarcinoma. This may provide valuable information for understanding the pathogenesis of lung adenocarcinoma and for conducting personalized smoking cessation interventions.  相似文献   

2.

Background

CHRNA5-A3-B4, the gene cluster encoding nicotinic acetylcholine receptor subunits, is associated with lung cancer risk and smoking behaviors in people of European descent. Because cigarette smoking is also a major risk factor for esophageal squamous cell carcinoma (ESCC), we investigated the associations between variants in CHRNA5-A3-B4 and ESCC risk, as well as smoking behaviors, in a Chinese population.

Methods

A case-control study of 866 ESCC patients and 952 healthy controls was performed to study the association of polymorphisms (rs667282 and rs3743073) in CHRNA5-A3-B4 with cancer risk using logistic regression models. The relationships between CHRNA5-A3-B4 polymorphisms and smoking behaviors that can be quantified by cigarettes smoked per day (CPD) and pack-years of smoking were separately estimated with Kruskal-Wallis tests among all 840 smokers.

Results

CHRNA5-A3-B4 rs667282 TT/TG genotypes were associated with significantly increased risk of ESCC [adjusted odds ratio (OR) = 1.32, 95% confidence interval (CI) = 1.03 – 1.69, P = 0.029]. The increased ESCC risk was even higher among younger subjects (≤60 years) (OR = 1.44, 95% CI = 1.04 – 1.98, P = 0.024). These effects were not found in another polymorphism rs3743073. No evident association between the two polymorphisms and smoking behaviors was observed.

Conclusions

These results support the hypothesis that CHRNA5-A3-B4 is a susceptibility gene cluster for ESCC. The relationship between CHRNA5-A3-B4 and smoking behaviors in a Chinese population needs further investigation.  相似文献   

3.

Background

Several single nucleotide polymorphisms (SNPs) in an α-neuronal nicotinic acetylcholine receptor subunit (CHRNA3/5) were identified to be associated with chronic obstructive pulmonary disease (COPD) in a study based on a Norwegian population. However, results from subsequent studies have been controversial, particularly in studies recruiting Asians. In the present study, we conducted a comprehensive search and meta-analyses to identify susceptibility SNPs for COPD in the CHRNA3/5 locus.

Methods

A comprehensive literature search was conducted to find studies that have reported an association between SNPs in the CHRNA3/5 locus and COPD risk. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) for each SNP were calculated with the major allele or genotype as the reference group. The influence of individual studies on pooled measures was assessed, in addition to publication bias.

Results

A total of 12 articles with 14 eligible studies were included in this analysis. Association between 4 SNPs in the CHRNA3/5 locus and COPD was evaluated and included rs1051730, rs8034191, rs6495309, and rs16969968. Significant associations between the 4 SNPs and COPD were identified under allele (rs1051730: OR = 1.14, 95%CI = 1.10–1.18; rs8034191: OR = 1.29, 95%CI = 1.18–1.41; rs6495309: OR = 1.26, 95%CI = 1.09–1.45; rs16969968: OR = 1.27, 95%CI = 1.17–1.39) and genotype models. Subgroup analysis conducted for rs1051730 showed a significant association between this SNP and COPD risk in non-Asians (OR = 1.14, 95%CI = 1.10–1.18), but not Asians (OR = 1.23, 95%CI = 0.91–1.67). Rs1051730 and rs6495309 were also significantly associated with COPD after adjusting for multiple variables, including age and smoking status.

