首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the last decade, several studies have shown that subterranean aquatic habitats harbor cryptic species with restricted geographic ranges, frequently occurring as isolated populations. Previous studies on aquatic subterranean species have implied that habitat heterogeneity can promote speciation and that speciation events can be predicted from species’ distributions. We tested the prediction that species distributed across different drainage systems and karst sectors comprise sets of distinct species. Amphipods from the genus Niphargus from 11 caves distributed along the Western Carpathians (Romania) were investigated using three independent molecular markers (COI, H3 and 28S). The results showed that: 1) the studied populations belong to eight different species that derive from two phylogenetically unrelated Niphargus clades; 2) narrow endemic species in fact comprise complexes of morphologically similar species that are indistinguishable without using a molecular approach. The concept of monophyly, concordance between mitochondrial and nuclear DNA, and the value of patristic distances were used as species delimitation criteria. The concept of cryptic species is discussed within the framework of the present work and the contribution of these species to regional biodiversity is also addressed.  相似文献   

2.
The high mountain ranges of Western Europe had a profound effect on the biotic recolonization of Europe from glacial refugia. The Alps present a particularly interesting case because they form an absolute barrier to dispersal for most taxa, obstructing recolonization from multiple refugia in northern Italy. Here, we investigate the effect of the European Alps on the phylogeographic history of the European common frog Rana temporaria. Based on partial cytochrome b and COXI sequences from Switzerland, we find two mitochondrial lineages roughly north and south of the Alpine ridge, with contact zones between them in eastern and western Switzerland. The northern haplogroup falls within the previously identified Western European haplogroup, while the southern haplogroup is unique to Switzerland. We find that the lineages diverged ~110 kya, at approximately the onset of the last glacial glaciation; this indicates that they are from different glacial refugia. Phylogenetic analyses suggest that the northern and southern haplogroups colonized Switzerland via trans‐ and circum‐Alpine routes from at least two separate refugia in northern Italy. Our results illustrate how a complex recolonization history of the central European Alps can arise from the semi‐permeable barrier created by high mountains.  相似文献   

3.
The refugial history and postglacial re‐colonization routes of Western Carpathian insects are insufficiently understood. Therefore, we investigated the spatio‐genetic structure (phylogeography) of Western Carpathian populations of Erebia euryale (Esper, 1805) (Lepidoptera, Nymphalidae) and inferred their colonization routes over the postglacial period. Our results provide new insights into the phylogeography and origin of Erebia euryale in the rarely studied region of the Western Carpathian Mountains. Their phylogeography, including glacial refugia and Pleistocene expansion routes, was reconstructed based on two mitochondrial (COI and CR) and three nuclear markers (CAD, MDH and IDH). Statistical parsimony networks showed the following geographic coherences: (1) populations from Romania and the Bukovské Mountains (Kremenec) grouped together; (2) a ?ergov group containing populations only from the ?ergov Mountains; (3) a Volovské Mountains group with populations from Koj?ovská ho?a and Slovak Paradise grouped together, most likely due to the lack of geographic isolation between the areas; (4) haplotypes characterized from the Volovské Mountains populations were widespread. Comparisons of Western Carpathian E. euryale COI‐haplotypes with haplotypes from the Southern Carpathians and Balkans suggest that the refugial areas were located in south‐eastern Europe in the Balkan region and Southern Carpathians. We also hypothesize possible central European contact zones in Slovakia for E. euryale in the Western Carpathians. Our results indicate that the Western Carpathians could have served as one of the contact zones between Eastern and Western populations, and additionally as an extra refugium in the southern part of the Volovské Mountains for populations also occurring in Czech mountain regions.  相似文献   

4.
Norway spruce (Picea abies [L.] Karst.) is a broadly distributed European conifer tree whose history has been intensively studied by means of fossil records to infer the location of full‐glacial refugia and the main routes of postglacial colonization. Here we use recently compiled fossil pollen data as a template to examine how past demographic events have influenced the species’ modern genetic diversity. Variation was assessed in the mitochondrial nad1 gene containing two minisatellite regions. Among the 369 populations (4876 trees) assayed, 28 mitochondrial variants were identified. The patterns of population subdivision superimposed on interpolated fossil pollen distributions indicate that survival in separate refugia and postglacial colonization has led to significant structuring of genetic variation in the southern range of the species. The populations in the northern range, on the other hand, showed a shallow genetic structure consistent with the fossil pollen data, suggesting that the vast northern range was colonized from a single refugium. Although the genetic diversity decreased away from the putative refugia, there were large differences between different colonization routes. In the Alps, the diversity decreased over short distances, probably as a result of population bottlenecks caused by the presence of competing tree species. In northern Europe, the diversity was maintained across large areas, corroborating fossil pollen data in suggesting that colonization took place at high population densities. The genetic diversity increased north of the Carpathians, probably as a result of admixture of expanding populations from two separate refugia.  相似文献   

