首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A collection of 54 clinical and agricultural isolates of Burkholderia cenocepacia was analyzed for genetic relatedness by using multilocus sequence typing (MLST), pathogenicity by using onion and nematode infection models, antifungal activity, and the distribution of three marker genes associated with virulence. The majority of clinical isolates were obtained from cystic fibrosis (CF) patients in Michigan, and the agricultural isolates were predominantly from Michigan onion fields. MLST analysis resolved 23 distinct sequence types (STs), 11 of which were novel. Twenty-six of 27 clinical isolates from Michigan were genotyped as ST-40, previously identified as the Midwest B. cenocepacia lineage. In contrast, the 12 agricultural isolates represented eight STs, including ST-122, that were identical to clinical isolates of the PHDC lineage. In general, pathogenicity to onions and the presence of the pehA endopolygalacturonase gene were detected only in one cluster of related strains consisting of agricultural isolates and the PHDC lineage. Surprisingly, these strains were highly pathogenic in the nematode Caenorhabditis elegans infection model, killing nematodes faster than the CF pathogen Pseudomonas aeruginosa PA14 on slow-kill medium. The other strains displayed a wide range of pathogenicity to C. elegans, notably the Midwest clonal lineage which displayed high, moderate, and low virulence. Most strains displayed moderate antifungal activity, although strains with high and low activities were also detected. We conclude that pathogenicity to multiple hosts may be a key factor contributing to the potential of B. cenocepacia to opportunistically infect humans both by increasing the prevalence of the organism in the environment, thereby increasing exposure to vulnerable hosts, and by the selection of virulence factors that function in multiple hosts.The betaproteobacterium Burkholderia cenocepacia, 1 of now 17 classified species belonging to the Burkholderia cepacia complex (BCC), is ubiquitous and extremely versatile in its metabolic capabilities and interactions with other organisms (38, 40, 57, 58). Strains of B. cenocepacia are pathogens of onion and banana plants, opportunistic pathogens of humans, symbionts of numerous plant rhizospheres, contaminants of pharmaceutical and industrial products, and inhabitants of soil and surface waters (14, 29, 33, 34, 37, 45). Originally described as a pathogen of onions (8), organisms of the BCC emerged in the past 3 decades as serious human pathogens, capable of causing devastating chronic lung infections in persons with cystic fibrosis (CF) or chronic granulomatous disease (21, 24, 28). Infections due to BCC are a serious concern to CF patients due to their inherent antibiotic resistance and high potential for patient-to-patient transmission (23). Although 16 of the BCC species have been recovered from respiratory secretions of CF patients in many countries (46, 58), B. cenocepacia has been the most common species isolated in North America, detected in 50% of 606, 83% of 447, and 45.6% of 1,218 patients in recent studies (35, 46, 52).The epidemiology of infectious disease caused by B. cenocepacia appears to involve patient-to-patient spread of genetically distinct lineages. B. cenocepacia lineages, such as ET12, Midwest, and PHDC, have been identified from large numbers of individuals in disease outbreaks in North America and Europe (11, 32, 54). A recently developed multilocus sequence typing (MLST) scheme has been shown to be a reliable epidemiologic tool for differentiating between the five subgroups (IIIA to IIIE) of B. cenocepacia, and strains representing three of these subgroups (IIIA, IIIB, and IIID) have been recovered from CF patients (2). Outside of the patient-to-patient transmission of clonal lineages, the mode of acquisition of strains causing sporadic cases of B. cenocepacia in CF patients remains unclear, although environmental sources are a logical reservoir for infection. Previously, an isolate of B. cenocepacia indistinguishable from the PHDC epidemic clonal lineage by using standard typing methods (e.g., repetitive-sequence-based PCR, randomly amplified polymorphic DNA, pulsed-field gel electrophoresis) was detected in an agricultural soil sample (34). Similarly, three distinct MLST sequence types containing both clinical and environmental (plant and soil) B. cenocepacia isolates were identified (1). These findings suggest that natural populations of B. cenocepacia in soil or associated with plants are a potential reservoir for the emergence of new human pathogenic lineages.Experimental models for the study of virulence potential and traits of B. cenocepacia include mouse and rat models with genetic defects allowing chronic lung infections to be established (e.g., see reference 48). Nematode (Caenorhabditis elegans), alfalfa (Medicago sativa), and onion (Allium cepa) models have also been routinely utilized for the identification of virulence factors (5, 29, 31). C. elegans has been extensively used to study the pathogenesis and virulence factors of a wide variety of bacterial and fungal pathogens (9, 15, 42, 51, 56). In several pathogens, including Pseudomonas (56) and Burkholderia (20), putative virulence factors important for the pathogenesis in mammalian systems (15, 51) have been identified using the C. elegans model. The C. elegans model might be limited in the detection of host-specific virulence factors; however, several attributes, such as small size and rapid development, make it an excellent whole animal model for pathogenesis research (16, 51).The evidence that individual strains of B. cenocepacia can be pathogenic to both plants and humans and are prevalent in various environmental niches has provoked particular interest in elucidating the clinical pathogenic potential of environmental isolates. The basis of this study was to examine whether genetically related B. cenocepacia strains exhibit shared characteristics that contribute to their pathogenicity in multiple hosts and to examine the potential for circulating environmental isolates to emerge as new clinical pathogens. Here, we tested the degree of virulence in animal (nematode) and plant (onion) infection models, the production of antifungal activity, and the genetic relatedness of clinical and environmental B. cenocepacia subgroup IIIB strains predominantly isolated from Michigan.  相似文献   

2.