Conclusion

Our results indicate that 4 SNPs in the CHRNA3/5 locus are associated with COPD risk. Rs1051730 was particularly associated with COPD in non-Asians, but its role in Asians still needs to be verified. Additional studies will be necessary to assess the effect of rs6495309 on COPD. Although rs1051730 and rs6495309 were shown to be independent risk factors for COPD, validation studies should be performed.  相似文献   

4.
《PloS one》2013,8(8)
Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a negative regulator of T-cell activation associated with several autoimmune diseases, including systemic lupus erythematosus (SLE). Missense rs2476601 is associated with SLE in individuals with European ancestry. Since the rs2476601 risk allele frequency differs dramatically across ethnicities, we assessed robustness of PTPN22 association with SLE and its clinical sub-phenotypes across four ethnically diverse populations. Ten SNPs were genotyped in 8220 SLE cases and 7369 controls from in European-Americans (EA), African-Americans (AA), Asians (AS), and Hispanics (HS). We performed imputation-based association followed by conditional analysis to identify independent associations. Significantly associated SNPs were tested for association with SLE clinical sub-phenotypes, including autoantibody profiles. Multiple testing was accounted for by using false discovery rate. We successfully imputed and tested allelic association for 107 SNPs within the PTPN22 region and detected evidence of ethnic-specific associations from EA and HS. In EA, the strongest association was at rs2476601 (P = 4.7×10−9, OR = 1.40 (95% CI = 1.25–1.56)). Independent association with rs1217414 was also observed in EA, and both SNPs are correlated with increased European ancestry. For HS imputed intronic SNP, rs3765598, predicted to be a cis-eQTL, was associated (P = 0.007, OR = 0.79 and 95% CI = 0.67–0.94). No significant associations were observed in AA or AS. Case-only analysis using lupus-related clinical criteria revealed differences between EA SLE patients positive for moderate to high titers of IgG anti-cardiolipin (aCL IgG >20) versus negative aCL IgG at rs2476601 (P = 0.012, OR = 1.65). Association was reinforced when these cases were compared to controls (P = 2.7×10−5, OR = 2.11). Our results validate that rs2476601 is the most significantly associated SNP in individuals with European ancestry. Additionally, rs1217414 and rs3765598 may be associated with SLE. Further studies are required to confirm the involvement of rs2476601 with aCL IgG.  相似文献   

5.
《PloS one》2013,8(4)
To discover susceptibility genes of late-onset Alzheimer’s disease (LOAD), we conducted a 3-stage genome-wide association study (GWAS) using three populations: Japanese from the Japanese Genetic Consortium for Alzheimer Disease (JGSCAD), Koreans, and Caucasians from the Alzheimer Disease Genetic Consortium (ADGC). In Stage 1, we evaluated data for 5,877,918 genotyped and imputed SNPs in Japanese cases (n = 1,008) and controls (n = 1,016). Genome-wide significance was observed with 12 SNPs in the APOE region. Seven SNPs from other distinct regions with p-values <2×10−5 were genotyped in a second Japanese sample (885 cases, 985 controls), and evidence of association was confirmed for one SORL1 SNP (rs3781834, P = 7.33×10−7 in the combined sample). Subsequent analysis combining results for several SORL1 SNPs in the Japanese, Korean (339 cases, 1,129 controls) and Caucasians (11,840 AD cases, 10,931 controls) revealed genome wide significance with rs11218343 (P = 1.77×10−9) and rs3781834 (P = 1.04×10−8). SNPs in previously established AD loci in Caucasians showed strong evidence of association in Japanese including rs3851179 near PICALM (P = 1.71×10−5) and rs744373 near BIN1 (P = 1.39×10−4). The associated allele for each of these SNPs was the same as in Caucasians. These data demonstrate for the first time genome-wide significance of LOAD with SORL1 and confirm the role of other known loci for LOAD in Japanese. Our study highlights the importance of examining associations in multiple ethnic populations.  相似文献   

6.
The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P≤5×10−8). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P≤0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2×10−19 for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9×10−8, n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5×10−6, n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2×10−3, n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.  相似文献   

7.

Background

Genetic association studies have revealed numerous polymorphisms conferring susceptibility to melanoma. We aimed to replicate previously discovered melanoma-associated single-nucleotide polymorphisms (SNPs) in a Greek case-control population, and examine their predictive value.