5.
We present a range-wide synthesis of our own research and related work on the complex postglacial history of Abies alba Mill. It is based on macroremains, fossil pollen records as well as on different genetic markers. The geographic distribution of genetic lineages and allele frequencies together with the fossil records confirm multiple refugia with at least three of them being sources for the Holocene range expansion into Central Europe, representing so-called effective refugia. One is located in the northern Apennines. A long-term refugium in the southern Balkans contributes to northward expansion with a branch along the Carpathians in the East and the Dinaric Alps in the West. Furthermore, new allozyme data indicate a third effective refugium in the northern or western Balkans, respectively. Using different genetic marker categories the differentiation of A. alba populations could be attributed to different time scales. A separation of maternal lineages took place in previous glacial cycles of the Quaternary, while a second pattern of genetic differentiation is the result of isolation processes during the last glaciation and subsequent gene flow after range expansion. Suture and introgression zones of refugial gene pools were clearly recognised. The patterns of genetic variation and genetic diversity spanning between rear and leading edges of the present range are discussed for evolutionary implications and conservation strategies.  相似文献   

6.
Aim In an attempt to use molecular and fossil data interactively in historical biogeography, we studied the phylogeography of five Plateumaris leaf beetles in Japan using mitochondrial cytochrome oxidase subunit I (COI) sequence data to explore interspecific differences in phylogeographical patterns and estimate the timings of colonization and geographical differentiation. Location A total of 461 beetles from five species on Hokkaido, Honshu and Kyushu islands of Japan were analysed with 117 beetles from three conspecies and two congeners from the mainland (Russia, including Sakhalin; Korea; Mongolia; Belgium; France; hereafter, the continent). Methods Using the sequence data from a 750‐bp portion of the COI gene, we studied the phylogeny of COI haplotypes, intraspecific population differentiation using analysis of molecular variance and the Mantel test, and intraspecific phylogeography using nested clade analysis. In addition, divergence times between the continental and Japanese lineages, as well as among the various Japanese lineages, were estimated using a Bayesian approach with node constraints based on fossil records of extant species. Results Three widely distributed species showed different degrees of geographical differentiation corresponding to their different colonization history in Japan. Bayesian estimates of divergence time revealed that one of two endemic species, which originated before the late Pliocene, attained intraspecific differentiation through the Pliocene and Pleistocene, whereas another endemic species has been confined in one locality, and three non‐endemic species colonized Japan after the mid‐Pleistocene. Main conclusions Molecular analyses of an insect group with relatively abundant fossil data can contribute greatly to the understanding of diverse biogeographical histories of related species in a region. Bayesian estimates of divergence time could be used to assess the variable evolutionary rates of the COI gene, and may be applied to other related insect species.  相似文献   

7.
Understanding the dynamics of biodiversity, including the spatial distribution of genetic diversity, is critical for predicting responses to environmental changes, as well as for effective conservation measures. This task requires tracking changes in biodiversity at large spatial scales and correlating with species functional traits. We provide three comprehensive resources to understand the determinants for mitochondrial DNA differentiation represented by (a) 15,609 COI sequences and (b) 14 traits belonging to 307 butterfly species occurring in Western‐Central Europe and (c) the first multi‐locus phylogenetic tree of all European butterfly species. By applying phylogenetic regressions we show that mitochondrial DNA spatial differentiation (as measured with GST, GST, D and DST) is negatively correlated with species traits determining dispersal capability and colonization ability. Thanks to the high spatial resolution of the COI data, we also provide the first zoogeographic regionalization maps based on intraspecific genetic variation. The overall pattern obtained by averaging the spatial differentiation of all Western‐Central European butterflies shows that the paradigm of long‐term glacial isolation followed by rapid pulses of post‐glacial expansion has been a pervasive phenomenon in European butterflies. The results and the extensive data sets we provide here constitute the basis for genetically‐informed conservation plans for a charismatic group in a continent where flying insects are under alarming decline.  相似文献   

