首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Activated leukocyte cell adhesion molecule (ALCAM/CD166), a member of the immunoglobulin superfamily with five extracellular immunoglobulin-like domains, facilitates heterophilic (ALCAM-CD6) and homophilic (ALCAM-ALCAM) cell-cell interactions. While expressed in a wide variety of tissues and cells, ALCAM is restricted to subsets of cells usually involved in dynamic growth and/or migration processes. A structure-function analysis, using two monoclonal anti-ALCAM antibodies and a series of amino-terminally deleted ALCAM constructs, revealed that homophilic cell adhesion depended on ligand binding mediated by the membrane-distal amino-terminal immunoglobulin domain and on avidity controlled by ALCAM clustering at the cell surface involving membrane-proximal immunoglobulin domains. Co-expression of a transmembrane ALCAM deletion mutant, which lacks the ligand binding domain, and endogenous wild-type ALCAM inhibited homophilic cell-cell interactions by interference with ALCAM avidity, while homophilic, soluble ligand binding remained unaltered. The extracellular structures of ALCAM thus provide two structurally and functionally distinguishable modules, one involved in ligand binding and the other in avidity. Functionality of both modules is required for stable homophilic ALCAM-ALCAM cell-cell adhesion.  相似文献   

2.
Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a member of the immunoglobulin superfamily and belongs to a recent subgroup with five extracellular immunoglobulin-like domains (VVC2C2C2). ALCAM mediates both heterophilic (ALCAM-CD6) and homophilic (ALCAM-ALCAM) cell-cell interactions. While expressed in a wide variety of tissues, ALCAM is usually restricted to subsets of cells involved in dynamic growth and/or migration, including neural development, branching organ development, hematopoiesis, immune response and tumor progression. Recent structure-function analyses of ALCAM hint at how its cytoskeletal anchoring and the integrity of the extracellular immunoglobulin-like domains may regulate complex cellular properties in regard to cell adhesion, growth and migration. Accumulating evidence suggests that ALCAM expression may reflect the onset of a cellular program for homeostatic control of growth saturation, which induces either growth arrest or cell migration when the upper limits are exceeded.  相似文献   

3.
CD6 recognizes the neural adhesion molecule BEN.   总被引:1,自引:0,他引:1       下载免费PDF全文
CD6 and its ligand activated leukocyte cell adhesion molecule (ALCAM, CD166) have been detected on various immune cells and in the brain. CD6-ligand interactions have been implicated in the regulation of T cell function. ALCAM shares the same extracellular domain organization and significant sequence homology with the chicken neural adhesion molecule BEN. Although ALCAM's CD6 binding site is only partially conserved in BEN, CD6 specifically binds BEN, albeit with approximately 10-fold lower avidity than ALCAM. Differences in binding avidity are not detected when ALCAM and BEN fusion proteins containing the full-length extracellular regions are tested. Homotypic interactions between full-length forms are likely to account for these observations. The identified cross-species interaction between CD6 and BEN suggests that CD6-ligand interactions are highly conserved.  相似文献   

4.
The extracellular region of CD6 consists of three scavenger receptor cysteine-rich (SRCR) domains and binds activated leukocyte cell adhesion molecule (ALCAM), a member of the immunoglobulin superfamily (IgSF). Residues important for the CD6-ALCAM interaction have previously been identified by mutagenesis. A total of 22 CD6 residues were classified according to their importance for anti-CD6 monoclonal antibody (mAb) and/or ALCAM binding. The three-dimensional structure of the SRCR domain of Mac-2 binding protein has recently been determined, providing a structural prototype for the SRCR protein superfamily. This has made a thorough three-dimensional analysis of CD6 mutagenesis and mAb binding experiments possible. Mutation of buried residues compromised both mAb and ALCAM binding, consistent with the presence of structural perturbations. However, several residues whose mutation affected both mAb and ALCAM binding or, alternatively, only ligand binding were found to map to the surface in the same region of the domain. This suggests that the CD6 ligand binding site and epitopes of tested mAbs overlap and provides an explanation for the finding that these mAbs effectively block ALCAM binding. An approximate molecular model of CD6 was used to delineate the ALCAM binding site.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s0089490050263Abbreviations ALCAM activated leukocyte cell adhesion molecule - CD6D3 third (membrane-proxi-mal) extracellular domain of CD6 - IgSF immunoglobulin superfamily - mAb monoclonal antibody - M2BP Mac-2 binding protein - SRCR scavenger receptor cysteine-rich domain - SRCRSF scavenger receptor cysteine-rich protein superfamily  相似文献   

