首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To clarify the structure of microbial food webs in groundwater, knowledge about the protist diversity and feeding strategies is essential. We applied cultivation‐dependent approaches and molecular methods for further understanding of protist diversity in groundwater. Groundwater was sampled from a karstified aquifer located in the Thuringian Basin (Thuringia, Germany). Cultivable protist abundance estimated up to 8,000 cells/L. Eleven flagellates, 10 naked amoebae, and one ciliate morpho‐species were detected in groundwater enrichment cultures. Most of the flagellates morpho‐species, typically < 10 μm, were sessile or free swimming suspension feeders, e.g., Spumella spp., Monosiga spp., and mobile, surface‐associated forms that grasp biofilms, e.g., Bodo spp. Naked amoebae, typically < 35 μm, that grasp biofilms were represented by, e.g., Vahlkampfia spp., Vannella spp., and Hartmanella spp. The largest fraction of the 18S rRNA gene sequences was affiliated with Spumella‐like Stramenopiles. Besides, also sequences affiliated with fungi and metazoan grazers were detected in clone libraries of the groundwater. We hypothesize that small sized protist species take refuge in the structured surface of the fractures and fissures of the karstified aquifer and mainly feed on biofilm‐associated or suspended bacteria.  相似文献   

2.
Biological populations may survive lethal environmental stress through evolutionary rescue. The rescued populations typically suffer a reduction in growth performance and harbor very low genetic diversity compared with their parental populations. The present study addresses how population size and within‐population diversity may recover through compensatory evolution, using the experimental adaptive radiation of bacterium Pseudomonas fluorescens. We exposed bacterial populations to an antibiotic treatment and then imposed a one‐individual‐size population bottleneck on those surviving the antibiotic stress. During the subsequent compensatory evolution, population size increased and leveled off very rapidly. The increase of diversity was of slower paces and persisted longer. In the very early stage of compensatory evolution, populations of large sizes had a greater chance to diversify; however, this productivity–diversification relationship was not observed in later stages. Population size and diversity from the end of the compensatory evolution was not contingent on initial population growth performance. We discussed the possibility that our results be explained by the emergence of a “holey” fitness landscape under the antibiotic stress.  相似文献   

3.
Predation influences prey diversity and productivity while it effectuates the flux and reallocation of organic nutrients into biomass at higher trophic levels. However, it is unknown how bacterivorous protists are influenced by the diversity of their bacterial prey. Using 456 microcosms, in which different bacterial mixtures with equal initial cell numbers were exposed to single or multiple predators (Tetrahymena sp., Poterioochromonas sp. and Acanthamoeba sp.), we showed that increasing prey richness enhanced production of single predators. The extent of the response depended, however, on predator identity. Bacterial prey richness had a stabilizing effect on predator performance in that it reduced variability in predator production. Further, prey richness tended to enhance predator evenness in the predation experiment including all three protists predators (multiple predation experiment). However, we also observed a negative relationship between prey richness and predator production in multiple predation experiments. Mathematical analysis of potential ecological mechanisms of positive predator diversity—functioning relationships revealed predator complementarity as a factor responsible for both enhanced predator production and prey reduction. We suggest that the diversity at both trophic levels interactively determines protistan performance and might have implications in microbial ecosystem processes and services.  相似文献   

4.
Substrate supply and protist grazing are two of the most important forces that determine the composition and properties of bacterial assemblages. General ecological theory predicts that the relative importance of these factors is changing with the environmental productivity. In the present study, the interplay between bottom-up and top-down control was studied in a productivity gradient simulated in one-stage chemostats containing natural assemblages of freshwater bacteria and heterotrophic nanoflagellates. Bacterial assemblages in the chemostats differed strongly with respect to their morphological, physiological and compositional properties in the presence versus the absence of predators. However, theses differences were modified by the productivity gradient. Whereas in predator-free chemostats the mean abundance and biomass of bacteria increased proportionally with increasing substrate supply, in treatments that included flagellates bacterial production was largely channelled into predator biomass. The bacterial morphological diversity increased along the productivity gradient with increasing substrate input but even more so with predators. Proportional to the increasing substrate supply, predation shifted the remaining bacteria towards morphologically inedible forms. Predation also caused shifts in bacterial substrate-utilization profiles, and in bacterial community composition, as analysed by terminal restriction fragment length polymorphism of PCR-amplified 16S-rRNA genes. Without predators, bacterial richness increased along the productivity gradient whereas with predators bacterial richness was higher at intermediate substrate levels. In accordance with ecological theory, these results demonstrated that predators influence all of the major characteristics of bacterial assemblages but the magnitude of this effect is modulated by the productivity of the system.  相似文献   

