首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We previously demonstrated that antisense oligonucleotide-mediated knockdown of Mboat7, the gene encoding membrane bound O-acyltransferase 7, in the liver and adipose tissue of mice promoted high fat diet-induced hepatic steatosis, hyperinsulinemia, and systemic insulin resistance. Thereafter, other groups showed that hepatocyte-specific genetic deletion of Mboat7 promoted striking fatty liver and NAFLD progression in mice but does not alter insulin sensitivity, suggesting the potential for cell autonomous roles. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. We generated Mboat7 floxed mice and created hepatocyte- and adipocyte-specific Mboat7 knockout mice using Cre-recombinase mice under the control of the albumin and adiponectin promoter, respectively. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. The expression of Mboat7 in white adipose tissue closely correlates with diet-induced obesity across a panel of ∼100 inbred strains of mice fed a high fat/high sucrose diet. Moreover, we found that adipocyte-specific genetic deletion of Mboat7 is sufficient to promote hyperinsulinemia, systemic insulin resistance, and mild fatty liver. Unlike in the liver, where Mboat7 plays a relatively minor role in maintaining arachidonic acid-containing PI pools, Mboat7 is the major source of arachidonic acid-containing PI pools in adipose tissue. Our data demonstrate that MBOAT7 is a critical regulator of adipose tissue PI homeostasis, and adipocyte MBOAT7-driven PI biosynthesis is closely linked to hyperinsulinemia and insulin resistance in mice.  相似文献   

2.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   

3.
《Endocrine practice》2021,27(7):736-742
ObjectiveThe KCNJ5 mutation is the most frequent mutation in aldosterone-producing adenoma (APA). We aimed to illustrate the relationship between KCNJ5 and prognosis after adrenalectomy as a guide for further treatment.MethodsOur study included 458 patients with APA. Tumor tissues were screened for somatic mutations in KCNJ5 hot-spot regions. We performed a retrospective analysis to identify correlations between KCNJ5 and clinical outcomes in 334 patients with adrenal venous sampling lateralization.ResultsSomatic KCNJ5 mutations were identified in 324 of 458 patients with APA (70.7%). Compared with the KCNJ5-wild type patients, patients with KCNJ5 mutations were younger, had a higher proportion of women, and had shorter durations of hypertension, lower body mass indexes (BMIs), and lower systolic blood pressure values (P < .05). During follow-up, among the 334 patients with APA with adrenal venous sampling lateralization, 320 (95.8%) presented complete biochemical success and 187 (56.0%) presented complete clinical success. One hundred eighty-seven patients with primary aldosteronism who achieved complete clinical success presented the following characteristics: age <40 years (78.7%), BMI <24 kg/m2 (71.0%), hypertension duration <5 years (78.4%), females (66.9%), and KCNJ5 mutation (65.5%). A multivariate logistic regression analysis identified BMI, hypertension duration, and KCNJ5 mutation as independent predictors of complete clinical success.ConclusionThe prevalence of KCNJ5 mutations was 70.7%. KCNJ5 mutation is a protective factor of complete clinical success, while BMI and hypertension duration were risk factors of incomplete clinical success.  相似文献   