8.
Aim The range of the subalpine species Hypochaeris uniflora covers the Alps, Carpathians and Sudetes Mountains. Whilst the genetic structure and post‐glacial history of many high‐mountain plant taxa of the Alps is relatively well documented, the Carpathian populations have often been neglected in phylogeographical studies. The aim of the present study is to compare the genetic variation of the species in two major European mountain systems – the Alps and the Carpathians. Location Alps and Carpathians. Methods The genetic variation of 77 populations, each consisting of three plants, was studied using amplified fragment length polymorphism (AFLP). Results Neighbour joining and principal coordinate analyses revealed three well‐supported phylogeographical groups of populations corresponding to three disjunct geographical regions – the Alps and the western and south‐eastern Carpathians. Moreover, two further clusters could be distinguished within the latter mountain range, one consisting of populations from the eastern Carpathians and the second consisting of populations from the southern Carpathians. Populations from the Apuseni Mountains had an intermediate position between the eastern and southern Carpathians. The genetic clustering of populations into four groups was also supported by an analysis of molecular variance, which showed that most genetic variation (almost 46%) was found among these four groups. By far the highest within‐population variation was found in the eastern Carpathians, followed by populations from the southern and western Carpathians. Generally, the populations from the Alps were considerably less variable and displayed substantially fewer region‐diagnostic markers than those from the south‐eastern Carpathians. Although no clear geographical structure was found within the Alps, based on neighbour joining or principal coordinate analyses, some trends were obvious: populations from the easternmost part were genetically more variable and, together with those from the south‐western part, exhibited a higher proportion of rare AFLP fragments than populations in other areas. Moreover, the total number of AFLP fragments per population, the percentage of polymorphic loci and the proportion of rare AFLP fragments significantly decreased from east to west. Main conclusions Deep infraspecific phylogeographical gaps between the populations from the Alps and the western and south‐eastern Carpathians suggest the survival of H. uniflora in three separate refugia during the last glaciation. Our AFLP data provide molecular evidence for a long‐term geographical disjunction between the eastern and western Carpathians, previously suggested from the floristic composition at the end of 19th century. It is likely that Alpine populations survived the Last Glacial in the eastern part of the Alps, from where they rapidly colonized the rest of the Alps after the ice sheet retreated. Multiple founder effects may explain a gradual loss of genetic variation during westward colonization of the Alps.  相似文献   

9.
Genetic variability of the non-marine ostracod species Darwinula stevensoni was estimated by sequencing part of the nuclear and the mitochondrial genome. As Darwinulidae are believed to be ancient asexuals, accumulation of mutations should have occurred, both between alleles within lineages and between lineages, during the millions of years of parthenogenetic reproduction. However, our sequence data show the opposite: no variability in the nuclear ITS1 region was observed within or among individuals of D. stevensoni, despite sampling a geographical range from Finland to South Africa. Lack of allelic divergence might be explained by concerted evolution of rDNA repeats. Homogeneity among individuals may be caused either by slow molecular evolution in ITS1 or by a recent selective sweep. Variability of mitochondrial cytochrome oxidase (COI) was similar to intraspecific levels in other invertebrates, thus weakening the latter hypothesis. Calibrating interspecific, genetic divergences among D. stevensoni and other Darwinulidae using their fossil record enabled us to estimate rates of molecular evolution. Both COI and ITS1 evolve half as fast, at most, in darwinulids as in other invertebrates, and molecular evolution has significantly slowed down in ITS1 of D. stevensoni relative to other darwinulids. A reduced ITS1 mutation rate might explain this inconsistency between nuclear and mitochondrial evolution in D. stevensoni.  相似文献   

10.
We have assessed the utility of a single-copy nuclear locus and mitochondrial DNA (mtDNA) in a phylogeographic study of the New Zealand stick insect Niveaphasma annulata (Hutton). We amplified sequences from the mitochondrial cytochrome oxidase subunit I (COI) gene and the single-copy nuclear gene elongation factor-1α (EF1α) from 97 individuals. Allelic phase at the EF1α locus was determined using Denaturing Gradient Gel Electrophoresis. Phylogenetic analyses showed broad congruence between the geographic distribution of three major COI clades and EF1α alleles, which suggested that the phylogenetic patterns reflect population history rather than lineage sorting. However, the geographic boundaries of these clades were not always in exact agreement between the two loci. Our data indicate that Niveaphasma annulata was most likely separated into a number of refugia during Pleistocene glacial advances. Subsequent to glacial retreat these refugial populations have expanded and now form a number of zones of secondary contact. We contrast these patterns with those observed from other New Zealand taxa. Our study offers compelling evidence for the use of nuclear genes alongside mtDNA for future phylogeographic studies.  相似文献   