Methods

Based on a field synopsis of genetic variants of melanoma (MelGene), we genotyped 284 patients and 284 controls at 34 melanoma-associated SNPs of which 19 derived from GWAS. We tested each one of the 33 SNPs passing quality control for association with melanoma both with and without accounting for the presence of well-established phenotypic risk factors. We compared the risk allele frequencies between the Greek population and the HapMap CEU sample. Finally, we evaluated the predictive ability of the replicated SNPs.

Results

Risk allele frequencies were significantly lower compared to the HapMap CEU for eight SNPs (rs16891982 – SLC45A2, rs12203592 – IRF4, rs258322 – CDK10, rs1805007 – MC1R, rs1805008 - MC1R, rs910873 - PIGU, rs17305573- PIGU, and rs1885120 - MTAP) and higher for one SNP (rs6001027 – PLA2G6) indicating a different profile of genetic susceptibility in the studied population. Previously identified effect estimates modestly correlated with those found in our population (r = 0.72, P<0.0001). The strongest associations were observed for rs401681-T in CLPTM1L (odds ratio [OR] 1.60, 95% CI 1.22–2.10; P = 0.001), rs16891982-C in SCL45A2 (OR 0.51, 95% CI 0.34–0.76; P = 0.001), and rs1805007-T in MC1R (OR 4.38, 95% CI 2.03–9.43; P = 2×10−5). Nominally statistically significant associations were seen also for another 5 variants (rs258322-T in CDK10, rs1805005-T in MC1R, rs1885120-C in MYH7B, rs2218220-T in MTAP and rs4911442-G in the ASIP region). The addition of all SNPs with nominal significance to a clinical non-genetic model did not substantially improve melanoma risk prediction (AUC for clinical model 83.3% versus 83.9%, p = 0.66).

Conclusion

Overall, our study has validated genetic variants that are likely to contribute to melanoma susceptibility in the Greek population.  相似文献   

8.
Lou XY  Ma JZ  Payne TJ  Beuten J  Crew KM  Li MD 《Human genetics》2006,120(3):381-389
Based on our previously identified linkage regions for nicotine dependence (ND), we selected six and five single nucleotide polymorphisms (SNPs) in the muscarinic cholinergic receptor subtype M1 (CHRM1) and nicotinic cholinergic receptor β1 (CHRNB1), respectively, to determine the association of the two genes with ND in a total of 2,037 subjects from 602 nuclear families of either African-American (AA) or European-American (EA) origin. Individual SNP- and/or haplotype-based analyses indicated that the CHRNB1 was significantly associated with ND, which was assessed by smoking quantity (SQ), the Heaviness of Smoking Index (HSI), and the Fagerström Test for ND (FTND), in both ethnic samples. The association of rs2302763 in the CHRNB1 was significant with adjusted SQ in the EA sample after correction for multiple testing (= 0.013). Haplotype A-T-A formed by SNPs rs2302765, rs2302762, and rs9217 in the CHRNB1 was significantly associated with the high risk allele for all the three ND measures (minimum = 0.009, 0.006, and 0.008 for SQ, HSI and FTND, respectively) in the AA sample while haplotype A-T-A formed by rs2302765, rs2302763, and rs9217 was significantly positively associated with ND (minimum = 0.005, 0.016, and 0.016 for SQ, HSI and FTND, respectively) in the EA sample. The CHRM1 exhibited significant protective associations of haplotype C-C-A-T-G-G formed by all six SNPs of this gene with at least one ND measure in the AA sample after Bonferroni correction (minimum = 0.008, 0.013, and 0.009 for SQ, HSI and FTND, respectively), but no significant association was found in the EA sample. The significant associations, together with their location of linked region to ND, suggest that the CHRNB1 and CHRM1 are likely candidates for further investigation.  相似文献   

