首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
We investigated whether dogs, Canis familiaris, can relocate a briefly presented food target after having been led away from it, by relying on feedback from locomotion (path integration). Dogs were led blindfolded and with earphones into a large symmetrical enclosure. Sitting at a location near the periphery of the enclosure, the subject could see the experimenter throw a food item on to a predetermined point on the ground. Again wearing the blindfold, the dog was guided outside and then to the opposite side of the enclosure. There the animal was freed from the blindfold and earphones and released to search for the food item, which was hidden among inedible food dummies. Each animal was tested four times, and the locations of the bait and the entrance into the enclosure were varied systematically between trials. In 36 of 40 trials, the dogs proceeded along a goal-directed path towards the target, found the bait fairly directly or made circular search movements in its vicinity. In control trials, the dogs failed to find the target when they could not see the target location at the beginning of the trial or were deprived of self-motion cues. Thus, they registered the bait location visually, and then updated the direction and distance to the target by ‘integrating’ signals derived from locomotion. Path integration may have functional implications for hunting: it allows the predator to approach prey through a detour, turning momentarily away from its target, but remaining prepared to reach it along a well-oriented path.  相似文献   

3.
In the present paper we describe five tests, 3 of which were designed to be similar to tasks used with rodents. Results obtained from control subjects, patients with selective thermo-coagulation lesions to the medial temporal lobe and results from non-human primates and rodents are discussed. The tests involve memory for spatial locations acquired by moving around in a room, memory for objects subjects interacted with, or memory for objects and their locations. Two of the spatial memory tasks were designed specifically as analogs of the Morris water task and the 8-arm radial-maze tasks used with rats. The Morris water task was modeled by hiding a sensor under the carpet of a room (Invisible Sensor Task). Subjects had to learn its location by using an array of visual cues available in the room. A path integration task was developed in order to study the non-visual acquisition of a cognitive representation of the spatial location of objects. In the non-visual spatial memory task, we blindfolded subjects and led them to a room where they had to find 3 objects and remember their locations. We designed an object location task by placing 4 objects in a room that subjects observed for later recall of their locations. A recognition task, and a novelty detection task were given subsequent to the recall task. An 8-arm radial-maze was recreated by placing stands at equal distance from each other around the room, and asking subjects to visit each stand once, from a central point. A non-spatial working memory task was designed to be the non-spatial equivalent of the radial maze. Search paths recorded on the first trial of the Invisible Sensor Task, when subjects search for the target by trial and error are reported. An analysis of the search paths revealed that patients with lesions to the right or left hippocampus or parahippocampal cortex employed the same type of search strategies as normal controls did, showing similarities and differences to the search behavior recorded in rats. Interestingly, patients with lesions that included the right parahippocampal cortex were impaired relative to patients with lesions to the right hippocampus that spared the parahippocampal cortex, when recall of the sensor was tested after a 30 min delay (Bohbot et al. 1998). No differences were obtained between control subjects and patients with selective thermal lesions to the medial temporal lobe, when tested on the radial-maze, the non-spatial analogue to the radial-maze and the path integration tasks. Differences in methodological procedures, learning strategies and lesion location could account for some of the discrepant results between humans and non-human species. Patients with lesions to the right hippocampus, irrespective of whether the right parahippocampal cortex was spared or damaged, had difficulties remembering the particular configuration and identity of objects in the novelty detection of the object location task. This supports the role of the human right hippocampus for spatial memory, in this case, involving memory for the location of elements in the room; learning known to require the hippocampus in the rat.  相似文献   