3.
4.
Streptococcus sanguinis is an important cause of infective endocarditis. Previous studies have identified lipoproteins as virulence determinants in other streptococcal species. Using a bioinformatic approach, we identified 52 putative lipoprotein genes in S. sanguinis strain SK36 as well as genes encoding the lipoprotein-processing enzymes prolipoprotein diacylglyceryl transferase (lgt) and signal peptidase II (lspA). We employed a directed signature-tagged mutagenesis approach to systematically disrupt these genes and screen each mutant for the loss of virulence in an animal model of endocarditis. All mutants were viable. In competitive index assays, mutation of a putative phosphate transporter reduced in vivo competitiveness by 14-fold but also reduced in vitro viability by more than 20-fold. Mutations in lgt, lspA, or an uncharacterized lipoprotein gene reduced competitiveness by two- to threefold in the animal model and in broth culture. Mutation of ssaB, encoding a putative metal transporter, produced a similar effect in culture but reduced in vivo competiveness by >1,000-fold. [3H]palmitate labeling and Western blot analysis confirmed that the lgt mutant failed to acylate lipoproteins, that the lspA mutant had a general defect in lipoprotein cleavage, and that SsaB was processed differently in both mutants. These results indicate that the loss of a single lipoprotein, SsaB, dramatically reduces endocarditis virulence, whereas the loss of most other lipoproteins or of normal lipoprotein processing has no more than a minor effect on virulence.Streptococcus sanguinis is a member of the viridans group of streptococci and is a primary colonizer of teeth (8). The viridans species and, in particular, S. sanguinis (15, 18) are a leading cause of infective endocarditis, a serious infection of the valves or lining of the heart (48). Damage to the heart resulting from rheumatic fever or certain congenital heart defects dramatically increases the risk of developing endocarditis (48, 71). The damage is thought to result in the formation of sterile cardiac “vegetations” composed of platelets and fibrin (48) that can be colonized by certain bacteria during periods of bacteremia. This view is supported by animal studies in which formation of sterile vegetation by cardiac catheterization is required for the efficient establishment of streptococcal endocarditis (17). Prevention of infective endocarditis currently relies upon prophylactic administration of antibiotics prior to dental or other surgical procedures that are likely to produce bacteremia. The growing realization that oral bacteria such as S. sanguinis can enter the bloodstream through routine daily activities such as eating has led the American Heart Association (71) and others (57) to question the value of using antibiotic prophylaxis for dental procedures. Clearly, a better understanding of the bacterial virulence factors that contribute to endocarditis could lead to better preventive measures, such as a vaccine that could potentially afford continuous protection to high-risk patients (71).In a previous study, we used the signature-tagged mutagenesis (STM) technique to search for endocarditis virulence factors of S. sanguinis in a rabbit model (53). This study identified a number of housekeeping enzymes that contribute to endocarditis. Because these proteins are not likely to be surface localized, they hold little promise as vaccine candidates. One class of streptococcal surface proteins that is rich in both virulence factors (4, 7, 25, 33, 38, 60) and promising vaccine candidates (6, 39, 42, 51, 70) is the lipoproteins. Lipoprotein activities that have been suggested to contribute to streptococcal virulence include adhesion (4, 7, 63), posttranslational modification (25, 29, 51), and ATP-binding cassette (ABC)-mediated transport (33, 52, 60). In the last instance, lipoproteins anchored to the cell membrane by their lipid tails appear to serve the same transport function as the periplasmic substrate-binding proteins of gram-negative bacteria (66). STM studies performed with Streptococcus pneumoniae (26, 41, 55) and Streptococcus agalactiae (34) have identified multiple lipoprotein mutants among collections of reduced virulence mutants. In an attempt to determine the cumulative contribution of streptococcal lipoproteins to virulence, some investigators have created mutations in the lgt or lspA genes, encoding lipoprotein-processing enzymes (12, 25, 27, 36). The lgt gene encodes prolipoprotein diacylglyceryl transferase, which catalyzes the transfer of a diacylglycerol lipid unit to a cysteine in the conserved N-terminal “lipobox” of lipoproteins, while lspA encodes the signal peptidase II enzyme that cleaves the signal peptide of the prolipoprotein just prior to the conserved cysteine (59, 65). While mutation of these genes has been shown to be lethal in gram-negative bacteria (21, 73), many gram-positive bacterial species have been shown to tolerate such mutations, often with only minor effects on growth (3, 12, 13, 25, 27, 36, 54). Some of these studies indicated a deleterious effect on the virulence of the lgt (25, 54) or lspA (36) mutation, but others found no effect (12) or an enhancement of virulence (27). It is clear from these and other studies (3, 13) that neither the loss of acylation due to lgt inactivation nor the loss of signal peptidase II-mediated cleavage completely eliminates lipoprotein function, necessitating alternative approaches for assessing the global contribution of lipoproteins to virulence.We have used bioinformatic approaches to identify every putative lipoprotein encoded by S. sanguinis strain SK36. To determine the contribution of these lipoproteins to the endocarditis virulence of S. sanguinis, we have systematically mutagenized each of these genes, as well as the lgt and lspA genes, and evaluated these mutants for virulence by using STM in an animal model. Selected mutants were further examined for virulence in competitive index (CI) assays. A strain with a disrupted ssaB gene, which encodes a putative metal transport protein, was found to exhibit a profound defect in virulence that was far greater than that of any other strain tested, including the lgt or lspA mutant.  相似文献   

5.