4.
《Endocrine practice》2022,28(10):1100-1106
ObjectiveSince January 2020, the highly contagious novel coronavirus SARS-CoV-2 has caused a global pandemic. Severe COVID-19 leads to a massive release of proinflammatory mediators, leading to diffuse damage to the lung parenchyma, and the development of acute respiratory distress syndrome. Treatment with the highly potent glucocorticoid (GC) dexamethasone was found to be effective in reducing mortality in severely affected patients.MethodsTo review the effects of glucocorticoids in the context of COVID-19 we performed a literature search in the PubMed database using the terms COVID-19 and glucocorticoid treatment. We identified 1429 article publications related to COVID-19 and glucocorticoid published from 1.1.2020 to the present including 238 review articles and 36 Randomized Controlled Trials. From these studies, we retrieved 13 Randomized Controlled Trials and 86 review articles that were relevant to our review topics. We focused on the recent literature dealing with glucocorticoid metabolism in critically ill patients and investigating the effects of glucocorticoid therapy on the immune system in COVID-19 patients with severe lung injury.ResultsIn our review, we have discussed the regulation of the hypothalamic-pituitary-adrenal axis in patients with critical illness, selection of a specific GC for critical illness-related GC insufficiency, and recent studies that investigated hypothalamic-pituitary-adrenal dysfunction in patients with COVID-19. We have also addressed the specific activation of the immune system with chronic endogenous glucocorticoid excess, as seen in patients with Cushing syndrome, and, finally, we have discussed immune activation due to coronavirus infection and the possible mechanisms leading to improved outcomes in patients with COVID-19 treated with GCs.ConclusionFor clinical endocrinologists prescribing GCs for their patients, a precise understanding of both the molecular- and cellular-level mechanisms of endogenous and exogenous GCs is imperative, including timing of administration, dosage, duration of treatment, and specific formulations of GCs.  相似文献   

5.
6.
《Endocrine practice》2022,28(9):884-888
ObjectiveTo identify clinical characteristics and factors associated with the development of euglycemic diabetic ketoacidosis (eDKA), and develop suitable strategies to reduce such events.MethodsElectronic health record (EHR) data were extracted to identify all patients between December 1, 2013, and March 30, 2021, who underwent surgical procedures and had been prescribed a sodium-glucose cotransporter 2 inhibitor (SGLT2i) before these procedures. The resulting list was streamlined to a subset of patients who either had diabetic ketoacidosis (DKA) listed as a hospital diagnosis, postoperative serum bicarbonate ≤ 16 mmol/L, or postoperative serum pH ≤ 7.20. Clinical documentation and laboratory data were reviewed to determine the patients with eDKA.ResultsA total of 2183 procedures conducted on 1307 patients, met the inclusion criteria with the majority (1726, 79.1%) being nonemergent patients. Among 1307 patients, 625 (47.8%) were prescribed empagliflozin, 447 (34.2%) canagliflozin, 214 (16.4%) dapagliflozin, and 21 (1.6%) ertugliflozin, respectively. A total of 8 incidences pertaining to eDKA were noted for 8 unique patients; 5 had undergone emergency surgery whereas 3 had undergone nonemergent procedures. In the 3 nonemergent cases, only 1 patient had received counseling to stop the SGLT2i 3 days before the procedure. In perioperative patients who were prescribed an SGLT2i over 6 years, the incidence of eDKA was 0.17% and 1.1% for nonemergent and emergent procedures, respectively.ConclusionEuglycemic DKA was rare in patients undergoing nonemergent procedures, likely because of preoperative instructions to stop their SGLT2i 3 days before the procedure. Euglycemic DKA was more likely to occur in patients undergoing emergency surgery when the SGLT2i could not be prophylactically stopped.  相似文献   

7.
8.
We had previously reported a prostaglandin E synthase (bmPGES) in the silkworm Bombyx mori that catalyzes the isomerization of PGH2 to PGE2. The present study aimed to provide a genome-editing characterization of bmPGES in B. mori. Results showed bmPGES gene disruption to result in a reduced content of PGE2. The change affected the expression of chorion genes and egg formation in silkworms. Collectively, the results indicated that bmPGES could be involved in reproduction of B. mori. Therefore, this study provides insights into the physiological role of bmPGES and PGE2 in silkworms.  相似文献   