5.
Activated leukocyte cell adhesion molecule (ALCAM) is a type I transmembrane protein member of the immunoglobulin superfamily of cell adhesion molecules. Involved in important pathophysiological processes such as the immune response, cancer metastasis, and neuronal development, ALCAM undergoes both homotypic interactions with other ALCAM molecules and heterotypic interactions with the surface receptor CD6 expressed at the T cell surface. Despite biochemical and biophysical evidence of a dynamic association between ALCAM and the actin cytoskeleton, no detailed information is available about how this association occurs at the molecular level. Here, we exploit a combination of complementary microscopy techniques, including FRET detected by fluorescence lifetime imaging microscopy and single-cell force spectroscopy, and we demonstrate the existence of a preformed ligand-independent supramolecular complex where ALCAM stably interacts with actin by binding to syntenin-1 and ezrin. Interaction with the ligand CD6 further enhances these multiple interactions. Altogether, our results propose a novel biophysical framework to understand the stabilizing role of the ALCAM supramolecular complex engaged to CD6 during dendritic cell-T cell interactions and provide novel information on the molecular players involved in the formation and signaling of the immunological synapse at the dendritic cell side.  相似文献   

6.
CD22 is a negative regulator of B-cell receptor signaling, an activity mediated by recruitment of SH2 domain-containing phosphatase 1 through a phosphorylated immunoreceptor tyrosine inhibitory motif in its cytoplasmic domain. As in other members of the sialic acid-binding immunoglobulin-like lectin, or siglec, family, the extracellular N-terminal immunoglobulin domain of CD22 binds to glycan ligands containing sialic acid, which are highly expressed on B-cell glycoproteins. B-cell glycoproteins bind to CD22 in cis and 'mask' the ligand-binding domain, modulating its activity as a regulator of B-cell signaling. To assess cell-surface cis ligand interactions, we developed a new method for in situ photoaffinity cross-linking of glycan ligands to CD22. Notably, CD45, surfaceIgM (sIgM) and other glycoproteins that bind to CD22 in vitro do not appear to be important cis ligands of CD22 in situ. Instead, CD22 seems to recognize glycans of neighboring CD22 molecules as cis ligands, forming homomultimeric complexes.  相似文献   

7.
CD6 is a lymphocyte glycoprotein receptor that physically associates with the antigen-specific receptor complex at the center of the immunological synapse, where it interacts with its ligand CD166/ALCAM. The present work reports the carbohydrate-dependent interaction of CD6 and CD166/ALCAM with Galectin-1 and -3, two well-known soluble mammalian lectins. Both galectins interfered with superantigen-induced T cell proliferation and cell adhesion phenomena mediated by the CD6-CD166/ALCAM pair, while CD6 expression protected cells from galectin-induced apoptosis. The results suggest that interaction of Galectin-1 and -3 with CD6 and CD166/ALCAM might modulate some relevant aspects of T cell physiology.  相似文献   

8.
Galectin-8 (Gal-8), a ‘tandem-repeat’-type galectin, has been described as a modulator of cellular functions including adhesion, spreading, growth arrest, apoptosis, pathogen recognition, autophagy, and immunomodulation. We have previously shown that activated leukocyte cell adhesion molecule (ALCAM), also known as CD166, serves as a receptor for endogenous Gal-8. ALCAM is a member of the immunoglobulin superfamily involved in cell-cell adhesion through homophilic (ALCAM-ALCAM) and heterophilic (i.e. ALCAM-CD6) interactions in different tissues. Here we investigated the physiologic relevance of ALCAM-Gal-8 association and glycosylation-dependent mechanisms governing these interactions. We found that silencing of ALCAM in MDA-MB-231 triple negative breast cancer cells decreases cell adhesion and migration onto Gal-8-coated surfaces in a glycan-dependent fashion. Remarkably, either Gal-8 or ALCAM silencing also disrupted cell-cell adhesion, and led to reduced tumor growth in a murine model of triple negative breast cancer. Moreover, structural characterization of endogenous ALCAM N-glycosylation showed abundant permissive structures for Gal-8 binding. Importantly, we also found that cell sialylation controls Gal-8-mediated cell adhesion. Altogether, these findings demonstrate a central role of either ALCAM or Gal-8 (or both) in controlling triple negative breast cancer.  相似文献   

9.
CD86 and its homologue CD80 are type I transmembrane proteins expressed on antigen presenting cells. CD80 and CD86 specifically interact with CD28 and CD152 on T cells. This interaction results in T cell costimulation and complements T cell receptor signaling. The extracellular regions of CD80 and CD86 contain two immunoglobulin-like domains. In the presence of low sequence similarity to proteins with known three-dimensional structure, a molecular model of the N-terminal receptor-binding domain of human CD86 was built based on consensus residue analysis and structure-oriented sequence comparison. The model was assessed by energy profile analysis and regions of high, medium, and low prediction confidence were identified. Several CD86 point mutations which abolish receptor binding map to high confidence regions of the model. This has made it possible to rationalize their effects on binding or structure.  相似文献   