6.
Paenibacillus larvae is the etiological agent of American foulbrood (AFB) in honeybees. Recently, different genotypes of P. larvae (ERIC I to ERIC IV) were defined, and it was shown that these genotypes differ inter alia in their virulence on the larval level. On the colony level, bees mitigate AFB through the hygienic behavior of nurse bees. Therefore, we investigated how the hygienic behavior shapes P. larvae virulence on the colony level. Our results indicate that P. larvae virulence on the larval level and that on the colony level are negatively correlated.American foulbrood (AFB) is among the economically most important honeybee diseases. The etiological agent of AFB is the gram-positive, spore-forming bacterium Paenibacillus larvae (9). The extremely tenacious spores are the infectious form of this organism. These spores drive disease transmission within colonies (11), as well as between colonies as soon as they end up in the honey stores of an infected colony (12).The species P. larvae can be subdivided into four different genotypes designated ERIC I to ERIC IV based on results from repetitive-element PCR (20) using enterobacterial repetitive intergenic consensus (ERIC) primers (9, 10), with P. larvae ERIC I and ERIC II being the two practically most important genotypes (1, 2, 9, 10, 13, 16). The four genotypes were shown previously to differ in phenotype, including virulence on the larval level (8, 9). While larvae infected with genotypes ERIC II to ERIC IV were killed within only 6 to 7 days, it took P. larvae ERIC I around 12 to 14 days to kill all infected individuals. Therefore, genotype ERIC I was considered to be less virulent and the other three genotypes were considered to be highly virulent (7-9) on the larval level.P. larvae is an obligately killing pathogen which must kill its host to be transmitted. The virulence of such an obligate killer is thought to be determined primarily by two factors, (i) the probability of infecting a host and (ii) the time to host death (6). The problem of ensuring a high enough probability of infecting the next host is solved for P. larvae by (i) the tenacious exospores, which remain infectious for over half a century (17) and, therefore, can wait for decades for the next host to pass by, and (ii) a high pathogen reproduction rate (23) and, thus, the production of an extremely high number of spores within each infected larva.For evaluating the second factor determining P. larvae virulence, the time to host death, it is important to consider the two levels of honeybee hosts, the level of the individual larva dying from AFB and the level of the colony succumbing to AFB.The virulence of P. larvae genotypes on the larval level has been analyzed recently (8, 9). We have now determined the colony-level virulence for the two most common and practically important (10, 16) genotypes of P. larvae, ERIC I and ERIC II, significantly differing in virulence on the larval level (8). We will discuss how the time to larval death relates to the time to colony death and how the hygienic response shapes P. larvae virulence.  相似文献   

7.
8.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

9.
The survival times of Caenorhabditis elegans worms infected with Legionella pneumophila from day 7.5 or later after hatching were shorter than those of uninfected worms. However, nematodes fed bifidobacteria prior to Legionella infection were resistant to Legionella. These nematodes may act as a unique alternative host for Legionella research.Legionella pneumophila, an environmental bacterium naturally found in fresh water, is the major causative agent of Legionnaires'' disease (7). Fresh water amoebas, a natural host of Legionella, have been used as an infection model to study invasion of Legionella into human macrophages and subsequent intracellular growth (15). However, analyses using these protozoa have inevitably concentrated on the intracellular lifestyle of L. pneumophila. The fate of Legionella organisms in nonmammalian metazoans had not been described (10) until a very recent report by Brassinga et al. (6).Numerous authors have reported Caenorhabditis elegans to be a suitable model to investigate virulence-associated factors of human pathogens (2, 8, 11, 14, 16, 20, 23, 24, 30, 31, 33). In the present study, we examined whether C. elegans can serve as an alternative host for L. pneumophila. Although the nematocidal activity of Legionella has been described recently, the nematodes in the previous study were infected with the pathogen on buffered charcoal yeast extract (BCYE) agar plates, which can support Legionella growth (6). In contrast, our experiments were independently performed on simple agar plates to exclude the possibility that the inoculated pathogen would have proliferated regardless of whether it had successfully infected the nematodes and derived nutrition from the hosts. Garsin et al. showed that nutrition available in agar plates does influence the virulence of pathogens on the medium (9). Furthermore, some pathogens produce toxic metabolites on nutrient medium in situ (3), and thus, we also avoided this possibility. Moreover, we focused on the effects of worm age, since Legionella is prone to infect elderly people.Age at infection is likely one of the most important determinants of disease morbidity and mortality (18). Since Legionella organisms are prone to infect elderly people opportunistically, infections in young and older nematodes were compared. Furthermore, survival curves were compared between worms fed Escherichia coli OP50 (OP), an international standard food for these organisms, and those fed bifidobacteria prior to infection with Legionella organisms, since lactic acid bacteria exert beneficial effects on human and animal health (21).  相似文献   

10.