9.
Ceramides (CERs) are key intermediate sphingolipids implicated in contributing to mitochondrial dysfunction and the development of multiple metabolic conditions. Despite the growing evidence of CER role in disease risk, kinetic methods to measure CER turnover are lacking, particularly using in vivo models. The utility of orally administered 13C3, 15N l-serine, dissolved in drinking water, was tested to quantify CER 18:1/16:0 synthesis in 10-week-old male and female C57Bl/6 mice. To generate isotopic labeling curves, animals consumed either a control diet or high-fat diet (HFD; n = 24/diet) for 2 weeks and varied in the duration of the consumption of serine-labeled water (0, 1, 2, 4, 7, or 12 days; n = 4 animals/day/diet). Unlabeled and labeled hepatic and mitochondrial CERs were quantified using liquid chromatography tandem MS. Total hepatic CER content did not differ between the two diet groups, whereas total mitochondrial CERs increased with HFD feeding (60%, P < 0.001). Within hepatic and mitochondrial pools, HFD induced greater saturated CER concentrations (P < 0.05) and significantly elevated absolute turnover of 16:0 mitochondrial CER (mitochondria: 59%, P < 0.001 vs. liver: 15%, P = 0.256). The data suggest cellular redistribution of CERs because of the HFD. These data demonstrate that a 2-week HFD alters the turnover and content of mitochondrial CERs. Given the growing data on CERs contributing to hepatic mitochondrial dysfunction and the progression of multiple metabolic diseases, this method may now be used to investigate how CER turnover is altered in these conditions.  相似文献   

10.
Drug resistance is a critical obstacle to effective treatment in patients with chronic myeloid leukemia. To understand the underlying resistance mechanisms in response to imatinib mesylate (IMA) and adriamycin (ADR), the parental K562 cells were treated with low doses of IMA or ADR for 2 months to generate derivative cells with mild, intermediate, and severe resistance to the drugs as defined by their increasing resistance index. PulseDIA-based (DIA [data-independent acquisition]) quantitative proteomics was then employed to reveal the proteome changes in these resistant cells. In total, 7082 proteins from 98,232 peptides were identified and quantified from the dataset using four DIA software tools including OpenSWATH, Spectronaut, DIA-NN, and EncyclopeDIA. Sirtuin signaling pathway was found to be significantly enriched in both ADR-resistant and IMA-resistant K562 cells. In particular, isocitrate dehydrogenase (NADP(+)) 2 was identified as a potential drug target correlated with the drug resistance phenotype, and its inhibition by the antagonist AGI-6780 reversed the acquired resistance in K562 cells to either ADR or IMA. Together, our study has implicated isocitrate dehydrogenase (NADP(+)) 2 as a potential target that can be therapeutically leveraged to alleviate the drug resistance in K562 cells when treated with IMA and ADR.  相似文献   

11.
Clostridioides difficile is the leading cause of postantibiotic diarrhea in adults. During infection, the bacterium must rapidly adapt to the host environment by using survival strategies. Protein phosphorylation is a reversible post-translational modification employed ubiquitously for signal transduction and cellular regulation. Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases have emerged as important players in bacterial cell signaling and pathogenicity. C. difficile encodes two STKs (PrkC and CD2148) and one phosphatase. We optimized a titanium dioxide phosphopeptide enrichment approach to determine the phosphoproteome of C. difficile. We identified and quantified 2500 proteins representing 63% of the theoretical proteome. To identify STK and serine/threonine phosphatase targets, we then performed comparative large-scale phosphoproteomics of the WT strain and isogenic ΔprkC, CD2148, Δstp, and prkC CD2148 mutants. We detected 635 proteins containing phosphorylated peptides. We showed that PrkC is phosphorylated on multiple sites in vivo and autophosphorylates in vitro. We were unable to detect a phosphorylation for CD2148 in vivo, whereas this kinase was phosphorylated in vitro only in the presence of PrkC. Forty-one phosphoproteins were identified as phosphorylated under the control of CD2148, whereas 114 proteins were phosphorylated under the control of PrkC including 27 phosphoproteins more phosphorylated in the ?stp mutant. We also observed enrichment for phosphothreonine among the phosphopeptides more phosphorylated in the Δstp mutant. Both kinases targeted pathways required for metabolism, translation, and stress response, whereas cell division and peptidoglycan metabolism were more specifically controlled by PrkC-dependent phosphorylation in agreement with the phenotypes of the ΔprkC mutant. Using a combination of approaches, we confirmed that FtsK was phosphorylated in vivo under the control of PrkC and that Spo0A was a substrate of PrkC in vitro. This study provides a detailed mapping of kinase–substrate relationships in C. difficile, paving the way for the identification of new biomarkers and therapeutic targets.  相似文献   

