首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new yeast species, Trichosporon adeninovorans, was isolated from soil by the enrichment culture method. Apart from adenine, the strain utilized uric acid, guanine, xanthine, hypoxanthine, 6,8-dihydroxypurine, putrescine, propylamine, butylamine, pentylamine, hexylamine and octylamine as sole source of carbon, nitrogen and energy.The structure of the cell wall of Tr. adeninovorans was ascomycetous. On the subcellular level growth on adenine or uric acid was accompanied with the development of microbodies in the cell. These cell organelles probably were the site of urate oxidase, an enzyme that, after growth on purine substrates, together with allantoinase was present at high activities. Low activities of adenine amidohydrolase and xanthine dehydrogenase were also demonstrated.  相似文献   

2.
Xanthine dehydrogenase has been purified to a homogeneous state from cell-free extracts of a strain of Streptomyces. The enzyme has a molecular weight of 125,000 and consists of two subunits with a molecular weight of 67,000. The isoelectric point is at pH 4.4. The enzyme exhibits absorption maxima at 273, 355, and 457 nm and contains FAD, iron, and labile sulfide in a molar ratio of 1 : 7 : 1 per subunit. Little molybdenum could be detected. The enzyme is most active at pH 8.7 and at 40 degrees C, and is stable between pH 7 and 12 (at 4 degrees C for 24 h) and below 55 degrees C (at pH 9 for 10 min). The activity is stimulated by K+ at a concentration of 50 mM or more and also by keeping the enzyme at pH 9 to 11. The activity is inhibited by cyanide, Tiron, and p-chloromercuribenzoate and by adenine and urate. Among the compounds tested, hypoxanthine, guanine, xanthine 2-hydroxypurine, and 6,8-dihydroxypurine are oxidized at considerable rates; hypoxanthine is the best substrate. NAD+ is the preferred electron acceptor. Km values of the enzyme for hypoxanthine, guanine, xanthine, and NAD+ are 0.055, 0.015, 0.15, and 0.11 mM, respectively. Marked differences in the properties of this enzyme compared to others are the activity towards guanine, which has a higher affinity for the enzyme than hypoxanthine and xanthine, and a higher reactivity with hypoxanthine than xanthine. The organism has been identified as Streptomyces cyanogenus.  相似文献   

3.
Purine and glycine metabolism by purinolytic clostridia.   总被引:8,自引:3,他引:5       下载免费PDF全文
Cell extracts of Clostridium acidiurici, C. cylindrosporum, and C. purinolyticum converted purine, hypoxanthine, 2-hydroxypurine, 6,8-dihydroxypurine, and uric acid into xanthine by the shortest possible route. Adenine was transformed to xanthine only by C. purinolyticum, whereas the other two species formed 6-amino-8-hydroxypurine, which was neither deaminated nor hydroxylated further. 8-Hydroxypurine was formed from purine by all three species. Xanthine dehydrogenase activity was constitutively expressed by C. purinolyticum. Due to the lability of the enzyme activity, comparative studies could not be done with a purified preparation. All enzymes reported to be involved in formiminoglycine metabolism of C. acidiurici and C. cylindrosporum were present in C. purinolyticum. However, glycine was reduced directly to acetate in all three species, as indicated by radiochemical data and by the detection of glycine reductase in cell extracts of C. cylindrosporum and C. purinolyticum. The expression of glycine reductase and the high ratio of glycine fermented to uric acid present points to an energetic advantage for the glycine reductase system, which is expressed when selenium compounds are added to the growth media.  相似文献   

4.
Cells of a strain of Streptomyces sp. were incubated with an equivalent quantity of urate, xanthine, 6,8-dihydroxypurine or hypoxanthine in a medium deprived of other nitrogen source. The amount of uricase produced by these cells was shown to differ significantly, increasing in the following order of purine bases added to the medium: urate, xanthine, 6,8-dihydroxypurine and hypoxanthine. Of these was only urate indicated to be the inducer of uricase formation, and the difference in the quantity of uricase produced was found to be based on the duration of enzyme formation. The rate of uricase formation was essentially identical regardless of the purine bases supplied to cells.