The facultative intracellular pathogen Salmonella enterica serovar Typhimurium relies on its Salmonella pathogenicity island 2 (SPI2) type III secretion system (T3SS) for intracellular replication and virulence. We report that the oxidoreductase thioredoxin 1 (TrxA) and SPI2 are coinduced for expression under in vitro conditions that mimic an intravacuolar environment, that TrxA is needed for proper SPI2 activity under these conditions, and that TrxA is indispensable for SPI2 activity in both phagocytic and epithelial cells. Infection experiments in mice demonstrated that SPI2 strongly contributed to virulence in a TrxA-proficient background whereas SPI2 did not affect virulence in a trxA mutant. Complementation analyses using wild-type trxA or a genetically engineered trxA coding for noncatalytic TrxA showed that the catalytic activity of TrxA is essential for SPI2 activity in phagocytic cells whereas a noncatalytic variant of TrxA partially sustained SPI2 activity in epithelial cells and virulence in mice. These results show that TrxA is needed for the intracellular induction of SPI2 and provide new insights into the functional integration between catalytic and noncatalytic activities of TrxA and a bacterial T3SS in different settings of intracellular infections.In Escherichia coli, thioredoxin 1 (TrxA, encoded by trxA) is an evolutionary conserved 11-kDa cytosolic highly potent reductase that supports the activities of various oxidoreductases and ribonucleotide reductases (1, 29) and interacts with a number of additional cytoplasmic proteins through the formation of temporary covalent intermolecular disulphide bonds (32). Consequently, as trxA mutants of E. coli (51), Helicobacter pylori (13), and Rhodobacter sphaeroides (34) show increased sensitivity to hydrogen peroxide, TrxA has been defined as a significant oxidoprotectant. In addition, TrxA possess a protein chaperone function that is disconnected from cysteine interactions (30, 32).Salmonella enterica serovar Typhimurium is closely related to E. coli. During divergent evolution, the Salmonella genome acquired a number of virulence-associated genes (20). Many of these genes are clustered on genetic regions termed Salmonella pathogenicity islands (or SPIs). Of these, SPI1 and SPI2 code for separate type III secretion systems (T3SSs). T3SSs are supramolecular virulence-associated machineries that, in several pathogenic gram-negative bacterial species, enable injection of effector proteins from the bacteria into host cells (22, 57). The effector proteins, in turn, manipulate intrinsic host cell functions to facilitate the infection.The SPI1 T3SS of S. serovar Typhimurium is activated for expression in the intestine in response to increased osmolarity and decreased oxygen tension (22, 57). SPI1 effector proteins are primarily secreted into cells that constitute the epithelial layer and interfere with host cell Cdc42 and Rac-1 signaling and actin polymerization. This enables the bacteria to orchestrate their own actin-dependent uptake into nonphagocytic cells (57). SPI1 effector proteins also induce inflammatory signaling and release of interleukin-1β from infected cells (25, 26).Subsequent systemic progression of S. serovar Typhimurium from the intestinal tissue relies heavily on an ability to survive and replicate in phagocytic cells (18, 46, 53, 54). S. serovar Typhimurium uses an additional set of effector proteins secreted by the SPI2 T3SS for replication inside host cells and for coping with phagocyte innate responses to the infection (10, 11, 54). The functions of SPI2 effectors include diversion of vesicular trafficking, induction of apoptotic responses, and manipulation of ubiquitination of host proteins (28, 40, 45, 53). Hence, SPI2 effector proteins create a vacuolar environment that sustains intracellular replication of S. serovar Typhimurium (28).In addition to pathogenicity islands, the in vivo fitness of Salmonella spp. relies on selected functions shared with other enterobacteria. Thus, many virulence genes are integrated into “housekeeping” gene regulatory networks, coded for by a core genome, which steer bacterial stress responses (12, 17, 27, 55). Selected anabolic pathways also contribute to virulence of S. serovar Typhimurium (18, 27), evidently by providing biochemical building blocks for bacterial replication (36).In S. serovar Typhimurium, TrxA is a housekeeping protein that strongly contributes to virulence in cell culture and mouse infection models (8). However, the mechanism by which TrxA activity adds to virulence has not been defined. Here we show that the contribution of TrxA to virulence of S. serovar Typhimurium associates with its functional integration with the SPI2 T3SS under conditions that prevail in the intracellular vacuolar compartment of the host cell. These findings ascribe a novel role to TrxA in bridging environmental adaptations with virulence gene expression and illuminate a new aspect of the interaction between evolutionary conserved and horizontally acquired gene functions in bacteria.  相似文献   

11.