11.
Species distributions are limited by a complex array of abiotic and biotic factors. In general, abiotic (climatic) factors are thought to explain species’ broad geographic distributions, while biotic factors regulate species’ abundance patterns at local scales. We used species distribution models to test the hypothesis that a biotic interaction with a tree, the Colombian oak (Quercus humboldtii), limits the broad-scale distribution of the Acorn Woodpecker (Melanerpes formicivorus) in the Northern Andes of South America. North American populations of Acorn Woodpeckers consume acorns from Quercus oaks and are limited by the presence of Quercus oaks. However, Acorn Woodpeckers in the Northern Andes seldom consume Colombian oak acorns (though may regularly drink sap from oak trees) and have been observed at sites without Colombian oaks, the sole species of Quercus found in South America. We found that climate-only models overpredicted Acorn Woodpecker distribution, suggesting that suitable abiotic conditions (e.g. in northern Ecuador) exist beyond the woodpecker’s southern range margin. In contrast, models that incorporate Colombian oak presence outperformed climate-only models and more accurately predicted the location of the Acorn Woodpecker’s southern range margin in southern Colombia. These findings support the hypothesis that a biotic interaction with Colombian oaks sets Acorn Woodpecker’s broad-scale geographic limit in South America, probably because Acorn Woodpeckers rely on Colombian oaks as a food resource (possibly for the oak’s sap rather than for acorns). Although empirical examples of particular plants limiting tropical birds’ distributions are scarce, we predict that similar biotic interactions may play an important role in structuring the geographic distributions of many species of tropical montane birds with specialized foraging behavior.  相似文献   

12.
A survey of amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) variation was conducted to elucidate the phylogeography of Campanula alpina , a key species of silicicolous alpine grasslands in the Carpathians with a disjunct distribution in the Eastern European Alps. The Carpathians experienced a different glacial history from the Alps: local glaciers were present only in the highest massifs, while alpine habitats extended over larger areas related to their present distribution in this region. We asked: (i) whether in the Carpathians a high-mountain plant exhibits a complex phylogeographical structure or rather signatures of recent migrations, and (ii) whether the disjunct part of the species' distribution in the Alps resulted from a recent colonization from the Carpathians or from a restricted expansion from separate Eastern Alpine refugia. Our study revealed a clear phylogeographical pattern in AFLPs supported by congruent groups of distinct cpDNA haplotypes. Highest genetic differentiation was observed between the Alps and the Carpathians, indicating a long-term isolation between populations from these two mountain ranges. Further genetic division within the Carpathians suggests that current species' distribution is composed of several groups which have been isolated from each other for a long period. One genetic break separates Western from Southeastern Carpathian material, which is in line with a classical biogeographical boundary. A further, strongly supported genetic group was identified at the southwestern edge of the Carpathian arch. In the Eastern Alps, genetic traces of glacial survival in separate refugial areas in the calcareous northern part and the siliceous central part were found.  相似文献   

13.
The alpine sedge Carex curvula ssp. curvula is a clonal, dominant graminoid found in the European Alps, the Carpathians, the Pyrenees and in some of the Balkan Mountains. It is a late-successional species of acidophilous alpine meadows that occurs on sites that were covered by ice during the last glacial maximum (LGM). By applying the amplified fragment length polymorphism (AFLP) fingerprinting and chloroplast DNA (cpDNA) sequencing, we attempted to identify the recolonization routes followed by the species after the last ice retreat. We relied on the genetic diversity of 37 populations covering the entire distributional range of the species. As a wind-pollinated species, C. curvula is characterized by a low level of population genetic differentiation. Nuclear and chloroplast data both support the hypothesis of a long-term separation of Eastern (Balkans and Carpathians) and Western (Alps and Pyrenees) lineages. In the Alps, a continuum of genetic depauperation from the east to the west may be related to a recolonization wave originating in the eastern-most parts of the chain, where the main glacial refugium was likely located. The Pyrenean populations are nested within the western Alps group and show a low level of genetic diversity, probably due to recent long-distance colonization. In contrast to the Alps, we found no phylogeographical structure in the Carpathians. The combination of reduced ice extension during the Würm period and the presence of large areas of siliceous substrate at suitable elevation suggest that in contrast to populations in the Alps, the species in the Carpathians underwent a local vertical migration rather than extinction and recolonization over long distance.  相似文献   