12.
《Translational oncology》2020,13(2):212-220
Ovarian cancer (OC) is an important cause of gynecologic cancer-related deaths. In Mexico, around 4700 new cases of OC are diagnosed per year and it represents the second cause of gynecological cancer mortality with more than 2700 deaths. Germline mutations in BRCA1/2 genes are present in 13–18% of OC cases. Few studies have evaluated the presence of mutations in BRCA genes in a population of OC Mexican patients and their relationship with clinical response and survival rates.A total of 179 OC patients were studied by molecular testing for BRCA1/2 through next-generation sequencing and multiplex ligation-dependent probe amplification. Recurrence-free survival (RFS) was estimated by the Kaplan–Meier method. BRCA mutation was detected in 33% of patients. A percentage of 66.1% were BRCA1 mutated and 33.9% were BRCA2 mutated. BRCA1 mutation carriers had a worst RFS compared with BRCA2 mutation carriers (37.6 [29–46.2] vs 72.7 [38.4–107.2]; P = 0.030). The most common mutation for BRCA1 was ex9-12del (28.2%) (Mexican founder mutation). The Mexican founder mutation had a better RFS than other BRCA1 mutations (86.1 [37.2–135.1] vs 34.5 [20.7–48.2]; P = 0.033). The presence of BRCA2 mutations in the ovarian cancer cluster region (OCCR) had a significantly better RFS than mutations in breast cancer cluster regions (BCCR) and not-related risk region (NRR) (NR vs 72.8 [39–106.6] vs 25.8 [8.3–43.2]; P = 0.013). These results demonstrate that the prevalence of BRCA1/2 positive patients in OC Mexican patients are the highest reported. Patients with mutations in BRCA2 have a better prognosis than those mutated in BRCA1. The Mexican founder mutation has an important role in clinical outcomes. These results highlight the importance to test all the HGSP (high-grade serous papillary) OC patients with or without cancer family history (CFH) in Mexican population.  相似文献   

13.
Hypoxia-induced intrauterine growth restriction increases the risk for cardiovascular, renal, and other chronic diseases in adults, representing thus a major public health problem. Still, not much is known about the fetal mechanisms that predispose these individuals to disease. Using a previously validated mouse model of fetal hypoxia and bottom-up proteomics, we characterize the response of the fetal kidney to chronic hypoxic stress. Fetal kidneys exhibit a dichotomous response to chronic hypoxia, comprising on the one hand cellular adaptations that promote survival (glycolysis, autophagy, and reduced DNA and protein synthesis), but on the other processes that induce a senescence-like phenotype (infiltration of inflammatory cells, DNA damage, and reduced proliferation). Importantly, chronic hypoxia also reduces the expression of the antiaging proteins klotho and Sirt6, a mechanism that is evolutionary conserved between mice and humans. Taken together, we uncover that predetermined aging during fetal development is a key event in chronic hypoxia, establishing a solid foundation for Barker’s hypothesis of fetal programming of adult diseases. This phenotype is associated with a characteristic biomarker profile in tissue and serum samples, exploitable for detecting and targeting accelerated aging in chronic hypoxic human diseases.  相似文献   