9.
Neuromedin U, encoded by the NMU gene, is a hypothalamic neuropeptide that regulates both energy metabolism and bone mass. The beta-2 adrenergic receptor, encoded by the ADRB2 gene, mediates several effects of catecholamine hormones and neurotransmitters in bone. We investigated whether NMU single nucleotide polymorphisms (SNPs) and haplotypes, as well as functional ADRB2 SNPs, are associated with bone stiffness in children from the IDEFICS cohort, also evaluating whether NMU and ADRB2 interact to affect this trait. A sample of 2,274 subjects (52.5% boys, age 6.2±1.8 years) from eight European countries, having data on calcaneus bone stiffness index (SI, mean of both feet) and genotyping (NMU gene: rs6827359, rs12500837, rs9999653; ADRB2 gene: rs1042713, rs1042714), was studied. After false discovery rate adjustment, SI was significantly associated with all NMU SNPs. rs6827359 CC homozygotes showed the strongest association (recessive model, Δ = −1.8, p = 0.006). Among the five retrieved haplotypes with frequencies higher than 1% (range 2.0–43.9%), the CCT haplotype (frequency = 39.7%) was associated with lower SI values (dominant model, Δ = −1.0, p = 0.04) as compared to the most prevalent haplotype. A non-significant decrease in SI was observed in in ADRB2 rs1042713 GG homozygotes, while subjects carrying SI-lowering genotypes at both SNPs (frequency = 8.4%) showed much lower SI than non-carriers (Δ = −3.9, p<0.0001; p for interaction = 0.025). The association was more evident in preschool girls, in whom SI showed a curvilinear trend across ages. In subgroup analyses, rs9999653 CC NMU or both GG ADRB2 genotypes were associated with either lower serum calcium or β-CrossLaps levels (p = 0.01). This study in European children shows, for the first time in humans, a role for NMU gene through interaction with ADRB2 gene in bone strength regulation, more evident in preschool girls.  相似文献   

10.

Background

The interaction of tumor necrosis factor-α (TNF-α) with its receptors: TNFRSF1A and TNFRSF1B is critical for the promotion of tumor growth, invasion and metastasis. To better understand the roles of single nucleotide polymorphisms (SNPs) in the TNF-α, TNFRSF1A and TNFRSF1B genes in the development of breast cancer, we explored the associations between SNPs in these three genes and breast cancer susceptibility in northeast Chinese Han women.

Methodology/Principal Findings

This case-control study was conducted among 1016 breast cancer patients and 806 age-matched healthy controls. Seven SNPs in the TNF-α (rs1800629, rs361525), TNFRSF1A (rs767455, rs4149577 and rs1800693) and TNFRSF1B (rs1061622 and rs1061624) genes were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. In TNFRSF1B, the rs1061622 GT genotype and the G allele conferred a reduced susceptibility to breast cancer (P = 0.000662, OR = 0.706, 95% CI: 0.578–0.863; P = 0.002, OR = 0.769, 95% CI; 0.654–0.905, respectively). Moreover, the AG genotype, the AA genotype and the A allele in rs1061624 conferred an increased risk of breast cancer (P = 0.007, OR = 1.470, 95% CI:1.112–1.943; P = 0.00109, OR = 1.405 95% CI:1.145–1.724; P = 0.001, OR = 1.248 95% CI:1.092–1.426, respectively). These two SNPs also had associations with breast cancer risk under the dominant model. In haplotype analysis, the CTA (rs767455 C-rs4149577 T-rs1800693 A) haplotype in TNFRSF1A and the TA (rs1061622 T-rs1061624 A) haplotype in TNFRSF1B had higher frequencies in breast cancer patients (P = 0.00324; P = 0.000370, respectively), but the frequency of GG (rs1061622 G-rs1061624 G) haplotype in TNFRSF1B was lower in breast cancer patients (P = 0.000251). The associations of the three haplotypes remained significant after correcting for multiple testing. In addition, significant associations were also observed between TNFRSF1A polymorphisms and lymph node metastasis, P53, estrogen receptor (ER) and progesterone receptor (PR) statuses.