12.
13.
In Pseudomonas syringae, the type III secretion system (T3SS) is essential for disease in compatible hosts and for eliciting the hypersensitive response in incompatible hosts. P. syringae pathovars secrete a variable number of type III effectors that form their secretomes. The secretome of Pseudomonas syringae pv. phaseolicola 1448a (Pph1448a) currently includes 22 experimentally validated effectors, one HrpL-regulated candidate for which translocation results have been inconsistent, two translocated candidates for which in planta expression has not been established, one bioinformatically identified candidate, and six candidates that have been experimentally discarded. We analyzed the translocation and/or expression of these and other candidates to complete the Pph1448a effector inventory, bringing this inventory to 27 bona fide effectors, including a new one that does not belong to any of the previously described effector families. We developed a simple process for rapidly making single and double knockout mutants and apply it to the generation of an effector mutant collection that includes single knockouts for the majority of the Pph1448a effector inventory. We also generated two double mutant strains containing effectors with potentially redundant functions and analyzed the virulence of the single and double mutant strains as well as strains expressing each of the effectors from a plasmid. We demonstrate that AvrB4-1 and AvrB4-2, as well as HopW1-1 and HopW1-2, are fully redundant and contribute to virulence in bean plants, thus validating this approach for dissecting the contribution of the Pph1448a type III effector inventory to virulence. We also analyzed the effect that the expression of these four effectors from Pseudomonas syringae pv. tomato DC3000 (PtoDC3000) has during its interaction with Arabidopsis thaliana, establishing that AvrB4-1, but not the others, determines a restriction of bacterial growth that takes place mostly independently of the salicylic acid (SA)-signaling pathway.Type III secretion systems (T3SS) are complex and specialized machineries that inject effector proteins directly into the host cell cytosol (2). In Pseudomonas syringae, T3SS-mediated secretion is essential for disease in compatible hosts and for eliciting the hypersensitive response (HR) in incompatible hosts (1). P. syringae pathovars secrete a variable number of type III effectors that form their so-called secretomes and are expressed within the plant under the control of the alternative sigma factor HrpL (47). Understanding how the T3SS determines pathogenicity requires the functional characterization of the complete type III effector inventory. However, this characterization has been partially hindered by the fact that mutation of individual effectors, usually the most straightforward approach, rarely causes virulence attenuation (14). Thus, reports showing the contribution of the type III effector to virulence in P. syringae pathovars have resorted to ectopic expression in homolog-lacking related strains (40), plasmid-cured derivatives (21), double mutants (6, 28), or polymutants (3, 26). In relation to this, we have previously established the use of the competitive index (CI) in mixed infections (13, 42) as a more sensitive virulence assay for P. syringae pathovars than traditional assays (31). Using CIs, we demonstrated for the first time the individual contribution of AvrPto, an otherwise thoroughly characterized type III effector from Pseudomonas syringae pv. tomato (9, 17, 18, 27, 36, 39, 40, 46), to pathogen growth within its natural host (31). Therefore, analysis of effector mutants by use of the CI may provide the means to establish the quantitative contribution of the members of P. syringae T3SS secretomes to virulence. In addition, genetic analysis of the effects of combinations of effector mutations on virulence has already proven a useful approach to establishing the contribution of the members of the P. syringae pv. tomato DC3000 secretome to virulence by revealing a functional overlap (6, 26, 28). Thus, generation of knockouts in all individual effector genes of a given secretome, achieved in such a manner as to allow for easy combination of these strains into double or multiple mutant strains, is a desirable task, albeit a cumbersome one, considering the size of most secretomes.The secretome of the fully sequenced wild-type (wt) representative of the Pseudomonas syringae pv. phaseolicola 1448a strain (Pph1448a) has previously been analyzed, using a differential fluorescence induction screen (7) and bioinformatics (44), to identify effector genes. Our laboratory contributed to establishing this secretome through the development and application of a very sensitive assay for T3SS-mediated translocation based on CI assays (30). This assay represents an improvement over the sensitivity of the commonly used AvrRpt2 reporter assay. When fused to a T3SS-secreted protein, AvrRpt281-255 is translocated inside the host cell, eliciting a hypersensitive response (HR), dependent on the resistance protein RPS2 (32). By using CIs to measure the bacterial growth reduction associated with the AvrRpt2-RPS-mediated defense response, we detected translocation for two out of four Pph1448a effector candidates previously discarded by other assays, HopAJ1 and HopAK1 (30), and demonstrated translocation for two out of five previously untested candidates, HopAH2 and A0129. However, although in planta expression