5.
Heterotrophic protists are a highly diverse and biogeochemically significant component of marine ecosystems, yet little is known about their species-specific prey preferences and symbiotic interactions in situ. Here we demonstrate how these previously unresolved questions can be addressed by sequencing the eukaryote and bacterial SSU rRNA genes from individual, uncultured protist cells collected from their natural marine environment and sorted by flow cytometry. We detected Pelagibacter ubique in association with a MAST-4 protist, an actinobacterium in association with a chrysophyte and three bacteroidetes in association with diverse protist groups. The presence of identical phylotypes among the putative prey and the free bacterioplankton in the same sample provides evidence for predator–prey interactions. Our results also suggest a discovery of novel symbionts, distantly related to Rickettsiales and the candidate divisions ZB3 and TG2, associated with Cercozoa and Chrysophyta cells. This study demonstrates the power of single cell sequencing to untangle ecological interactions between uncultured protists and prokaryotes.  相似文献   

6.
Bacterial diversity patterns along a gradient of primary productivity   总被引:6,自引:1,他引:5  
Primary productivity is a key determinant of biodiversity patterns in plants and animals but has not previously been shown to affect bacterial diversity. We examined the relationship between productivity and bacterial richness in aquatic mesocosms designed to mimic small ponds. We observed that productivity could influence the composition and richness of bacterial communities. We showed that, even within the same system, different bacterial taxonomic groups could exhibit different responses to changes in productivity. The richness of members of the Cytophaga‐Flavobacteria‐Bacteroides group exhibited a significant hump‐shaped relationship with productivity, as is often observed for plant and animal richness in aquatic systems. In contrast, we observed a significant U‐shaped relationship between richness and productivity for α‐proteobacteria and no discernable relationship for β‐proteobacteria. We show, for the first time, that bacterial diversity varies along a gradient of primary productivity and thus make an important step towards understanding processes responsible for the maintenance of bacterial biodiversity.  相似文献   

7.
Investigating diversity gradients helps to understand biodiversity drivers and threats. However, one diversity gradient is rarely assessed, namely how plant species distribute along the depth gradient of lakes. Here, we provide the first comprehensive characterization of depth diversity gradient (DDG) of alpha, beta, and gamma species richness of submerged macrophytes across multiple lakes. We characterize the DDG for additive richness components (alpha, beta, gamma), assess environmental drivers, and address temporal change over recent years. We take advantage of yet the largest dataset of macrophyte occurrence along lake depth (274 depth transects across 28 deep lakes) as well as of physiochemical measurements (12 deep lakes from 2006 to 2017 across Bavaria), provided publicly online by the Bavarian State Office for the Environment. We found a high variability in DDG shapes across the study lakes. The DDGs for alpha and gamma richness are predominantly hump‐shaped, while beta richness shows a decreasing DDG. Generalized additive mixed‐effect models indicate that the depth of the maximum richness (D max) is influenced by light quality, light quantity, and layering depth, whereas the respective maximum alpha richness within the depth gradient (R max) is significantly influenced by lake area only. Most observed DDGs seem generally stable over recent years. However, for single lakes we found significant linear trends for R max and D max going into different directions. The observed hump‐shaped DDGs agree with three competing hypotheses: the mid‐domain effect, the mean–disturbance hypothesis, and the mean–productivity hypothesis. The DDG amplitude seems driven by lake area (thus following known species–area relationships), whereas skewness depends on physiochemical factors, mainly water transparency and layering depth. Our results provide insights for conservation strategies and for mechanistic frameworks to disentangle competing explanatory hypotheses for the DDG.  相似文献   