Conclusions

Our results suggest that rs1061622 and rs1061624 in TNFRSF1B may affect breast cancer risk, and SNPs in TNFRSF1A are associated with the clinical features of breast cancer.  相似文献   

11.
As insulin resistance (IR) is an established risk factor for colorectal cancer (CRC), we explored the association between each of the IR-related gene polymorphisms of adiponectin (ADIPOQ) rs2241766, uncoupling protein 2 (UCP2) rs659366, and fatty acid-binding protein (FABP2) rs1799883 and CRC risk. Genotyping of blood samples and collection of lifestyle and dietary habits were performed for 400 case-control pairs. Unconditional logistic regression (ULR) was applied to assess the effects of the three single nucleotide polymorphisms (SNP), environmental factors. Both ULR and generalized multifactor dimensionality reduction (GMDR) were used to test the gene-gene and gene-environment interactions on CRC risk. Subjects carrying the ADIPOQ rs2241766 TG+GG genotype had a higher CRC risk than those carrying the TT genotype (OR = 1.429, 95% CI 1.069–1.909). The additive and multiplicative interactions between ADIPOQ rs2241766 and FABP2 rs1799883 on CRC were found by ULR (RERI = 0.764, 95%CI 0.218∼1.311, AP = 0.514, 95%CI 0.165∼0.864, S = −1.745, 95%CI is unachievable, and Pmulti = 0.017, respectively). Furthermore, the high order gene-gene interaction of the three SNPs were found by GMDR (P = 0.0107). A significant dosage effect with an increasing number of risk genotypes was observed as the risk of CRC increased (Ptrend = 0.037). In GMDR, the gene-environment interaction among the three SNPs and red meat consumption on CRC risk was significant (P = 0.0107). Compared with subjects with low red meat consumption and null risk genotypes, those with high-red meat consumption and three risk genotypes had 3.439-fold CRC risk (95% CI 1.410–8.385). In conclusion, the results showed that the ADIPOQ rs2241766 TG+GG genotype increased CRC risk. Given the complexity of the carcinogen for CRC, ADIPOQ rs2241766, UCP2 rs659366, FABP2 rs1799883 and red meat consumption potentially worked together in affecting CRC risk.  相似文献   

12.
13.

Objective

Genome wide association studies (GWAs) of breast cancer mortality have identified few potential associations. The concordance between these studies is unclear. In this study, we used a meta-analysis of two prognostic GWAs and a replication cohort to identify the strongest associations and to evaluate the loci suggested in previous studies. We attempt to identify those SNPs which could impact overall survival irrespective of the age of onset.

Methods

To facilitate the meta-analysis and to refine the association signals, SNPs were imputed using data from the 1000 genomes project. Cox-proportional hazard models were used to estimate hazard ratios (HR) in 536 patients from the POSH cohort (Prospective study of Outcomes in Sporadic versus Hereditary breast cancer) and 805 patients from the HEBCS cohort (Helsinki Breast Cancer Study). These hazard ratios were combined using a Mantel-Haenszel fixed effects meta-analysis and a p-value threshold of 5×10−8 was used to determine significance. Replication was performed in 1523 additional patients from the POSH study.

Results

Although no SNPs achieved genome wide significance, three SNPs have significant association in the replication cohort and combined p-values less than 5.6×10−6. These SNPs are; rs421379 which is 556 kb upstream of ARRDC3 (HR = 1.49, 95% confidence interval (CI) = 1.27–1.75, P = 1.1×10−6), rs12358475 which is between ECHDC3 and PROSER2 (HR = 0.75, CI = 0.67–0.85, P = 1.8×10−6), and rs1728400 which is between LINC00917 and FOXF1.

Conclusions

In a genome wide meta-analysis of two independent cohorts from UK and Finland, we identified potential associations at three distinct loci. Phenotypic heterogeneity and relatively small sample sizes may explain the lack of genome wide significant findings. However, the replication at three SNPs in the validation cohort shows promise for future studies in larger cohorts. We did not find strong evidence for concordance between the few associations highlighted by previous GWAs of breast cancer survival and this study.  相似文献   

14.