has been shown to take place in an HrpL-dependent manner for HopAJ1 and HopAK1 (7), it has not been established for HopAH2 and A0129. Effector nomenclature guidelines recommend that the abbreviation for the pathovars as well as the name of the strain should be included within the effector name (29). For simplicity, we include this indication only when effectors from other pathovars are mentioned. In summary, to date, 22 effectors in Pph1448a have been experimentally validated (7, 30, 44), one HrpL-regulated candidate has given inconsistent translocation results (AvrE1) (7), two translocated candidates have not been analyzed for expression in planta (HopAH2 and A0129) (30), one bioinformatically identified candidate has not been experimentally tested (AvrB4-2) (23), and six additional candidates have been proposed but experimentally ruled out (PSPPH3757, HopAN1, HopAJ2, HopW1-2, HopV1, and HopJ1) (7, 30).In this work, we analyzed the translocation and/or expression of these and other candidate effectors to close the type III effector inventory of Pph1448a. Our results indicate that the Pph1448a complete type III secretome is formed by 27 validated effectors, including a new one, HopAY1, which does not belong to any of the previously described effector families. The work includes the development of a simplified process for quick generation of single and double knockout mutants and its application to constructing a collection of single mutants for almost all members of the Pph1448a type III secretome. Additionally, we generated two double mutant strains containing effectors with potentially redundant functions and analyzed the virulence of the four single and two double mutant strains as well as the double mutants expressing each of the effectors from a plasmid. We demonstrate that AvrB4-1 and AvrB4-2, as well as HopW1-1 and HopW1-2, are fully redundant and contribute to the virulence of Pph1448a. The tools and approach used in this work set the groundwork for dissecting the contribution of the entire Pph1448a type III secretome to virulence.  相似文献   

14.
15.
The glyoxylate and methylcitrate cycles are involved in the metabolism of two- or three-carbon compounds in fungi. To elucidate the role(s) of these pathways in Gibberella zeae, which causes head blight in cereal crops, we focused on the functions of G. zeae orthologs (GzICL1 and GzMCL1) of the genes that encode isocitrate lyase (ICL) and methylisocitrate lyase (MCL), respectively, key enzymes in each cycle. The deletion of GzICL1 (ΔGzICL1) caused defects in growth on acetate and in perithecium (sexual fruiting body) formation but not in virulence on barley and wheat, indicating that GzICL1 acts as the ICL of the glyoxylate cycle and is essential for self-fertility in G. zeae. In contrast, the ΔGzMCL1 strains failed to grow on propionate but exhibited no major changes in other traits, suggesting that GzMCL1 is required for the methylcitrate cycle in G. zeae. Interestingly, double deletion of both GzICL1 and GzMCL1 caused significantly reduced virulence on host plants, indicating that both GzICL1 and GzMCL1 have redundant functions for plant infection in G. zeae. Thus, both GzICL1 and GzMCL1 may play important roles in determining major mycological and pathological traits of G. zeae by participating in different metabolic pathways for the use of fatty acids.During the infection process, pathogenic fungi usually encounter nutrient deprivation in the host before gaining access to sufficient nutrients for successful colonization of the living tissue. To cope with a nutrient-limited environment, fungal pathogens seem to rely mostly on fatty acid metabolism for both energy supply and biosynthesis of essential molecules (29). The ability of fungi to use fatty acids as a carbon source for growth is based on the glyoxylate cycle. Fungal pathogens have been proposed to employ the glyoxylate bypass for the use of acetyl coenzyme A (CoA) units produced by the β-oxidation of even-chain-length fatty acids, probably available from host cell membranes or the lipid reservoir inside the fungal spore (7, 12, 20, 27, 28, 41, 44, 46). Recent studies suggest that the glyoxylate pathway plays an important role in fungal virulence toward both plant and animal hosts (12, 20, 27, 44, 46). The key enzymes of the glyoxylate pathway, such as isocitrate lyase (ICL), which catalyzes the cleavage of isocitrate to glyoxylate and succinate, and malate synthase, which mediates the condensation of acetyl-CoA and glyoxylate into malate, are strongly induced within the host (16, 27, 41, 44). Moreover, disruption of genes encoding either of these enzymes causes severely reduced virulence of fungal phytopathogens, including Leptosphaeria maculans (20), Magnaporthe grisea (46), Stagonospora nodorum (44), and Colletotrichum lagenarium (2), and the animal pathogen Candida albicans (27). In contrast, these glyoxylate cycle enzymes have been known to be dispensable in invasive aspergillosis caused by Aspergillus fumigatus (38, 43).During fatty acid and amino acid catabolism by fungi, propionyl-CoA can be generated along with acetyl-CoA, particularly from the breakdown of odd-chain-length fatty acids or of the amino acids valine, isoleucine, and methionine (14). Therefore, fungal pathogens may need to use or remove propionyl-CoA during the infection process because it is toxic to fungi. In fungi, propionyl-CoA is metabolized via the methylcitrate cycle, in which propionyl-CoA is oxidized