4.
Recent interest in the neural bases of spatial navigation stems from the discovery of neuronal populations with strong, specific spatial signals. The regular firing field arrays of medial entorhinal grid cells suggest that they may provide place cells with distance information extracted from the animal''s self-motion, a notion we critically review by citing new contrary evidence. Next, we question the idea that grid cells provide a rigid distance metric. We also discuss evidence that normal navigation is possible using only landmarks, without self-motion signals. We then propose a model that supposes that information flow in the navigational system changes between light and dark conditions. We assume that the true map-like representation is hippocampal and argue that grid cells have a crucial navigational role only in the dark. In this view, their activity in the light is predominantly shaped by landmarks rather than self-motion information, and so follows place cell activity; in the dark, their activity is determined by self-motion cues and controls place cell activity. A corollary is that place cell activity in the light depends on non-grid cells in ventral medial entorhinal cortex. We conclude that analysing navigational system changes between landmark and no-landmark conditions will reveal key functional properties.  相似文献   

5.
Authié CN  Mestre DR 《PloS one》2012,7(2):e31479
Many experimental approaches to the control of steering rely on the tangent point (TP) as major source of information. The TP is a good candidate to control self-motion. It corresponds to a singular and salient point in the subject's visual field, and its location depends on the road geometry, the direction of self-motion relative to the road and the position of the driver on the road. However, the particular status of the TP in the optical flow, as a local minimum of flow speed, has often been left aside. We therefore assume that the TP is actually an optimal location in the dynamic optical array to perceive a change in the trajectory curvature. In this study, we evaluated the ability of human observers to detect variations in their path curvature from optical flow patterns, as a function of their gaze direction in a virtual environment. We simulated curvilinear self-motion parallel to a ground plane. Using random-dot optic flow stimuli of brief duration and a two-alternative forced-choice adaptive procedure, we determined path curvature discrimination thresholds, as a function of gaze direction. The discrimination thresholds are minimal for a gaze directed toward a local minimum of optical flow speed. A model based on Weber fraction of the foveal velocities (ΔV/V) correctly predicts the relationship between experimental thresholds and local flow velocities. This model was also tested for an optical flow computation integrating larger circular areas in central vision. Averaging the flow over five degrees leads to an even better fit of the model to experimental thresholds. We also found that the minimal optical flow speed direction corresponds to a maximal sensitivity of the visual system, as predicted by our model. The spontaneous gazing strategies observed during driving might thus correspond to an optimal selection of relevant information in the optical flow field.  相似文献   

6.
Self-motion, steering, and obstacle avoidance during navigation in the real world require humans to travel along curved paths. Many perceptual models have been proposed that focus on heading, which specifies the direction of travel along straight paths, but not on path curvature, which humans accurately perceive and is critical to everyday locomotion. In primates, including humans, dorsal medial superior temporal area (MSTd) has been implicated in heading perception. However, the majority of MSTd neurons respond optimally to spiral patterns, rather than to the radial expansion patterns associated with heading. No existing theory of curved path perception explains the neural mechanisms by which humans accurately assess path and no functional role for spiral-tuned cells has yet been proposed. Here we present a computational model that demonstrates how the continuum of observed cells (radial to circular) in MSTd can simultaneously code curvature and heading across the neural population. Curvature is encoded through the spirality of the most active cell, and heading is encoded through the visuotopic location of the center of the most active cell''s receptive field. Model curvature and heading errors fit those made by humans. Our model challenges the view that the function of MSTd is heading estimation, based on our analysis we claim that it is primarily concerned with trajectory estimation and the simultaneous representation of both curvature and heading. In our model, temporal dynamics afford time-history in the neural representation of optic flow, which may modulate its structure. This has far-reaching implications for the interpretation of studies that assume that optic flow is, and should be, represented as an instantaneous vector field. Our results suggest that spiral motion patterns that emerge in spatio-temporal optic flow are essential for guiding self-motion along complex trajectories, and that cells in MSTd are specifically tuned to extract complex trajectory estimation from flow.  相似文献   