Introduction

Recently, genome-wide association studies (GWAS) in Caucasian populations have identified an association between single nucleotide polymorphisms (SNPs) in the CHRNA5-A3-B4 nicotinic acetylcholine receptor subunit gene cluster on chromosome 15q25, lung cancer risk and smoking behaviors. However, these SNPs are rare in Asians, and there is currently no consensus on whether SNPs in CHRNA5-A3-B4 have a direct or indirect carcinogenic effect through smoking behaviors on lung cancer risk. Though some studies confirmed rs6495308 polymorphisms to be associated with smoking behaviors and lung cancer, no research was conducted in China. Using a case-control study, we decided to investigate the associations between CHRNA3 rs6495308, CHRNB4 rs11072768, smoking behaviors and lung cancer risk, as well as explore whether the two SNPs have a direct or indirect carcinogenic effect on lung cancer.

Methods

A total of 1025 males were interviewed using a structured questionnaire (204 male lung cancer patients and 821 healthy men) to acquire socio-demographic status and smoking behaviors. Venous blood samples were collected to measure rs6495308 and rs11072768 gene polymorphisms. All subjects were divided into 3 groups: non-smokers, light smokers (1–15 cigarettes per day) and heavy smokers (>15 cigarettes per day).

Results

Compared to wild genotype, rs6495308 and rs11072768 variant genotypes reported smoking more cigarettes per day and a higher pack-years of smoking (P<0.05). More importantly, among smokers, both rs6495308 CT/TT and rs11072768 GT/GG had a higher risk of lung cancer compared to wild genotype without adjusting for potential confounding factors (OR = 1.36, 95%CI = 1.09–1.95; OR = 1.11, 95%CI = 1.07–1.58 respectively). Furthermore, heavy smokers with rs6495308 or rs11072768 variant genotypes have a positive interactive effect on lung cancer after adjustment for potential confounding factors (OR = 1.13, 95%CI = 1.01–3.09; OR = 1.09, 95%CI = 1.01–3.41 respectively). However, No significant associations were found between lung cancer risk and both rs6495308 and rs11072768 genotypes among non-smokers and smokers after adjusting for age, occupation, and education.

Conclusion

This study confirmed both rs6495308 and rs11072768 gene polymorphisms association with smoking behaviors and had an indirect link between gene polymorphisms and lung cancer risk.  相似文献   

15.
Galectin-3 is a lectin involved in fibrosis, inflammation and proliferation. Increased circulating levels of galectin-3 have been associated with various diseases, including cancer, immunological disorders, and cardiovascular disease. To enhance our knowledge on galectin-3 biology we performed the first genome-wide association study (GWAS) using the Illumina HumanCytoSNP-12 array imputed with the HapMap 2 CEU panel on plasma galectin-3 levels in 3,776 subjects and follow-up genotyping in an additional 3,516 subjects. We identified 2 genome wide significant loci associated with plasma galectin-3 levels. One locus harbours the LGALS3 gene (rs2274273; P = 2.35×10−188) and the other locus the ABO gene (rs644234; P = 3.65×10−47). The variance explained by the LGALS3 locus was 25.6% and by the ABO locus 3.8% and jointly they explained 29.2%. Rs2274273 lies in high linkage disequilibrium with two non-synonymous SNPs (rs4644; r2 = 1.0, and rs4652; r2 = 0.91) and wet lab follow-up genotyping revealed that both are strongly associated with galectin-3 levels (rs4644; P = 4.97×10−465 and rs4652 P = 1.50×10−421) and were also associated with LGALS3 gene-expression. The origins of our associations should be further validated by means of functional experiments.  相似文献   

16.

Background

The inverse relationship between GLUT4 and RBP4 expression is known to play a role in the pathogenesis of type 2 diabetes. Elevated levels of RBP4 were shown to cause insulin resistance in muscles and liver. Identification of STRA6 as a cell surface receptor for RBP4 provides further link in this axis and hence we analyzed SNPs in these three genes for association with type 2 diabetes in a South Indian population.