Allantoin was accumulated in medium in remarkably different manners depending on the purine bases, which suggested the diversity in the mode of generation of urate in cells. Urate was generated at the slowest rate in the cells incubated with hypoxanthine, although the largest amount of uricase was produced, However, urate supplied to cells at the same rate but from medium failed to support the enzyme formation when the activity increased to a certain level. In order that the same amount of uricase was produced by the cells incubated with the different purine bases, the initial concentration of the purine bases should be raised so that they could remain in medium for the same incubation time.

Intracellular compartmentalization that might segregate endogenous and exogenous urate and might cause the difference in “effeciency” of these urate molecules as the inducer of uricase formation has been discussed.  相似文献   

5.
Clostridium cylindrosporum spores germinated rapidly under reducing conditions when bicarbonate, uric acid, and calcium were present. Germination rates on 10 mM urate increased with increasing Ca2+ (maximum rate at 5 mM Ca2+ or greater). Germination rates on urate (limiting Ca2+) increased with increasing urate concentrations to 10 mM urate. At 10 mM Ca2+, germination rates reached a maximum at 1 mM urate and remained constant thereafter. Cations (Na+, K+, Li+, and Mg2+), purines, purine analogs, and EDTA inhibited germination at limiting calcium concentrations but not (except for 10 mM adenine) at 10 mM Ca2+. Methyl viologen or formate did not inhibit germination. Germination was not observed in solutions containing xanthine, hypoxanthine, caffeine, theophylline, 6,8-dihydroxypurine, adenine, allopurinol, formate, glycine, or acetate, even though some of the purines are growth substrates.  相似文献   

6.
1. Kinetic properties of xanthine:NAD+ oxidoreductase from liver of two uricotelic species of vertebrates (hen Gallus gallus and snake Natrix natrix) are compared. 2. Hen enzyme is saturated by hypoxanthine and xanthine at higher concentrations than the snake enzyme. For both species the enzyme-saturating concentration and hydroxylation rate of hypoxanthine are higher than those of xanthine, and the rate of uric acid production in the hypoxanthine----xanthine----uric acid reaction sequence is independent of the initial hypoxanthine concentration. 3. Km's for xanthine are the same, but Km for NAD+ of the hen enzyme is approximately 5-fold lower. The enzyme from both species is inhibited by NADH only slightly and at high non-physiological concentrations.  相似文献   

7.
The uptake of adenine, guanine, xanthine, hypoxanthine and uric acid by whole cells was studied, using spectrophotometric techniques, 14C-labelled compounds and metabolic inhibitors. Three different non-constitutive systems were shown to maintain the uptake of adenine and that of the pairs guanine/hypoxanthine and xanthine/uric acid. —Active transport of adenine was induced by adenine only, but passive uptake was also involved. Maximum K T values of 110–131 M were observed at the pH optimum of 8.0. —Guanine and hypoxanthine were translocated by one single mechanism as indicated by K T and K I values. This system was induced by both these substances but its affinity was 51/2-times higher for guanine than for hypoxanthine; it was noncompetitively stimulated by Mg2+. — A further system, induced by xanthine and uric acid, catalyzed the uptake of both these compounds. It exhibited two pH optima (at pH 6.6 and 7.9); inactivation by heat and stimulation or inhibition by several compounds indicated that two separate mechanisms might be involved in the uptake of xanthine and uric acid.  相似文献   

8.
Xanthine oxidase is an important enzyme of purine metabolism that catalyzes the hydroxylation of hypoxanthine to xanthine and then xanthine to uric acid. A thermostable xanthine oxidase is being reported from a thermophilic organism RL-2d isolated from the Manikaran (Kullu) hot spring of Himachal Pradesh (India). Based on the morphology, physiological tests, and 16S rDNA gene sequence, RL-2d was identified as Bacillus pumilus. Optimization of physiochemical parameters resulted into 4.1-fold increase in the xanthine oxidase activity from 0.051 U/mg dcw (dry cell weight) to 0.209 U/mg dcw. The xanthine oxidase of B. pumilus RL-2d has exhibited very good thermostability and its t1/2 at 70 and 80 °C were 5 and 1 h, respectively. Activity of this enzyme was strongly inhibited by Hg2+, Ag+ and allopurinol. The investigation showed that B. pumilus RL-2d exhibited highest xanthine oxidase activity and remarkable thermostability among the other xanthine oxidases reported so far.  相似文献   