7.
Path integration is the animal's running computation of its position relative to a starting point based on recording all displacements. This process is known to be prone to cumulative errors and hence must somehow be corrected with the help of local spatial cues. In the reported experiments, the relative role of local spatial cues at two target locations was appraised. These two targets were the peripheral box of a female house mouse (Mus musculus) and a central box from where she retrieved her pups over a distance of 50 cm. The experimental conditions required the mouse to navigate between the two targets solely by means of path integration. To find out whether the mice continued integrating at the two target locations, directional misinformation was fed into their path integrating system. Hence, passive rotation of 90° proved to be sufficient to decide unambiguously whether the mice were misdirected. Such experimental interference consistently documented ongoing path integration at the target location outside the residential nest. In contrast, the same interference when the mouse was in the residential nest documented discontinuation of path integration in most cases. It is inferred that mice, when departing from residential nests, initially direct themselves by means of local guiding stimuli.  相似文献   

8.
In this work we have studied what mechanisms might possibly underlie arm trajectory modification when reaching toward visual targets. The double-step target displacement paradigm was used with inter-stimulus intervals (ISIs) in the range of 10-300 ms. For short ISIs, a high percentage of the movements were found to be initially directed in between the first and second target locations (averaged trajectories). The initial direction of motion was found to depend on the target configuration, and on : the time difference between the presentation of the second stimulus and movement onset. To account for the kinematic features of the averaged trajectories two modification schemes were compared: the superposition scheme and the abort-replan scheme. According to the superposition scheme, the modified trajectories result from the vectorial addition of two elemental motions: one for moving between the initial hand position and an intermediate location, and a second one for moving between that intermediate location and the final target. According to the abort-replan scheme, the initial plan for moving toward the intermediate location is aborted and smoothly replaced by a new plan for moving from the hand position at the time the trajectory is modified to the final target location. In both tested schemes we hypothesized that due to the quick displacement of the stimulus, the internally specified intermediate goal might be influenced by both stimuli and may be different from the location of the first stimulus. It was found that the statistically most successful model in accounting for the measured data is based on the superposition scheme. It is suggested that superposition of simple independent elemental motions might be a general principle for the generation of modified motions, which allows for efficient, parallel planning. For increasing values of the inferred locations of the intermediate targets were found to gradually shift from the first toward the second target locations along a path that curved toward the initial hand position. These inferred locations show a strong resemblance to the intermediate locations of saccades generated in a similar double-step paradigm. These similarities in the specification of target locations used in the generation of eye and hand movements may serve to simplify visuomotor integration. Received: 22 June 1994 / Accepted in revised form: 15 September 1994  相似文献   

9.
Cognitive processes do not occur in isolation. Interactions between cognitive processes can be observed as a cost in performance following a switch between tasks, a cost that is greatest when the cognitive requirements of the sequential tasks compete. Interestingly, the long-term mnemonic goals associated with specific cognitive tasks can also directly compete. For example, encoding the sequential order in which stimuli are presented in the commonly-utilised 2-Back working memory (WM) tasks is counter-productive to task performance, as this task requires the continual updating of the contents of one''s current mental set. Performance of this task consistently results in reduced activity within the medial temporal lobe (MTL), and this response is believed to reflect the inhibitory mnemonic component of the task. Conversely, there are numerous cognitive paradigms in which participants are explicitly instructed to encode incoming information and performance of these tasks reliably increases MTL activity. Here, we explore the behavioural cost of sequentially performing two tasks with conflicting long-term mnemonic goals and contrasting neural profiles within the MTL. We hypothesised that performing the 2-Back WM prior to a hippocampal-dependent memory task would impair performance on the latter task. We found that participants who performed the 2-Back WM task, prior to the encoding of novel verbal/face-name stimuli, recollected significantly fewer of these stimuli, compared to those who had performed a 0-Back control task. Memory processes believed to be independent of the MTL were unaffected. Our results suggest that the inhibition of MTL-dependent mnemonic function persists beyond the cessation of the 2-Back WM task and can alter performance on entirely separate and subsequently performed memory tasks. Furthermore, they indicate that performance of such tasks may induce a temporarily-sustained, virtual lesion of the hippocampus, which could be used as a probe to explore cognitive processes in the absence of hippocampal involvement.  相似文献   