Methodology/Principal Findings

Selected SNPs in the three genes were analyzed in a total of 2002 individuals belonging to Dravidian ethnicity, South India, by Tetra Primer ARMS PCR or RFLP PCR. Allele frequencies and genotype distribution were calculated in cases and controls and were analyzed for association by Chi-squared test and Logistic regression. Haplotype analysis was carried out for each gene by including all the markers in a single block. We observed a significant association of three SNPs, rs974456, rs736118, and rs4886578 in STRA6 with type 2 diabetes (P = 0.001, OR 0.79[0.69–0.91], P = 0.003, OR 0.81[0.71–0.93], and P = 0.001, OR 0.74[0.62–0.89] respectively). None of the SNPs in RBP4 and GLUT4 showed any association with type 2 diabetes. Haplotype analysis revealed that two common haplotypes H1 (111, P = 0.001, OR 1.23[1.08–1.40]) and H2 (222, P = 0.002 OR 0.73[0.59–0.89]) in STRA6, H6 (2121, P = 0.006, OR 1.69[1.51–2.48]) in RBP4 and H4 (2121, P = 0.01 OR 1.41[1.07–1.85]) in GLUT4 were associated with type 2 diabetes.

Conclusion

SNPs in STRA6, gene coding the cell surface receptor for RBP4, were significantly associated with type 2 diabetes and further genetic and functional studies are required to understand and ascertain its role in the manifestation of type 2 diabetes.  相似文献   

17.
Several infrequent genetic polymorphisms in the SERPINA1 gene are known to substantially reduce concentration of alpha1-antitrypsin (AAT) in the blood. Since low AAT serum levels fail to protect pulmonary tissue from enzymatic degradation, these polymorphisms also increase the risk for early onset chronic obstructive pulmonary disease (COPD). The role of more common SERPINA1 single nucleotide polymorphisms (SNPs) in respiratory health remains poorly understood.We present here an agnostic investigation of genetic determinants of circulating AAT levels in a general population sample by performing a genome-wide association study (GWAS) in 1392 individuals of the SAPALDIA cohort.Five common SNPs, defined by showing minor allele frequencies (MAFs) >5%, reached genome-wide significance, all located in the SERPINA gene cluster at 14q32.13. The top-ranking genotyped SNP rs4905179 was associated with an estimated effect of β = −0.068 g/L per minor allele (P = 1.20*10−12). But denser SERPINA1 locus genotyping in 5569 participants with subsequent stepwise conditional analysis, as well as exon-sequencing in a subsample (N = 410), suggested that AAT serum level is causally determined at this locus by rare (MAF<1%) and low-frequent (MAF 1–5%) variants only, in particular by the well-documented protein inhibitor S and Z (PI S, PI Z) variants. Replication of the association of rs4905179 with AAT serum levels in the Copenhagen City Heart Study (N = 8273) was successful (P<0.0001), as was the replication of its synthetic nature (the effect disappeared after adjusting for PI S and Z, P = 0.57). Extending the analysis to lung function revealed a more complex situation. Only in individuals with severely compromised pulmonary health (N = 397), associations of common SNPs at this locus with lung function were driven by rarer PI S or Z variants. Overall, our meta-analysis of lung function in ever-smokers does not support a functional role of common SNPs in the SERPINA gene cluster in the general population.  相似文献   

18.

Background

Occupational exposure to endotoxin is associated with decrements in pulmonary function, but how much variation in this association is explained by genetic variants is not well understood.

Objective

We aimed to identify single nucleotide polymorphisms (SNPs) that are associated with the rate of forced expiratory volume in one second (FEV1) decline by a large scale genetic association study in newly-hired healthy young female cotton textile workers.