10.
The members of the interleukin-6-type family of cytokines interact with receptors that have a modular structure and are built of several immunoglobulin-like and fibronectin type III-like domains. These receptors have a characteristic cytokine receptor homology region consisting of two fibronectin type III-like domains defined by a set of four conserved cysteines and a tryptophan-serine-X-tryptophan-serine sequence motif. On target cells, interleukin-6 (IL-6) initially binds to its cognate alpha-receptor and subsequently to a homodimer of the signal transducer receptor gp130. The IL-6 receptor (IL-6R) consists of three extracellular domains. The N-terminal immunoglobulin-like domain is not involved in ligand binding, whereas the third membrane-proximal fibronectin-like domain (IL-6R-D3) accounts for more than 90% of the binding energy to IL-6. Here, we present the solution structure of the IL-6R-D3 domain solved by multidimensional heteronuclear NMR spectroscopy.  相似文献   

11.
12.
We have developed a model for the two immunoglobulin-like extracellular domains DII and DIII of the FGF receptor 1 (FGFR-1), giving a special attention to the determination of the appropriate Ig set. The DII domain was aligned with the C-terminal domain of myosin light chain kinase (telokin) of the I set, and the DIII domain with the variable domain of the Bence-Jones immunoglobulin of the V set. Two assemblies, corresponding to different propositions for the domains relative orientation, have been refined and compared.Electronic Supplementary Material available.  相似文献   

13.
Bowen MA  Aruffo AA  Bajorath J 《Proteins》2000,40(3):420-428
CD6 is a cell surface receptor belonging to the scavenger receptor cysteine-rich (SRCR) protein superfamily (SRCRSF). It specifically binds activated leukocyte cell adhesion molecule (ALCAM, CD166), a member of the immunoglobulin (Ig) superfamily (IgSF). CD166 was among the first molecules identified as a ligand for an SRCRSF receptor, and the CD6-CD166 interaction was the first interaction characterized involving SRCRSF and IgSF proteins. We focus here on what has been learned about the specifics of the CD6-CD166 interaction from in vitro analysis. The studies are thought to provide an instructive example for the analysis of interactions between single-path transmembrane cell surface proteins. Using soluble recombinant forms, the extracellular binding domains of receptor and ligand have been identified and characterized in a variety of assay systems. Both CD6 and CD166 have been subjected to intense mutagenesis and monoclonal antibody (mAb) binding studies and residues critical for their interaction have been identified. The availability of structural prototypes of both superfamilies has made it possible to map the binding site in CD166 and, more recently, in CD6 and compare these regions to epitopes of mAbs that block, or do not block, the interaction. In addition, the molecular basis of observed cross-species receptor-ligand interactions could be rationalized. These studies illustrate the value of structural templates for the interpretation of sequence and mutagenesis analyses. Proteins 2000;40:420-428.  相似文献   

14.
Inducible costimulator protein (ICOS) has recently been identified as a new member of the CD28 family of T cell costimulatory molecules. A molecular model of the extracellular immunoglobulin-like domain of ICOS was built based on the structure of CD152, another member of the CD28 family. Despite low sequence identity, ICOS shares consensus residues characteristic of immunoglobulin variable-type domains with CD152 and CD28 and also some unique features, suggesting that their three-dimensional structures are more similar to each other than to other proteins belonging to the immunoglobulin superfamily. The ICOS model was used to study sequence conservation in three dimensions and to compare the distribution of N-linked glycosylation sites in the extended CD28 family. The limited number of residues outside consensus/core positions that are conserved in ICOS and CD28 and/or CD152 are widely distributed over the extracellular domain. A few residues in CD152 and CD28 that are critical for binding of CD80/CD86 are also conserved in ICOS. However, the region in ICOS that corresponds to the CD80/CD86 binding site is masked by N-linked glycosylation. This suggests that this site is not available for binding of CD80/CD86 or other ligands. ICOS has probably diverged early from CD28 and CD152 and developed the capacity to recognize ligand(s) other than CD80/CD86, very likely utilizing a different molecular region and mechanism for binding.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s008940050116  相似文献   