9.
The course of the reaction sequence hypoxanthine----xanthine----uric acid catalysed by xanthine:oxygen oxidoreductase from milk was investigated on the basis of u.v. spectra taken during the course of hypoxanthine and xanthine oxidations. It was found that xanthine accumulated in the reaction mixture when hypoxanthine was used as a substrate. The time course of the concentrations of hypoxanthine, xanthine intermediate and uric acid product was simulated numerically. The mathematical model takes into account the competition of substrate, intermediate and product and the accumulation of the intermediate at the enzyme. This type of analysis permits the kinetic parameters of the enzyme for hypoxanthine and xanthine to be obtained.  相似文献   

10.
A substance promoting the growth of mammalian cells in vitro has been isolated from Bacto-peptone (Difco Labs., Detroit) and identified as 6,8-dihydroxypurine. This compound, which is isomeric with xanthine(2,6-dihydroxypurine), enhances the growth of one Chinese hamster and some other cell lines; xanthine itself is inactive. The biological action of the compound is discussed.  相似文献   

11.
Anaerobic, Gram-positive cocci were obtained from chicken feces by direct isolation, which grew on the purines uric acid, xanthine, 6,8-dihydroxypurine, guanine, and hypoxanthine. Adenine and glycine were fermented, but not as readily. Acetate, formate, ammonia, and CO2 were products. The isolated strains were nutritionally non-fastidious, however, they required selenite, molybdate, and tungstate as micronutrients. The cells were spherical and 0.5–0.9 m in diameter. The addition of bile salts enhanced the growth rate in most cases. The organisms proved to be quite resistant to lysis. The guanosine-plus-cytosine (G+C) content of their deoxyribonucleic acid was 33.6 to 34.8 mol%. The peptidoglycan was of the same structure (Gly-Lys-d-Asp) as reported for the anaerobic cocci of Hare group IX. However, the latter strains could only utilize glycine, not purines. Therefore, it is proposed to form a new species, Peptostreptococcus barnesae sp. nov.This paper is dedicated to Prof. Dr. Norbert Pfennig on the occasion of his 60th birthday  相似文献   

12.
Dextran glucosidase from Streptococcus mutans (SmDG) catalyzes the hydrolysis of an α-1,6-glucosidic linkage at the nonreducing end of isomaltooligosaccharides and dextran. This enzyme has an Asp-194 catalytic nucleophile and two catalytically unrelated Cys residues, Cys-129 and Cys-532. Cys-free SmDG was constructed by replacement with Ser (C129S/C532S (2CS), the activity of which was the same as that of the wild type, SmDG). The nucleophile mutant of 2CS was generated by substitution of Asp-194 with Cys (D194C-2CS). The hydrolytic activity of D194C-2CS was 8.1 × 10−4 % of 2CS. KI-associated oxidation of D194C-2CS increased the activity up to 0.27% of 2CS, which was 330 times higher than D194C-2CS. Peptide-mapping mass analysis of the oxidized D194C-2CS (Ox-D194C-2CS) revealed that Cys-194 was converted into cysteine sulfinate. Ox-D194C-2CS and 2CS shared the same properties (optimum pH, pI, and substrate specificity), whereas Ox-D194C-2CS had much higher transglucosylation activity than 2CS. This is the first study indicating that a more acidic nucleophile (-SOO) enhances transglycosylation. The introduction of cysteine sulfinate as a catalytic nucleophile could be a novel approach to enhance transglycosylation.  相似文献   

13.
14.
The enzymatic system in hepatopancreas of H. pomatia (terrestrial purinotelic gastropod) hydroxylates hypoxanthine to xanthine and uric acid but fails to hydroxylate adenine, nicotinic acid and 3-methyl-6- hydroxypurine ; allopurinol is hydroxylated to oxypurinol 7 times faster than hypoxanthine to xanthine; at concentration of 10(-6) M it inhibits hydroxylation of hypoxanthine by 55%. Two protein fractions [precipitated at 0-0.30 (I) and 0.30-0.45 (II) saturation with (NH4)2 SO4] hydroxylate hypoxanthine with NAD+ as a cosubstrate but only fraction I, predominating during the active life, hydroxylates also xanthine and is inhibited by NADH. Protein fraction II, dominant during winter sleep, does not hydroxylate xanthine and its hypoxanthine-hydroxylating activity is not inhibited by NADH. The latter property may enable continuous operation of the protein catabolic pathway under anaerobiosis.  相似文献   