14.
《Endocrine practice》2021,27(1):38-43
ObjectiveTo compare glycemic efficacy of Technosphere insulin (TI) versus that of insulin aspart (IA), each added to basal insulin, in type 2 diabetes.MethodsThis randomized, 24-week trial included subjects aged from 18 to 80 years who were treated with subcutaneous insulin for 3 months and had glycated hemoglobin (HbA1C) levels of 7.0% to 11.5%. After receiving stabilized insulin glargine doses during a 4-week lead in, the subjects were randomized to TI or IA. The primary end point was an HbA1C change from baseline, with the differences analyzed by equivalence analyses.ResultsIn the overall cohort (N = 309; males, 23.3%), mean (SD) age was 58.5 (8.4) years, body mass index was 30.8 (4.7) kg/m2, weight was 82.2 (13.6) kg, and duration of diabetes was 12.2 (7.1) years. An intention-to-treat cohort had 150 subjects randomized to TI (mean [SD] HbA1C: 8.9% [1.1%]) and 154 randomized to IA (mean [SD] HbA1C: 9.0% [1.3%]). At 24 weeks, mean (SD) HbA1C value declined to 7.9% (1.3%) and 7.7% (1.1%) in the TI and IA cohorts, respectively. A treatment difference of 0.26% was not statistically significant, but the predefined equivalency margin was not met. Subjects receiving TI lost 0.78 kg compared to baseline; subjects receiving IA gained 0.23 kg (P =.0007). The incidence of mild/moderate hypoglycemia was lower for the TI cohort, though not statistically significant.ConclusionBoth TI and IA resulted in significant and clinically meaningful HbA1C reductions. TI also resulted in significant and clinically meaningful weight reductions. These data support the use of inhaled insulin as a treatment option for individuals with type 2 diabetes.  相似文献   

15.
Mass-spectrometry-enabled ADP-ribosylation workflows are developing rapidly, providing researchers a variety of ADP-ribosylome enrichment strategies and mass spectrometric acquisition options. Despite the growth spurt in upstream technologies, systematic ADP-ribosyl (ADPr) peptide mass spectral annotation methods are lacking. HCD-dependent ADP-ribosylome studies are common, but the resulting MS2 spectra are complex, owing to a mixture of b/y-ions and the m/p-ion peaks representing one or more dissociation events of the ADPr moiety (m-ion) and peptide (p-ion). In particular, p-ions that dissociate further into one or more fragment ions can dominate HCD spectra but are not recognized by standard spectral annotation workflows. As a result, annotation strategies that are solely reliant upon the b/y-ions result in lower spectral scores that in turn reduce the number of reportable ADPr peptides. To improve the confidence of spectral assignments, we implemented an ADPr peptide annotation and scoring strategy. All MS2 spectra are scored for the ADPr m-ions, but once spectra are assigned as an ADPr peptide, they are further annotated and scored for the p-ions. We implemented this novel workflow to ADPr peptides enriched from the liver and spleen isolated from mice post 4 h exposure to systemic IFN-γ. HCD collision energy experiments were first performed on the Orbitrap Fusion Lumos and the Q Exactive, with notable ADPr peptide dissociation properties verified with CID (Lumos). The m-ion and p-ion series score distributions revealed that ADPr peptide dissociation properties vary markedly between instruments and within instrument collision energy settings, with consequences on ADPr peptide reporting and amino acid localization. Consequentially, we increased the number of reportable ADPr peptides by 25% (liver) and 17% (spleen) by validation and the inclusion of lower confidence ADPr peptide spectra. This systematic annotation strategy will streamline future reporting of ADPr peptides that have been sequenced using any HCD/CID-based method.  相似文献   

16.
17.
Breast cancer cells that have undergone partial epithelial–mesenchymal transition (EMT) are believed to be more invasive than cells that have completed EMT. To study metabolic reprogramming in different mesenchymal states, we analyzed protein expression following EMT in the breast epithelial cell model D492 with single-shot LFQ supported by a SILAC proteomics approach. The D492 EMT cell model contains three cell lines: the epithelial D492 cells, the mesenchymal D492M cells, and a partial mesenchymal, tumorigenic variant of D492 that overexpresses the oncogene HER2. The analysis classified the D492 and D492M cells as basal-like and D492HER2 as claudin-low. Comparative analysis of D492 and D492M to tumorigenic D492HER2 differentiated metabolic markers of migration from those of invasion. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) was one of the top dysregulated enzymes in D492HER2. Gene expression analysis of the cancer genome atlas showed that GFPT2 expression was a characteristic of claudin-low breast cancer. siRNA-mediated knockdown of GFPT2 influenced the EMT marker vimentin and both cell growth and invasion in vitro and was accompanied by lowered metabolic flux through the hexosamine biosynthesis pathway (HBP). Knockdown of GFPT2 decreased cystathionine and sulfide:quinone oxidoreductase (SQOR) in the transsulfuration pathway that regulates H2S production and mitochondrial homeostasis. Moreover, GFPT2 was within the regulation network of insulin and EGF, and its expression was regulated by reduced glutathione (GSH) and suppressed by the oxidative stress regulator GSK3-β. Our results demonstrate that GFPT2 controls growth and invasion in the D492 EMT model, is a marker for oxidative stress, and associated with poor prognosis in claudin-low breast cancer.  相似文献   