14.
An area of endemism (AOE) is a complex expression of the ecological and evolutionary history of a species. Here we aim to address the principal drivers of avian diversification in shaping patterns of endemism in China by integrating genetic, ecological, and distributional data on the Red-headed Tree Babbler (Stachyridopsis ruficeps), which is distributed across the eastern Himalayas and south China. We sequenced two mtDNA markers from 182 individuals representing all three of the primary AOEs in China. Phylogenetic inferences were used to reconstruct intraspecific phylogenetic relationships. Divergence time and population demography were estimated to gain insight into the evolutionary history of the species. We used Ecological niche modeling to predict species’ distributions during the Last Glacial Maximum (LGM) and in the present. Finally, we also used two quantitative tests, an identity test and background test to assess the similarity of ecological niche preferences between adjacent lineages. We found five primary reciprocally monophyletic clades, typically separated approximately 0.2–2.27 MYA, of which three were deeply isolated endemic lineages located in the three AOEs. All phylogroups were detected to have undergone population expansion during the past 0.3 MY. Niche models showed discontinuous habitats, and there were three barriers of less suitable habitat during the LGM and in modern times. Ecoclimatic niches may diverge significantly even over recent timescales, as each phylogroup had a unique distribution, and unique niche characteristics. Vicariant events associated with geographical and ecological barriers, glacial refuges and ecological differentiation may be the main drivers forming the pattern of endemism in China.  相似文献   

15.
Species‐level environmental niche modeling has been crucial in efforts to understand how species respond to climate variation and change. However, species often exhibit local adaptation and intraspecific niche differences that may be important to consider in predicting responses to climate. Here, we explore whether phylogeographic lineages of the bank vole originating from different glacial refugia (Carpathian, Western, Eastern, and Southern) show niche differentiation, which would suggest a role for local adaptation in biogeography of this widespread Eurasian small mammal. We first model the environmental requirements for the bank vole using species‐wide occurrences (210 filtered records) and then model each lineage separately to examine niche overlap and test for niche differentiation in geographic and environmental space. We then use the models to estimate past [Last Glacial Maximum (LGM) and mid‐Holocene] habitat suitability to compare with previously hypothesized glacial refugia for this species. Environmental niches are statistically significantly different from each other for all pairs of lineages in geographic and environmental space, and these differences cannot be explained by habitat availability within their respective ranges. Together with the inability of most of the lineages to correctly predict the distributions of other lineages, these results support intraspecific ecological differentiation in the bank vole. Model projections of habitat suitability during the LGM support glacial survival of the bank vole in the Mediterranean region and in central and western Europe. Niche differences between lineages and the resulting spatial segregation of habitat suitability suggest ecological differentiation has played a role in determining the present phylogeographic patterns in the bank vole. Our study illustrates that models pooling lineages within a species may obscure the potential for different responses to climate change among populations.  相似文献   

16.
The Kuhl’s pipistrelle (Pipistrellus kuhlii) is a Western Palaearctic species of bat that exhibits several deeply divergent mitochondrial lineages across its range. These lineages could represent cryptic species or merely ancient polymorphism, but no nuclear markers have been studied so far to properly assess the taxonomic status of these lineages. We examined here two lineages occurring in Western Europe, and used both mitochondrial and nuclear markers to measure degrees of genetic isolation between bats carrying them. The sampling focused on an area of strict lineage sympatry in Switzerland but also included bats from further south, in North Africa. All individuals were barcoded for the COI gene to identify their mitochondrial lineages and five highly polymorphic microsatellite loci were used to cluster them according to their nuclear genotypes. Despite this low number of nuclear markers, all North African nuclear genotypes were grouped in a highly distinct subpopulation when compared with European samples sharing the same mitochondrial barcodes. The reverse situation prevailed in Switzerland where bats carrying distinct barcodes had similar nuclear genotypes. There was a weak east/west nuclear structure of populations, but this was independent of mitochondrial lineages as bats carrying either variant were completely admixed. Thus, the divergent mitochondrial barcodes present in Western Europe do not represent cryptic species, but are part of a single biological species. We argue that these distinct barcodes evolved in allopatry and came recently into secondary contact in an area of admixture north of the Alps. Historical records from this area and molecular dating support such a recent bipolar spatial expansion. These results also highlight the need for using appropriate markers before claiming the existence of cryptic species based on highly divergent barcodes.  相似文献   