15.
HMG-CoA lyase (HMGCL) is crucial to ketogenesis, and inherited human mutations are potentially lethal. Detailed understanding of the HMGCL reaction mechanism and the molecular basis for correlating human mutations with enzyme deficiency have been limited by the lack of structural information for enzyme liganded to an acyl-CoA substrate or inhibitor. Crystal structures of ternary complexes of WT HMGCL with the competitive inhibitor 3-hydroxyglutaryl-CoA and of the catalytically deficient HMGCL R41M mutant with substrate HMG-CoA have been determined to 2.4 and 2.2 Å, respectively. Comparison of these β/α-barrel structures with those of unliganded HMGCL and R41M reveals substantial differences for Mg2+ coordination and positioning of the flexible loop containing the conserved HMGCL “signature” sequence. In the R41M-Mg2+-substrate ternary complex, loop residue Cys266 (implicated in active-site function by mechanistic and mutagenesis observations) is more closely juxtaposed to the catalytic site than in the case of unliganded enzyme or the WT enzyme-Mg2+-3-hydroxyglutaryl-CoA inhibitor complex. In both ternary complexes, the S-stereoisomer of substrate or inhibitor is specifically bound, in accord with the observed Mg2+ liganding of both C3 hydroxyl and C5 carboxyl oxygens. In addition to His233 and His235 imidazoles, other Mg2+ ligands are the Asp42 carboxyl oxygen and an ordered water molecule. This water, positioned between Asp42 and the C3 hydroxyl of bound substrate/inhibitor, may function as a proton shuttle. The observed interaction of Arg41 with the acyl-CoA C1 carbonyl oxygen explains the effects of Arg41 mutation on reaction product enolization and explains why human Arg41 mutations cause drastic enzyme deficiency.  相似文献   

16.
The first step of the shikimate pathway for aromatic amino acid biosynthesis is catalyzed by 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Thermotoga maritima DAH7PS (TmaDAH7PS) is tetrameric, with monomer units comprised of a core catalytic (β/α)8 barrel and an N-terminal domain. This enzyme is inhibited strongly by tyrosine and to a lesser extent by the presence of phenylalanine. A truncated mutant of TmaDAH7PS lacking the N-terminal domain was catalytically more active and completely insensitive to tyrosine and phenylalanine, consistent with a role for this domain in allosteric inhibition. The structure of this protein was determined to 2.0 Å. In contrast to the wild-type enzyme, this enzyme is dimeric. Wild-type TmaDAH7PS was co-crystallized with tyrosine, and the structure of this complex was determined to a resolution of 2.35 Å. Tyrosine was found to bind at the interface between two regulatory N-terminal domains, formed from diagonally located monomers of the tetramer, revealing a major reorganization of the regulatory domain with respect to the barrel relative to unliganded enzyme. This significant conformational rearrangement observed in the crystal structures was also clearly evident from small angle X-ray scattering measurements recorded in the presence and absence of tyrosine. The closed conformation adopted by the protein on tyrosine binding impedes substrate entry into the neighboring barrel, revealing an unusual tyrosine-controlled gating mechanism for allosteric control of this enzyme.  相似文献   

17.
A simple and rapid technique for measuring IMP:pyrophosphate phosphoribosyltransferase (HPRibTase) activity of rat intestinal homogenates, in the presence of xanthine oxidase, is described. By introducing 2.5 × 10?5m allopurinol (4-hydroxypyrazolo [3,4-d]pyrimidine) into the reaction mixture, the [8-14C]hypoxanthine (Hx) is converted only to [8-14C]inosinic acid (IMP). The xanthine oxidase activity is completely inhibited under this condition. When xanthine oxidase is not blocked, diversion of substrate to urate can invalidate assays of HPRibTase.Using [8-14C]Hx as substrate, in the presence and absence of allopurinol, the activity of both HPRibTase and xanthine oxidase of the same tissue homogenate is determined. We have simplified the conventional chromatographic separation of the reactant products by spotting the reactant on DEAE cellulose paper followed by repeated washings with 4 mm ammonium formate solution. The unreacted radiosubstrate is washed off, and the [8-14C]IMP or [8-14C]uric acid formed remains adsorbed on the paper. The major advantages of this method are speed, reproducibility, sensitivity, ability to process many samples, and a low blank value.Our studies on the enzyme distribution along the intestinal villus have shown that while most of the HPRibTase activity is associated with rapidly multiplying crypt cells, the xanthine oxidase activity is more evenly distributed along the villus, and the activity is effected more by exongeneous effectors. The colon has the highest HPRibTase and lowest xanthine oxidase activity of all the intestinal mucosa cells. Small bowel mucosa is high both in xanthine oxidase and HPRibTase.  相似文献   