Methods

DNA samples were genotyped using the Illumina Human CVD BeadChip. Change rate in FEV1 was modeled as a function of each SNP genotype in linear regression model with covariate adjustment. We controlled the type 1 error in study-wide level by permutation method. The false discovery rate (FDR) and the family-wise error rate (FWER) were set to be 0.10 and 0.15 respectively.

Results

Two SNPs were found to be significant (P<6.29×10−5), including rs1910047 (P = 3.07×10−5, FDR = 0.0778) and rs9469089 (P = 6.19×10−5, FDR = 0.0967), as well as other eight suggestive (P<5×10−4) associated SNPs. Gene-gene and gene-environment interactions were also observed, such as rs1910047 and rs1049970 (P = 0.0418, FDR = 0.0895); rs9469089 and age (P = 0.0161, FDR = 0.0264). Genetic risk score analysis showed that the more risk loci the subjects carried, the larger the rate of FEV1 decline occurred (P trend = 3.01×10−18). However, the association was different among age subgroups (P = 7.11×10−6) and endotoxin subgroups (P = 1.08×10−2). Functional network analysis illustrates potential biological connections of all interacted genes.

Conclusions

Genetic variants together with environmental factors interact to affect the rate of FEV1 decline in cotton textile workers.  相似文献   

19.
DNA methylation has been implicated in the etiopathology of various complex disorders. DNA methyltransferases are involved in maintaining and establishing new methylation patterns. The aim of the present study was to investigate the inherent genetic variations within DNA methyltransferase genes in predisposing to susceptibility to schizophrenia. We screened for polymorphisms in DNA methyltransferases, DNMT1, DNMT3A, DNMT3B and DNMT3L in 330 schizophrenia patients and 302 healthy controls for association with Schizophrenia in south Indian population. These polymorphisms were also tested for subgroup analysis with patient''s gender, age of onset and family history. DNMT1 rs2114724 (genotype P = .004, allele P = 0.022) and rs2228611 (genotype P = 0.004, allele P = 0.022) were found to be significantly associated at genotypic and allelic level with Schizophrenia in South Indian population. DNMT3B rs2424932 genotype (P = 0.023) and allele (P = 0.0063) increased the risk of developing schizophrenia in males but not in females. DNMT3B rs1569686 (genotype P = 0.027, allele P = 0.033) was found to be associated with early onset of schizophrenia and also with family history and early onset (genotype P = 0.009). DNMT3L rs2070565 (genotype P = 0.007, allele P = 0.0026) confers an increased risk of developing schizophrenia at an early age in individuals with family history. In-silico prediction indicated functional relevance of these SNPs in regulating the gene. These observations might be crucial in addressing and understanding the genetic control of methylation level differences from ethnic viewpoint. Functional significance of genotype variations within the DNMTs indeed suggest that the genetic nature of methyltransferases should be considered while addressing epigenetic events mediated by methylation in Schizophrenia.  相似文献   

20.
Heart rate variability is an important risk factor for cardiovascular disease and all-cause mortality. The acetylcholine pathway plays a key role in explaining heart rate variability in humans. We assessed whether 443 genotyped and imputed common genetic variants in eight key genes (CHAT, SLC18A3, SLC5A7, CHRNB4, CHRNA3, CHRNA, CHRM2 and ACHE) of the acetylcholine pathway were associated with variation in an established measure of heart rate variability reflecting parasympathetic control of the heart rhythm, the root mean square of successive differences (RMSSD) of normal RR intervals. The association was studied in a two stage design in individuals of European descent. First, analyses were performed in a discovery sample of four cohorts (n = 3429, discovery stage). Second, findings were replicated in three independent cohorts (n = 3311, replication stage), and finally the two stages were combined in a meta-analysis (n = 6740). RMSSD data were obtained under resting conditions. After correction for multiple testing, none of the SNPs showed an association with RMSSD. In conclusion, no common genetic variants for heart rate variability were identified in the largest and most comprehensive candidate gene study on the acetylcholine pathway to date. Future gene finding efforts for RMSSD may want to focus on hypothesis free approaches such as the genome-wide association study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号