15.
The Siglecs are a subfamily of I-type lectins (immunoglobulin superfamily proteins that bind sugars) that specifically recognize sialic acids. We report the cloning and characterization of human Siglec-9. The cDNA encodes a type 1 transmembrane protein with three extracellular immunoglobulin-like domains and a cytosolic tail containing two tyrosines, one within a typical immunoreceptor tyrosine-based inhibitory motif (ITIM). The N-terminal V-set Ig domain has most amino acid residues typical of Siglecs. Siglec-9 is expressed on granulocytes and monocytes. Expression of the full-length cDNA in COS cells induces sialic-acid dependent erythrocyte binding. A recombinant soluble form of the extracellular domain binds to alpha2-3 and alpha2-6-linked sialic acids. Typical of Siglecs, the carboxyl group and side chain of sialic acid are essential for recognition, and mutation of a critical arginine residue in domain 1 abrogates binding. The underlying glycan structure also affects binding, with Galbeta1-4Glc[NAc] being preferred. Siglec-9 shows closest homology to Siglec-7 and both belong to a Siglec-3/CD33-related subset of Siglecs (with Siglecs-5, -6, and -8). The Siglec-9 gene is on chromosome 19q13.3-13.4, in a cluster with all Siglec-3/CD33-related Siglec genes, suggesting their origin by gene duplications. A homology search of the Drosophila melanogaster and Caenorhabditis elegans genomes suggests that Siglec expression may be limited to animals of deuterostome lineage, coincident with the appearance of the genes of the sialic acid biosynthetic pathway.  相似文献   

16.
17.
The c-fms gene encodes the receptor for the macrophage colony-stimulating factor (M-CSF), and its extracellular domain consists of five immunoglobulin-like subdomains. To identify which of the five immunoglobulin-like regions are involved in ligand binding, we polymerase chain reaction-cloned five segments of the extracellular domain of the murine c-fms gene, each starting with the normal initiation codon and containing successive additions of the immunoglobulin-like subdomains. These protein segments are designated A, B, C, D, and E and contain, from the N-terminal end, either one, two, three, four, or all five immunoglobulin-like subdomains, respectively. Each segment was expressed as a secreted soluble protein from a baculovirus expression vector in Sf9 insect cells. In addition, segments A, B, C, and E were produced as soluble alkaline phosphatase fusion proteins, as was a segment containing only the fourth and fifth immunoglobulin domains. These segments of the Fms extracellular domain were used to assess M-CSF binding by competition radioimmunoassays, plate binding immunoassays, and immunoprecipitation analyses. The results indicated that the first two N-terminal immunoglobulin-like domains did not interact with M-CSF but, in combination with the third immunoglobulin-like domain, provided high-affinity M-CSF binding. The fourth and fifth immunoglobulin-like domains near the cell membrane did not exhibit M-CSF binding and may inhibit interaction of M-CSF with the first three immunoglobulin domains. These results suggest that the three N-terminal immunoglobulin-like domains constitute the high-affinity M-CSF binding region and that the fourth and fifth immunoglobulin-like domains may perform functions other than ligand binding.  相似文献   

18.
All cytokines belonging to the interleukin-6 (IL-6)-type family of cytokines utilize receptors that have a modular build of several immunoglobulin-like and fibronectin type III-like domains. Characteristic of these receptors is a cytokine receptor homology region consisting of two such fibronectin domains defined by a set of four conserved cysteines and a tryptophan-serine-X-tryptophan-serine sequence motif. On target cells, interleukin-6 first binds to its specific receptor and subsequently to a homodimer of the signal transducer protein gp130. The interleukin-6 receptor consists of three extracellular domains. The N-terminal immunoglobulin-like domain is not involved in ligand binding, whereas the third membrane proximal fibronectin-like domain accounts for more than 90% of the binding energy to IL-6. Here, the key residues of this fibronectin-like domain involved in the interaction with IL-6 are described. Chemical shift mapping data with 15N-labeled IL-6R-D3 and unlabeled IL-6 coupled with recent structural data clearly reveal the epitope within the IL-6R-D3 responsible for mediating the high affinity interaction with its cognate cytokine.  相似文献   

19.
20.
Scavenger receptor cysteine-rich (SRCR) domains are ancient protein modules widely found among cell surface and secreted proteins of the innate and adaptive immune system, where they mediate ligand binding. We have solved the crystal structure at 2.2 A of resolution of the SRCR CD5 domain III, a human lymphocyte receptor involved in the modulation of antigen specific receptor-mediated T cell activation and differentiation signals. The first structure of a member of a group B SRCR domain reveals the fold of this ancient protein module into a central core formed by two antiparallel beta-sheets and one alpha-helix, illustrating the conserved core at the protein level of genes coding for group A and B members of the SRCR superfamily. The novel SRCR group B structure permits the interpretation of site-directed mutagenesis data on the binding of activated leukocyte cell adhesion molecule (ALCAM/CD166) binding to CD6, a closely related lymphocyte receptor homologue to CD5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号