8.
Microbial communities have a key role in the physiology of the sponge host, and it is therefore essential to understand the stability and specificity of sponge–symbiont associations. Host-specific bacterial associations spanning large geographic distance are widely acknowledged in sponges. However, the full spectrum of specificity remains unclear. In particular, it is not known whether closely related sponges host similar or very different microbiota over wide bathymetric and geographic gradients, and whether specific associations extend to the rare members of the sponge microbiome. Using the ultra-deep Illumina sequencing technology, we conducted a comparison of sponge bacterial communities in seven closely related Hexadella species with a well-resolved host phylogeny, as well as of a distantly related sponge Mycale. These samples spanned unprecedentedly large bathymetric (15–960 m) gradients and varying European locations. In addition, this study included a bacterial community analysis of the local background seawater for both Mycale and the widespread deep-sea taxa Hexadella cf. dedritifera. We observed a striking diversity of microbes associated with the sponges, spanning 47 bacterial phyla. The data did not reveal any Hexadella microbiota co-speciation pattern, but confirmed sponge-specific and species-specific host–bacteria associations, even within extremely low abundant taxa. Oligotyping analysis also revealed differential enrichment preferences of closely related Nitrospira members in closely related sponges species. Overall, these results demonstrate highly diverse, remarkably specific and stable sponge–bacteria associations that extend to members of the rare biosphere at a very fine phylogenetic scale, over significant geographic and bathymetric gradients.  相似文献   

9.
The long-term application of excessive chemical fertilizers has resulted in the degeneration of soil quality parameters such as soil microbial biomass, communities, and nutrient content, which in turn affects crop health, productivity, and soil sustainable productivity. The objective of this study was to develop a rapid and efficient solution for rehabilitating degraded cropland soils by precisely quantifying soil quality parameters through the application of manure compost and bacteria fertilizers or its combination during maize growth. We investigated dynamic impacts on soil microbial count, biomass, basal respiration, community structure diversity, and enzyme activity using six different treatments [no fertilizer (CK), N fertilizer (N), N fertilizer + bacterial fertilizer (NB), manure compost (M), manure compost + bacterial fertilizer (MB), and bacterial fertilizer (B)] in the plowed layer (0–20 cm) of potted soil during various maize growth stages in a temperate cropland of eastern China. Denaturing gradient electrophoresis (DGGE) fingerprinting analysis showed that the structure and composition of bacterial and fungi communities in the six fertilizer treatments varied at different levels. The Shannon index of bacterial and fungi communities displayed the highest value in the MB treatments and the lowest in the N treatment at the maize mature stage. Changes in soil microorganism community structure and diversity after different fertilizer treatments resulted in different microbial properties. Adding manure compost significantly increased the amount of cultivable microorganisms and microbial biomass, thus enhancing soil respiration and enzyme activities (p<0.01), whereas N treatment showed the opposite results (p<0.01). However, B and NB treatments minimally increased the amount of cultivable microorganisms and microbial biomass, with no obvious influence on community structure and soil enzymes. Our findings indicate that the application of manure compost plus bacterial fertilizers can immediately improve the microbial community structure and diversity of degraded cropland soils.  相似文献   

10.
Bacterial endosymbiosis has been instrumental in eukaryotic evolution, and includes both mutualistic, dependent and parasitic associations. Here we characterize an intracellular bacterium inhabiting the flagellated protist Bodo saltans (Kinetoplastida). We present a complete bacterial genome comprising a 1.39 Mb circular chromosome with 40.6% GC content. Fluorescent in situ hybridisation confirms that the endosymbiont is located adjacent to the nuclear membrane, and a detailed model of its intracellular niche is generated using serial block-face scanning electron microscopy. Phylogenomic analysis shows that the endosymbiont belongs to the Holosporales, most closely related to other α-proteobacterial endosymbionts of ciliates and amoebae. Comparative genomics indicates that it has a limited metabolism and is nutritionally host-dependent. However, the endosymbiont genome does encode diverse symbiont-specific secretory proteins, including a type VI secretion system and three separate toxin-antitoxin systems. We show that these systems are actively transcribed and hypothesize they represent a mechanism by which B. saltans becomes addicted to its endosymbiont. Consistent with this idea, attempts to cure Bodo of endosymbionts led to rapid and uniform cell death. This study adds kinetoplastid flagellates to ciliates and amoebae as hosts of Paracaedibacter-like bacteria, suggesting that these antagonistic endosymbioses became established very early in Eukaryotic evolution.Subject terms: Microbial ecology, Bacteria  相似文献   