17.
Freshwater snails in the family Bithyniidae are the first intermediate host for Southeast Asian liver fluke (Opisthorchis viverrini), the causative agent of opisthorchiasis. Unfortunately, the subtle morphological characters that differentiate species in this group are not easily discerned by non-specialists. This is a serious matter because the identification of bithyniid species is a fundamental prerequisite for better understanding of the epidemiology of this disease. Because DNA barcoding, the analysis of sequence diversity in the 5’ region of the mitochondrial COI gene, has shown strong performance in other taxonomic groups, we decided to test its capacity to resolve 10 species/ subspecies of bithyniids from Thailand. Our analysis of 217 specimens indicated that COI sequences delivered species-level identification for 9 of 10 currently recognized species. The mean intraspecific divergence of COI was 2.3% (range 0-9.2 %), whereas sequence divergences between congeneric species averaged 8.7% (range 0-22.2 %). Although our results indicate that DNA barcoding can differentiate species of these medically-important snails, we also detected evidence for the presence of one overlooked species and one possible case of synonymy.  相似文献   

18.
Estimates of paleodiversity patterns through time have relied on datasets that lump taxonomic occurrences from geographic areas of varying size per interval of time. In essence, such estimates assume that the species–area effect, whereby more species are recorded from larger geographic areas, is negligible for fossil data. We tested this assumption by using the newly developed Miocene Mammal Mapping Project database of western North American fossil mammals and its associated analysis tools to empirically determine the geographic area that contributed to species diversity counts in successive temporal bins. The results indicate that a species–area effect markedly influences counts of fossil species, just as variable spatial sampling influences diversity counts on the modern landscape. Removing this bias suggests some traditionally recognized peaks in paleodiversity are just artifacts of the species–area effect while others stand out as meriting further attention. This discovery means that there is great potential for refining existing time-series estimates of paleodiversity, and for using species–area relationships to more reliably understand the magnitude and timing of such biotically important events as extinction, lineage diversification, and long-term trends in ecological structure.  相似文献   

19.
The Iberian Peninsula is a region with a high endemicity of species of the terrestrial slug subgenus Mesarion. Many of these species have been described mainly on subtle differences in their proximal genitalia. It therefore remains to be investigated 1) whether these locally diverged taxa also represent different species under a phylogenetic species concept as has been shown for other Mesarion species outside the Iberian Peninsula, and 2) how these taxa are phylogenetically related. Here, we analysed DNA sequence data of two mitochondrial (COI and 16S) genes, and of the nuclear ITS1 region, to explore the phylogenetic affinities of two of these endemic taxa, viz. Arion gilvus Torres Mínguez, 1925 and A. ponsi Quintana Cardona, 2007. We also evaluated the use of these DNA sequence data as DNA barcodes for both species. Our results showed that ITS did not allow to differentiate among most of the Mesarion molecular operational taxonomic units (MOTUs) / morphospecies in Mesarion. Yet, the overall mean p-distance among the Mesarion MOTUs / morphospecies for both mtDNA fragments (16.7% for COI, 13% for 16S) was comparable to that between A. ponsi and its closest relative A. molinae (COI: 14.2%; 16S: 16.2%) and to that between A. gilvus and its closest relative A. urbiae (COI: 14.4%; 16S: 13.4%). Hence, with respect to mtDNA divergence, both A. ponsi and A. gilvus, behave as other Mesarion species or putative species-level MOTUs and thus are confirmed as distinct ‘species’.  相似文献   

20.
The Amundsen Sea, Antarctica, is amongst the most rapidly changing environments of the world. Its benthic inhabitants are barely known and the BIOPEARL 2 project was one of the first to biologically explore this region. Collected during this expedition, Macrostylis roaldi sp. nov. is described as the first isopod discovered on the Amundsen-Sea shelf. Amongst many characteristic features, the most obvious characters unique for M. roaldi are the rather short pleotelson and short operculum as well as the trapezoid shape of the pleotelson in adult males. We used DNA barcodes (COI) and additional mitochondrial markers (12S, 16S) to reciprocally illuminate morphological results and nucleotide variability. In contrast to many other deep-sea isopods, this species is common and shows a wide distribution. Its range spreads from Pine Island Bay at inner shelf right to the shelf break and across 1,000 m bathymetrically. Its gene pool is homogenized across space and depth. This is indicative for a genetic bottleneck or a recent colonization history. Our results suggest further that migratory or dispersal capabilities of some species of brooding macrobenthos have been underestimated. This might be relevant for the species’ potential to cope with effects of climate change. To determine where this species could have survived the last glacial period, alternative refuge possibilities are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号