10.
The ability to determine one''s location is fundamental to spatial navigation. Here, it is shown that localization is theoretically possible without the use of external cues, and without knowledge of initial position or orientation. With only error-prone self-motion estimates as input, a fully disoriented agent can, in principle, determine its location in familiar spaces with 1-fold rotational symmetry. Surprisingly, localization does not require the sensing of any external cue, including the boundary. The combination of self-motion estimates and an internal map of the arena provide enough information for localization. This stands in conflict with the supposition that 2D arenas are analogous to open fields. Using a rodent error model, it is shown that the localization performance which can be achieved is enough to initiate and maintain stable firing patterns like those of grid cells, starting from full disorientation. Successful localization was achieved when the rotational asymmetry was due to the external boundary, an interior barrier or a void space within an arena. Optimal localization performance was found to depend on arena shape, arena size, local and global rotational asymmetry, and the structure of the path taken during localization. Since allothetic cues including visual and boundary contact cues were not present, localization necessarily relied on the fusion of idiothetic self-motion cues and memory of the boundary. Implications for spatial navigation mechanisms are discussed, including possible relationships with place field overdispersion and hippocampal reverse replay. Based on these results, experiments are suggested to identify if and where information fusion occurs in the mammalian spatial memory system.  相似文献   

11.
Summary We ask whether desert ants (Cataglyphis fortis) perform path integration on their homeward as well as on their outward journey. If path integration does occur on the return journey, then, after an enforced detour, the ant's trajectory should point directly at its nest. To test whether this is so, ants were trained to forage at a spot 25 m from their nest. As an ant began its return journey to the nest, it was caught and transported to a test area where it was released either 2 m or 12 m from a wide barrier which obstructed its homeward path. The direction of the ants' trajectory after detouring around the barrier corresponded closely to that predicted on the assumption that the home vector is accurately updated during the detour.  相似文献   

12.
Boundary vector cells in entorhinal cortex fire when a rat is in locations at a specific distance from walls of an environment. This firing may originate from memory of the barrier location combined with path integration, or the firing may depend upon the apparent visual input image stream. The modeling work presented here investigates the role of optic flow, the apparent change of patterns of light on the retina, as input for boundary vector cell firing. Analytical spherical flow is used by a template model to segment walls from the ground, to estimate self-motion and the distance and allocentric direction of walls, and to detect drop-offs. Distance estimates of walls in an empty circular or rectangular box have a mean error of less than or equal to two centimeters. Integrating these estimates into a visually driven boundary vector cell model leads to the firing patterns characteristic for boundary vector cells. This suggests that optic flow can influence the firing of boundary vector cells.  相似文献   

13.
Path integration and the neural basis of the 'cognitive map'   总被引:1,自引:0,他引:1  
The hippocampal formation can encode relative spatial location, without reference to external cues, by the integration of linear and angular self-motion (path integration). Theoretical studies, in conjunction with recent empirical discoveries, suggest that the medial entorhinal cortex (MEC) might perform some of the essential underlying computations by means of a unique, periodic synaptic matrix that could be self-organized in early development through a simple, symmetry-breaking operation. The scale at which space is represented increases systematically along the dorsoventral axis in both the hippocampus and the MEC, apparently because of systematic variation in the gain of a movement-speed signal. Convergence of spatially periodic input at multiple scales, from so-called grid cells in the entorhinal cortex, might result in non-periodic spatial firing patterns (place fields) in the hippocampus.  相似文献   