18.
《Endocrine practice》2021,27(3):191-197
ObjectiveTo evaluate the performance of T2 mapping in detecting intraorbital optic nerve (ON) changes in patients with thyroid-associated ophthalmopathy (TAO) before the onset of dysthyroid optic neuropathy (DON).MethodsThirty-five patients with TAO and without DON (21 active, 14 inactive) and 21 healthy controls (HCs) were enrolled. Magnetic resonance imaging-derived parameters of T2 relaxation time (T2RT) at the intraorbital ON, extraocular muscle (EOM), orbital fat, exophthalmos, summed thickness of EOMs, orbital fat thickness, and clinical variables were compared. Correlations between T2RT at the ON and other variables were assessed.ResultsPatients with TAO showed significantly higher T2RTs at the intraorbital ON than HCs (P < .001). Patients with active TAO had significantly higher T2RTs than those with inactive TAO and HCs (P < .001). Differences between patients with inactive TAO and HCs were insignificant (P > .05/3). T2RT at the intraorbital ON was positively correlated with clinical activity score, modified NOSPECS score, T2RT at EOM, exophthalmos, and summed thickness of EOMs in the TAO group (P ≤ .003) and negatively correlated with visual acuity (P = .033) and visual field indices (P = .030) in patients with active TAO. A T2RT cutoff of 82.9 ms for the intraorbital ON distinguished active TAO and healthy eyes optimally (area under the curve, 0.800; sensitivity, 85.7%; specificity, 64.3%).ConclusionT2RT detects disturbance in the intraorbital ON in patients with TAO, especially active TAO, before DON develops. T2 mapping has a potential for noninvasive evaluation of ON changes in patients with TAO.  相似文献   

19.
The clathrin adaptor protein complex-1 (AP-1) is a central player in cell physiology and human health. It is best known for its role in linking clathrin to its cargo at the trans-Golgi network and endosomes. It participates in traffic important for the correct function of a large number of organelles, including the trans-Golgi network, endosomes, lysosomes, lysosome-related organelles, and plasma membrane. Although it was one of the first clathrin adaptors identified, new discoveries about cargo and pathways that depend on AP-1 continue to emerge. This review summarizes new research into AP-1 that further illuminates its roles in the traffic of plasma membrane proteins, in maintaining TGN content, and in human disease.  相似文献   

20.
The tumor microenvironment (TME), which comprises cellular and noncellular components, is involved in the complex process of cancer development. Emerging evidence suggests that mesenchymal stem cells (MSCs), one of the vital regulators of the TME, foster tumor progression through paracrine secretion. However, the comprehensive phosphosignaling pathways that are mediated by MSC-secreting factors have not yet been fully established. In this study, we attempt to dissect the MSC-triggered mechanism in lung cancer using quantitative phosphoproteomics. A total of 1958 phosphorylation sites are identified in lung cancer cells stimulated with MSC-conditioned medium. Integrative analysis of the identified phosphoproteins and predicted kinases demonstrates that MSC-conditioned medium functionally promotes the proliferation and migration of lung cancer via the ERK/phospho-c-Fos-S374 pathway. Recent studies have reported that extracellular ATP accumulates in the TME and stimulates the P2X7R on the cancer cell membrane via purinergic signaling. We observe that ectopic ATP synthase is located on the surface of MSCs and excreted extracellular ATP into the lung cancer microenvironment to trigger the ERK/phospho-c-Fos-S374 pathway, which is consistent with these previous findings. Our results suggest that ectopic ATP synthase on the surface of MSCs releases extracellular ATP into the TME, which promotes cancer progression via activation of the ERK/phospho-c-Fos-S374 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号