18.
Xanthine dehydrogenase AtXDH1 from Arabidopsis thaliana is a key enzyme in purine degradation where it oxidizes hypoxanthine to xanthine and xanthine to uric acid. Electrons released from these substrates are either transferred to NAD+ or to molecular oxygen, thereby yielding NADH or superoxide, respectively. By an alternative activity, AtXDH1 is capable of oxidizing NADH with concomitant formation of NAD+ and superoxide. Here we demonstrate that in comparison to the specific activity with xanthine as substrate, the specific activity of recombinant AtXDH1 with NADH as substrate is about 15-times higher accompanied by a doubling in superoxide production. The observation that NAD+ inhibits NADH oxidase activity of AtXDH1 while NADH suppresses NAD+-dependent xanthine oxidation indicates that both NAD+ and NADH compete for the same binding-site and that both sub-activities are not expressed at the same time. Rather, each sub-activity is determined by specific conditions such as the availability of substrates and co-substrates, which allows regulation of superoxide production by AtXDH1. Since AtXDH1 exhibits the most pronounced NADH oxidase activity among all xanthine dehydrogenase proteins studied thus far, our results imply that in particular by its NADH oxidase activity AtXDH1 is an efficient producer of superoxide also in vivo.  相似文献   

19.
Uricase activity was found in Enterobacter cloacae KY3074 grown on guanine, hypoxanthine, uric acid, and xanthine media. The enzyme was purified from cells grown on uric acid as a source of nitrogen. The purification procedure included ammonium sulfate fractionation, gel filtration on Sephadex G-150, and column chromatography on DEAE-cellulose and DEAE-Sephadex. The enzyme had a molecular weight of about 105,000 and was specific for uric acid. The optimum pH was around 9.5, and the activity was inhibited by the presence of potassium cyanide, Ag+ or Cu2+. This uricase can be used for estimation of uric acid.  相似文献   

20.
Atrazine chlorohydrolase, TrzN (triazine hydrolase or atrazine chlorohydrolase 2), initiates bacterial metabolism of the herbicide atrazine by hydrolytic displacement of a chlorine substituent from the s-triazine ring. The present study describes crystal structures and reactivity of wild-type and active site mutant TrzN enzymes. The homodimer native enzyme structure, solved to 1.40 Å resolution, is a (βα)8 barrel, characteristic of members of the amidohydrolase superfamily. TrzN uniquely positions threonine 325 in place of a conserved aspartate that ligates the metal in most mononuclear amidohydrolases superfamily members. The threonine side chain oxygen atom is 3.3 Å from the zinc atom and 2.6 Å from the oxygen atom of zinc-coordinated water. Mutation of the threonine to a serine resulted in a 12-fold decrease in kcat/Km, largely due to kcat, whereas the T325D and T325E mutants had immeasurable activity. The structure and kinetics of TrzN are reminiscent of carbonic anhydrase, which uses a threonine to assist in positioning water for reaction with carbon dioxide. An isosteric substitution in the active site glutamate, E241Q, showed a large diminution in activity with ametryn, no detectable activity with atratone, and a 10-fold decrease with atrazine, when compared with wild-type TrzN. Activity with the E241Q mutant was nearly constant from pH 6.0 to 10.0, consistent with the loss of a proton-donating group. Structures for TrzN-E241Q were solved with bound ametryn and atratone to 1.93 and 1.64 Å resolution, respectively. Both structure and kinetic determinations suggest that the Glu241 side chain provides a proton to N-1 of the s-triazine substrate to facilitate nucleophilic displacement at the adjacent C-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号