14.
In addition to stimulus properties and task factors, memory is an important determinant of the allocation of attention and gaze in the natural world. One way that the role of memory is revealed is by predictive eye movements. Both smooth pursuit and saccadic eye movements demonstrate predictive effects based on previous experience. We have previously shown that unskilled subjects make highly accurate predictive saccades to the anticipated location of a ball prior to a bounce in a virtual racquetball setting. In this experiment, we examined this predictive behaviour. We asked whether the period after the bounce provides subjects with visual information about the ball trajectory that is used to programme the pursuit movement initiated when the ball passes through the fixation point. We occluded a 100 ms period of the ball''s trajectory immediately after the bounce, and found very little effect on the subsequent pursuit movement. Subjects did not appear to modify their strategy to prolong the fixation. Neither were we able to find an effect on interception performance. Thus, it is possible that the occluded trajectory information is not critical for subsequent pursuit, and subjects may use an estimate of the ball''s trajectory to programme pursuit. These results provide further support for the role of memory in eye movements.  相似文献   

15.
The brain's evolution and operation are inextricably linked to animal movement, and critical functions, such as motor control, spatial perception, and navigation, rely on precise knowledge of body movement. Such internal estimates of self-motion emerge from the integration of mechanosensory and visual feedback with motor-related signals. Thus, this internal representation likely depends on the activity of circuits distributed across the central nervous system. However, the circuits responsible for self-motion estimation, and the exact mechanisms by which motor-sensory coordination occurs within these circuits remain poorly understood. Recent technological advances have positioned Drosophila melanogaster as an advantageous model for investigating the emergence, maintenance, and utilization of self-motion representations during naturalistic walking behaviors. In this review, I will illustrate how the adult fly is providing insights into the fundamental problems of self-motion computations and walking control, which have relevance for all animals.  相似文献   

16.
The medial temporal lobe (MTL) is generally thought to be critical for explicit, but not implicit, memory. Here, we demonstrate that the perirhinal cortex (PRc), within the MTL, plays a role in conceptually-driven implicit memory. Amnesic patients with MTL lesions that converged on the left PRc exhibited deficits on two conceptual implicit tasks (i.e., exemplar generation and semantic decision). A separate functional magnetic resonance imaging (fMRI) study in healthy subjects indicated that PRc activation during encoding of words was predictive of subsequent exemplar generation. Moreover, across subjects, the magnitude of the fMRI and behavioral conceptual priming effects were directly related. Additionally, the PRc region implicated in the fMRI study was the same region of maximal lesion overlap in the patients with impaired conceptual priming. These patient and imaging results converge to suggest that the PRc plays a critical role in conceptual implicit memory, and possibly conceptual processing in general.  相似文献   

17.
Path integration is a process in which self-motion is integrated over time to obtain an estimate of one's current position relative to a starting point (1). Humans can do path integration based exclusively on visual (2-3), auditory (4), or inertial cues (5). However, with multiple cues present, inertial cues - particularly kinaesthetic - seem to dominate (6-7). In the absence of vision, humans tend to overestimate short distances (<5 m) and turning angles (<30°), but underestimate longer ones (5). Movement through physical space therefore does not seem to be accurately represented by the brain. Extensive work has been done on evaluating path integration in the horizontal plane, but little is known about vertical movement (see (3) for virtual movement from vision alone). One reason for this is that traditional motion simulators have a small range of motion restricted mainly to the horizontal plane. Here we take advantage of a motion simulator (8-9) with a large range of motion to assess whether path integration is similar between horizontal and vertical planes. The relative contributions of inertial and visual cues for path navigation were also assessed. 16 observers sat upright in a seat mounted to the flange of a modified KUKA anthropomorphic robot arm. Sensory information was manipulated by providing visual (optic flow, limited lifetime star field), vestibular-kinaesthetic (passive self motion with eyes closed), or visual and vestibular-kinaesthetic motion cues. Movement trajectories in the horizontal, sagittal and frontal planes consisted of two segment lengths (1st: 0.4 m, 2nd: 1 m; ±0.24 m/s(2) peak acceleration). The angle of the two segments was either 45° or 90°. Observers pointed back to their origin by moving an arrow that was superimposed on an avatar presented on the screen. Observers were more likely to underestimate angle size for movement in the horizontal plane compared to the vertical planes. In the frontal plane observers were more likely to overestimate angle size while there was no such bias in the sagittal plane. Finally, observers responded slower when answering based on vestibular-kinaesthetic information alone. Human path integration based on vestibular-kinaesthetic information alone thus takes longer than when visual information is present. That pointing is consistent with underestimating and overestimating the angle one has moved through in the horizontal and vertical planes respectively, suggests that the neural representation of self-motion through space is non-symmetrical which may relate to the fact that humans experience movement mostly within the horizontal plane.  相似文献   