11.
A predator''s functional response determines predator–prey interactions by describing the relationship between the number of prey available and the number eaten. Its shape and parameters fundamentally govern the dynamic equilibrium of predator–prey interactions and their joint abundances. Yet, estimates of these key parameters generally assume stasis in space and time and ignore the potential for local adaptation to alter feeding responses and the stability of trophic dynamics. Here, we evaluate if functional responses diverge among populations of spotted salamander (Ambystoma maculatum) larvae that face antagonistic selection on feeding strategies based on their own risk of predation. Common garden experiments revealed that spotted salamander from ponds with varying predation risks differed in their functional responses, suggesting an evolutionary response. Applying mechanistic equations, we discovered that the combined changes in attack rates, handling times and shape of the functional response enhanced feeding rate in environments with high densities of gape-limited predators. We suggest how these parameter changes could alter community equilibria and other emergent properties of food webs. Community ecologists might often need to consider how local evolution at fine scales alters key relationships in ways that alter local diversity patterns, food web dynamics, resource gradients and community responses to disturbance.  相似文献   

12.
Plant functional traits are thought to drive variation in primary productivity. However, there is a lack of work examining how dominant species identity affects trait–productivity relationships. The productivity of 12 pasture mixtures was determined in a 3‐year field experiment. The mixtures were based on either the winter‐active ryegrass (Lolium perenne) or winter‐dormant tall fescue (Festuca arundinacea). Different mixtures were obtained by adding forb, legume, and grass species that differ in key leaf economics spectrum (LES) traits to the basic two‐species dominant grass–white clover (Trifolium repens) mixtures. We tested for correlations between community‐weighted mean (CWM) trait values, functional diversity, and productivity across all plots and within those based on either ryegrass or tall fescue. The winter‐dormant forb species (chicory and plantain) had leaf traits consistent with high relative growth rates both per unit leaf area (high leaf thickness) and per unit leaf dry weight (low leaf dry matter content). Together, the two forb species achieved reasonable abundance when grown with either base grass (means of 36% and 53% of total biomass, respectively, with ryegrass tall fescue), but they competed much more strongly with tall fescue than with ryegrass. Consequently, they had a net negative impact on productivity when grown with tall fescue, and a net positive effect when grown with ryegrass. Strongly significant relationships between productivity and CWM values for LES traits were observed across ryegrass‐based mixtures, but not across tall fescue‐based mixtures. Functional diversity did not have a significant positive effect on productivity for any of the traits. The results show dominant species identity can strongly modify trait–productivity relationships in intensively grazed pastures. This was due to differences in the intensity of competition between dominant species and additional species, suggesting that resource‐use complementarity is a necessary prerequisite for trait–productivity relationships.  相似文献   

13.
The competitive exclusion principle states that phage diversity M should not exceed bacterial diversity N. By analyzing the steady-state solutions of multistrain equations, we find a new constraint: the diversity N of bacteria living on the same resources is constrained to be M or M+1 in terms of the diversity of their phage predators. We quantify how the parameter space of coexistence exponentially decreases with diversity. For diversity to grow, an open or evolving ecosystem needs to climb a narrowing ‘diversity staircase'' by alternatingly adding new bacteria and phages. The unfolding coevolutionary arms race will typically favor high growth rate, but a phage that infects two bacterial strains differently can occasionally eliminate the fastest growing bacteria. This context-dependent fitness allows abrupt resetting of the ‘Red-Queen''s race'' and constrains the local diversity.  相似文献   

14.
Direct observation was used to measure feeding rates of the flagellate Spumella on three sizes of bacteria plus 0.3 µm latex beads using video microscopy. Feeding rate was maximum on the intermediate-sized bacteria. Maximum ingestion rates (Im) for the large- (0.53 µm3), intermediate- (0.08 µm3) and small-sized (0.02 µm3) bacteria and 0.014 µm3 latex beads were 11, 38 and 14 bacteria and 9 beads flagellate–1 h–1, respectively. The growth rates of Spumella sp. feeding on monoxenic cultures of the large- vs. the intermediate-sized bacteria were indistinguishable but Spumella sp. could not sustain its population density when feeding on the small bacterium as the sole food source. Our data are consistent with the hypothesis that Spumella sp., and possibly other flagellate protozoa, tend to feed selectively on larger prey. One consequence of this hypothesis is that differential grazing by bactivores may select for small bacteria in natural waters.  相似文献   