to pyruvate in four enzymatic steps (4, 5, 6, 19, 30, 31, 40, 49, 50). Recently, the importance of the methylcitrate cycle in fungal virulence was demonstrated in A. fumigatus: a mutant defective in methylcitrate synthase, the first enzyme of this cycle, displayed attenuated virulence in mice and insects (19, 31). However, the role of methylisocitrate lyase (MCL), which catalyzes the last reaction in the methylcitrate cycle (i.e., the cleavage of methylisocitrate into pyruvate and succinate) in fungal virulence, has not been determined, although deletion of the MCL gene inhibits hyphal growth and conidiation in Aspergillus nidulans (4). The protein sequences of several fungal MCLs show high similarity to fungal ICLs of the glyoxylate cycle (4, 30). In the pathogenic bacterium Mycobacterium tuberculosis, the methylcitrate cycle, only when working together with the glyoxylate cycle, is involved in virulence as well as fatty acid metabolism and intracellular growth (34, 35).Here, we focused on the roles of these two cycles during disease development caused by the devastating cereal pathogen Gibberella zeae (anamorph: Fusarium graminearum). G. zeae is a ubiquitously distributed ascomycete fungus that causes major disease in cereal crops such as corn, wheat, barley, and rice (33). Severe epidemics of these diseases result in serious economic consequences due to yield losses and contamination by fungal mycotoxins (32, 33). Wind-disseminated sexual spores (ascospores), which are produced in perithecia formed on plant debris, can infect plant spikes during anthesis (13, 39, 45). Detailed studies of the G. zeae infection process on wheat and barley heads have shown that fungal hyphae on the inner surfaces of the spike penetrate epicarp cells through pits or pores and grow into the caryopses through the pericarp (21). Thus, the glyoxylate cycle, either alone or in conjunction with the methylcitrate cycle, is likely employed by G. zeae during the infection process, as in other fungus-plant interactions (20, 46). G. zeae genome searches have identified orthologs of fungal ICL and MCL genes, designated GzICL1 and GzMCL1, respectively. Here, we performed functional analyses of these genes to provide new insight into their importance in lipid metabolism during the G. zeae infection process in host plants.  相似文献   

16.
In their vertebrate hosts, arboviruses such as Semliki Forest virus (SFV) (Togaviridae) generally counteract innate defenses and trigger cell death. In contrast, in mosquito cells, following an early phase of efficient virus production, a persistent infection with low levels of virus production is established. Whether arboviruses counteract RNA interference (RNAi), which provides an important antiviral defense system in mosquitoes, is an important question. Here we show that in Aedes albopictus-derived mosquito cells, SFV cannot prevent the establishment of an antiviral RNAi response or prevent the spread of protective antiviral double-stranded RNA/small interfering RNA (siRNA) from cell to cell, which can inhibit the replication of incoming virus. The expression of tombusvirus siRNA-binding protein p19 by SFV strongly enhanced virus spread between cultured cells rather than virus replication in initially infected cells. Our results indicate that the spread of the RNAi signal contributes to limiting virus dissemination.In animals, RNA interference (RNAi) was first described for Caenorhabditis elegans (27). The production or introduction of double-stranded RNA (dsRNA) in cells leads to the degradation of mRNAs containing homologous sequences by sequence-specific cleavage of mRNAs. Central to RNAi is the production of 21- to 26-nucleotide small interfering RNAs (siRNAs) from dsRNA and the assembly of an RNA-induced silencing complex (RISC), followed by the degradation of the target mRNA (23, 84). RNAi is a known antiviral strategy of plants (3, 53) and insects (21, 39, 51). Study of Drosophila melanogaster in particular has given important insights into RNAi responses against pathogenic viruses and viral RNAi inhibitors (31, 54, 83, 86, 91). RNAi is well characterized for Drosophila, and orthologs of antiviral RNAi genes have been found in Aedes and Culex spp. (13, 63).Arboviruses, or arthropod-borne viruses, are RNA viruses mainly of the families Bunyaviridae, Flaviviridae, and Togaviridae. The genus Alphavirus within the family Togaviridae contains several mosquito-borne pathogens: arboviruses such as Chikungunya virus (16) and equine encephalitis viruses (88). Replication of the prototype Sindbis virus and Semliki Forest virus (SFV) is well understood (44, 71, 74, 79). Their genome consists of a positive-stranded RNA with a 5′ cap and a 3′ poly(A) tail. The 5′ two-thirds encodes the nonstructural polyprotein P1234, which is cleaved into four replicase proteins, nsP1 to nsP4 (47, 58, 60). The structural polyprotein is encoded in the 3′ one-third of the genome and cleaved into capsid and glycoproteins after translation from a subgenomic mRNA (79). Cytoplasmic replication complexes are associated with cellular membranes (71). Viruses mature by budding at the plasma membrane (35).In nature, arboviruses are spread by arthropod vectors (predominantly mosquitoes, ticks, flies, and midges) to vertebrate hosts (87). Little is known about how arthropod cells react to arbovirus infection. In mosquito cell cultures, an acute phase with efficient virus production is generally followed by the establishment of