18.
Binswanger''s disease (BD) is a common cause of vascular dementia in elderly patients; however, few studies have investigated the medial temporal lobe (MTL) atrophy in BD, and the differences in the atrophic patterns between BD and Alzheimer''s disease (AD) remain largely unknown. Such knowledge is essential for understanding the pathologic basis of dementia. In this study, we collected structural magnetic resonance imaging (MRI) data from 16 normal controls, 14 patients with AD and 14 patients with BD. The volumes of the hippocampus and amygdala, and morphologic parameters (volume, surface area, cortical thickness and mean curvature) of the entorhinal cortex (ERC) and perirhinal cortex (PRC) were calculated using an automated approach. Volume reduction of the hippocampus, amygdala and ERC, and disturbance of the PRC curvature was found in both AD and BD patients compared with the controls (p<0.05, uncorrected). There were no significant differences among all the structural measures between the AD and BD patients. Finally, partial correlation analyses revealed that cognitive decline could be attributed to ERC thinning in AD and volume reduction of PRC in BD. We conclude that AD and BD exhibit similar atrophy patterns in the medial temporal cortices and deep gray matter but have distinct pathologic bases for cognitive impairments. Although atrophy of the MTL structures is a sensitive biomarker for AD, it is not superior for discrimination between AD and BD.  相似文献   

19.
Information processing in the nervous system during sensorimotor tasks with inherent uncertainty has been shown to be consistent with Bayesian integration. Bayes optimal decision-makers are, however, risk-neutral in the sense that they weigh all possibilities based on prior expectation and sensory evidence when they choose the action with highest expected value. In contrast, risk-sensitive decision-makers are sensitive to model uncertainty and bias their decision-making processes when they do inference over unobserved variables. In particular, they allow deviations from their probabilistic model in cases where this model makes imprecise predictions. Here we test for risk-sensitivity in a sensorimotor integration task where subjects exhibit Bayesian information integration when they infer the position of a target from noisy sensory feedback. When introducing a cost associated with subjects'' response, we found that subjects exhibited a characteristic bias towards low cost responses when their uncertainty was high. This result is in accordance with risk-sensitive decision-making processes that allow for deviations from Bayes optimal decision-making in the face of uncertainty. Our results suggest that both Bayesian integration and risk-sensitivity are important factors to understand sensorimotor integration in a quantitative fashion.  相似文献   

20.
We present a model of the eye movement system in which the programming of an eye movement is the result of the competitive integration of information in the superior colliculi (SC). This brain area receives input from occipital cortex, the frontal eye fields, and the dorsolateral prefrontal cortex, on the basis of which it computes the location of the next saccadic target. Two critical assumptions in the model are that cortical inputs are not only excitatory, but can also inhibit saccades to specific locations, and that the SC continue to influence the trajectory of a saccade while it is being executed. With these assumptions, we account for many neurophysiological and behavioral findings from eye movement research. Interactions within the saccade map are shown to account for effects of distractors on saccadic reaction time (SRT) and saccade trajectory, including the global effect and oculomotor capture. In addition, the model accounts for express saccades, the gap effect, saccadic reaction times for antisaccades, and recorded responses from neurons in the SC and frontal eye fields in these tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号