15.
Recent research in mammals supports a link between cognitive ability and the gut microbiome, but little is known about this relationship in other taxa. In a captive population of 38 zebra finches (Taeniopygia guttata), we quantified performance on cognitive tasks measuring learning and memory. We sampled the gut microbiome via cloacal swab and quantified bacterial alpha and beta diversity. Performance on cognitive tasks related to beta diversity but not alpha diversity. We then identified differentially abundant genera influential in the beta diversity differences among cognitive performance categories. Though correlational, this study provides some of the first evidence of an avian microbiota–gut–brain axis, building foundations for future microbiome research in wild populations and during host development.  相似文献   

16.
The availability of nutrients and energy is a main driver of biodiversity for plant and animal communities in terrestrial and marine ecosystems, but we are only beginning to understand whether and how energy–diversity relationships may be extended to complex natural bacterial communities. Here, we analyzed the link between phytodetritus input, diversity and activity of bacterial communities of the Siberian continental margin (37–3427 m water depth). Community structure and functions, such as enzymatic activity, oxygen consumption and carbon remineralization rates, were highly related to each other, and with energy availability. Bacterial richness substantially increased with increasing sediment pigment content, suggesting a positive energy–diversity relationship in oligotrophic regions. Richness leveled off, forming a plateau, when mesotrophic sites were included, suggesting that bacterial communities and other benthic fauna may be structured by similar mechanisms. Dominant bacterial taxa showed strong positive or negative relationships with phytodetritus input and allowed us to identify candidate bioindicator taxa. Contrasting responses of individual taxa to changes in phytodetritus input also suggest varying ecological strategies among bacterial groups along the energy gradient. Our results imply that environmental changes affecting primary productivity and particle export from the surface ocean will not only affect bacterial community structure but also bacterial functions in Arctic deep-sea sediment, and that sediment bacterial communities can record shifts in the whole ocean ecosystem functioning.  相似文献   

17.
Predator–prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species'' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator–prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator–prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator–prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities.  相似文献   

18.
Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature–diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5–99 °C and a pH range of 1.8–9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R2 values up to 0.62 for neutral–alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13–20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible.  相似文献   

19.
A recent shift in managing insect resistance to genetically engineered (GE) maize consists of mixing non-GE seed with GE seed known as “refuge in a bag”, which increases the likelihood of predators encountering both prey fed Bt and prey fed non-Bt maize. We therefore conducted laboratory choice-test feeding studies to determine if a predator, Harmonia axyridis, shows any preference between prey fed Bt and non-Bt maize leaves. The prey species was Spodoptera frugiperda, which were fed Bt maize (MON-810), expressing the single Cry1Ab protein, or non-Bt maize. The predators were third instar larvae and female adults of H. axyridis. Individual predators were offered Bt and non-Bt fed prey larvae that had fed for 24, 48 or 72 h. Ten and 15 larvae of each prey type were offered to third instar and adult predators, respectively. Observations of arenas were conducted at 1, 2, 3, 6, 15 and 24 h after the start of the experiment to determine the number and type of prey eaten by each individual predator. Prey larvae that fed on non-Bt leaves were significantly larger than larvae fed Bt leaves. Both predator stages had eaten nearly all the prey by the end of the experiment. However, in all combinations of predator stage and prey age, the number of each prey type consumed did not differ significantly. ELISA measurements confirmed the presence of Cry1Ab in leaf tissue (23–33 µg/g dry weight) and S. frugiperda (2.1–2.2 µg/g), while mean concentrations in H. axyridis were very low (0.01–0.2 µg/g). These results confirm the predatory status of H. axyridis on S. frugiperda and that both H. axyridis adults and larvae show no preference between prey types. The lack of preference between Bt-fed and non-Bt-fed prey should act in favor of insect resistance management strategies using mixtures of GE and non-GE maize seed.  相似文献   

20.
Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These findings suggest a pivotal host-driven effect on the shape of the marine sponge microbiome, bearing implications to our current understanding of the distribution of microbial genetic resources in the marine realm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号