a persistent infection with low levels of virus production (9). This is fundamentally different from the cytolytic events following arbovirus interactions with mammalian cells and pathogenic insect viruses with insect cells. Alphaviruses encode host response antagonists for mammalian cells (2, 7, 34, 38).RNAi has been described for mosquitoes (56) and, when induced before infection, antagonizes arboviruses and their replicons (1, 4, 14, 15, 29, 30, 32, 42, 64, 65). RNAi is also functional in various mosquito cell lines (1, 8, 43, 49, 52). In the absence of RNAi, alphavirus and flavivirus replication and/or dissemination is enhanced in both mosquitoes and Drosophila (14, 17, 31, 45, 72). RNAi inhibitors weakly enhance SFV replicon replication in tick and mosquito cells (5, 33), posing the questions of how, when, and where RNAi interferes with alphavirus infection in mosquito cells.Here we use an A. albopictus-derived mosquito cell line to study RNAi responses to SFV. Using reporter-based assays, we demonstrate that SFV cannot avoid or efficiently inhibit the establishment of an RNAi response. We also demonstrate that the RNAi signal can spread between mosquito cells. SFV cannot inhibit cell-to-cell spread of the RNAi signal, and spread of the virus-induced RNAi signal (dsRNA/siRNA) can inhibit the replication of incoming SFV in neighboring cells. Furthermore, we show that SFV expression of a siRNA-binding protein increases levels of virus replication mainly by enhancing virus spread between cells rather than replication in initially infected cells. Taken together, these findings suggest a novel mechanism, cell-to-cell spread of antiviral dsRNA/siRNA, by which RNAi limits SFV dissemination in mosquito cells.  相似文献   

17.
KSR1 is a mitogen-activated protein (MAP) kinase scaffold that enhances the activation of the MAP kinase extracellular signal-regulated kinase (ERK). The function of KSR1 in NK cell function is not known. Here we show that KSR1 is required for efficient NK-mediated cytolysis and polarization of cytolytic granules. Single-cell analysis showed that ERK is activated in an all-or-none fashion in both wild-type and KSR1-deficient cells. In the absence of KSR1, however, the efficiency of ERK activation is attenuated. Imaging studies showed that KSR1 is recruited to the immunological synapse during T-cell activation and that membrane recruitment of KSR1 is required for recruitment of active ERK to the synapse.Kinase suppressor of Ras was originally identified in Drosophila melanogaster (53) and Caenorhabditis elegans (19, 32, 52) as a positive regulator of the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase signaling pathway. It is thought to function as a MAP kinase scaffold because it can bind to Raf, MEK, and ERK (18, 19, 27, 28, 44, 59). While the exact function of KSR is unknown, preassembling the three components of the ERK MAP kinase cascade could function to enhance the efficiency of ERK activation, potentially regulate the subcellular location of ERK activation, and promote access to specific subcellular substrates (16, 45, 46).While only one isoform of KSR is expressed in Drosophila (53), two KSR isoforms have been identified in C. elegans (19, 32, 52) and most higher organisms. They are referred to as KSR1 and KSR2 (32, 43). While KSR1 mRNA and protein are detectable in a wide variety of cells and tissues, including brain, thymus, and muscle (10, 11, 29), little is known about the expression pattern of KSR2.We previously reported the phenotype of KSR1-deficient mice (30). These mice are born at Mendelian ratios and develop without any obvious defects. Using gel filtration, we showed that KSR1 promotes the formation of large signaling complexes containing KSR1, Raf, MEK, and ERK (30). Using both primary T cells stimulated with antibodies to the T-cell receptor as well as fibroblasts stimulated with growth factors, we showed that KSR1-deficient cells exhibit an attenuation of ERK activation with defects in cell proliferation.Here we explored the role of KSR1 in NK cell-mediated cytolysis. The killing of a target cell by a cytolytic T cell or NK cell is a complicated process that involves cell polarization with microtubule-dependent movement of cytolytic granules to an area that is proximal to the contact surface or immunological synapse (7, 33, 34, 48-50, 54). A variety of different signaling molecules are also involved, including calcium (23), phosphatidylinositol-3,4,5-triphosphate (13, 17), and activation of the ERK MAP kinase (6, 42, 56). Recently, the recruitment of activated ERK to the immunological synapse (IS) has been shown to be a feature of successful killing of a target by cytotoxic T lymphocytes (58).How active ERK is recruited to the synapse is not known. Since KSR1 is known to be recruited to the plasma membrane by Ras activation (24), and since the immunological synapse is one of the major sites of Ras activation (26, 41), it seemed plausible to test the hypothesis that KSR1 recruitment to the plasma membrane functions to recruit ERK to the immunological synapse and facilitate its activation. We found that KSR1 was recruited to the immunological synapse and that KSR1 appeared to be required for the localization of active ERK at the contact site. As KSR1-deficient cells exhibit a defect in killing, this suggests that KSR1 recruitment to the synapse may be important in the cytolytic killing of target cells.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号