首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Dinuclear nickel(II) complexes [Ni2(bomp)(MeCO2)2]BPh4 (1) and [Ni2(bomp)(PhCO2)2]BPh4 (2) were synthesized with the dinucleating ligand 2,6-bis[bis(2-methoxyethyl)aminomethyl]-4-methylphenol [H(bomp)]. X-Ray analysis revealed that the complex 1 · 0.5CHCl3 contains two nickel(II) ions bridged by phenolic oxygen and two acetate groups, forming a μ-phenoxo-bis(μ-acetato)dinickel(II) core. Electronic spectra were investigated for 1 and 2 in the range of 400-1800 nm, and the data were typical for the octahedral high-spin nickel(II) complexes. Obtained spectral components were well simulated based on the angular overlap model assuming the trigonally distorted octahedral geometry. Magnetic susceptibility was measured for 1 and 2 over a temperature range of 4.5-300 K. The optimized magnetic data were J = 1.75 cm−1, zJ′ = −0.234 cm−1, g = 2.21, D = 15.1 cm−1, and TIP = 370 × 10−6 cm−1 for complex 1 and J = 3.55 cm−1, zJ′ = −0.238 cm−1, g = 2.23, D = 21.8 cm−1, and TIP = 470 × 10−6 cm−1 for complex 2. The data revealed ferromagnetic interactions between the two nickel(II) ions.  相似文献   

2.
The synthesis, crystal structure and magnetic properties of manganese(III) binuclear complexes [MnIII2(L-3Н)2(CH3ОH)4]·2CH3ОH (1) and [MnIII2(L-3Н)2(Py)4]·2Py (2) (L = 3-[(1E)-N-hydroxyethanimidoyl]-4-methyl-1H-pyrazole-5-carboxylic acid) are reported. The ligand contains two distinct donor compartments formed by the pyrazolate-N and the oxime or the carboxylic groups. The complexes were characterized by X-ray single crystal diffraction, revealing that both 1 and 2 consist of dinuclear units in which the two metal ions are linked by double pyrazolate bridges with a planar {Mn2N4} core. Cryomagnetic measurements show antiferromagnetic interaction with g = 1.99, J = −3.6 cm−1, Θ = −2.02 K for 1 and g = 2.00, J = −3.7 cm−1, Θ = 1.43 K for 2.  相似文献   

3.
Three mono-nuclear copper(II) complexes [Cu(tepza)X]ClO4 (X = Cl, 1; X = NCS, 2; X = dca, 3) and two dinuclear bridging complexes [Cu2(tepza)2(μ-C4O4)](ClO4)2·H2O(4) and [Cu2(tepza)2(μ-C5O5)](ClO4)2(5) where tepza = tris[2-ethyl(1-pyrazolyl)]amine, dca = dicyanamide, C4O42− = 3,4-dihydroxycyclobut-3-ene-1,2-dionate (squarate dianion) and C5O52− = 4,5-dihydroxycyclopent-4-ene-1,2,3-trionate (croconate dianion) were synthesized and structurally characterized by IR and UV-Vis spectroscopy as well as by single X-ray crystallography. In the solid state, the geometry of copper(II) centers in these complexes are as follows: close to SP in 2, distorted TBP in 3, predominant SP in 4, and distorted octahedral in 5, whereas in solution distorted SP geometry was generally found. The squarato and the croconato dianions in complexes 4 and 5 are bridging the two copper(II) centers in cis-bis-monodentate and bis-bidentate bonding modes, respectively. Magnetic susceptibility measurements at variable temperatures (2-300 K) reveal the weak antiferromagnetic coupling in the two bridging dinuclear complexes 4 (= −24.9 cm−1) and 5 (= −3.1 cm−1).  相似文献   

4.
A series of mononuclear acetonitrile complexes of the type [Ru(CH3CN)(L)(terpy)]2+ {L = phen (1), dpbpy (3), and bpm (5)}, and their reference complexes [RuCl(L)(terpy)]+ {L = phen (2), dpbpy (4), and dpphen (6)} were prepared and characterized by electrospray ionization mass spectrometry, UV-vis spectroscopy, and cyclic voltammograms (CV). Abbreviations of the ligands (Ls) are phen = 1,10-phenanthroline, dpbpy = 4,4′-diphenyl-2,2′-bipyridine, bpm = 2,2′-bipyrimidine, dpphen = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2′-bipyridine, and terpy = 2,2′:6′,2″-terpyridine. The X-ray structures of the two complexes 2 and 3 were newly obtained. The metal-to-ligand charge transfer (MLCT) bands in the visible region for 1, 3, and 5 in acetonitrile were blue shifted relative to those of the reference complexes [RuCl(L)(terpy)]+. CV for all the [Ru(CH3CN)(L)(terpy)]2+ complexes showed the first oxidation wave at around 0.95 V, being more positive than those of [RuCl(L)(terpy)]+. The time-dependent-density-functional-theory approach (TDDFT) was used to interpret the absorption spectra of 1 and 2. Good agreement between computed and experimental absorption spectra was obtained. The DFT approach also revealed the orbital interactions between Ru(phen)(terpy) and CH3CN or Cl. It is demonstrated that the HOMO-LUMO energy gap of the acetonitrile ligand is larger than that of the Cl one.  相似文献   

5.
(ML)2(bipy) complexes (LH2 = thiosemicarbazone of 2-hydroxybenzaldehyde, bipy = 4,4′-bipyridine, M = Ni(II), 1, or Cu(II), 2) were synthesized and characterized by X-ray crystallography. Compound 1 possessed porous structure due to peculiarities of crystal packing, whereas 2 formed infinite zig-zag chains with dense non-porous packing. It was shown that 1 absorbed 0.013 cm3/g of methanol vapor in two steps. Complex 1 was diamagnetic; for 2, the dependency of χ versus T could be interpreted by Bleaney-Bowers expression in 20-300 K temperature range (J = −6.8 cm−1, g = 2.07).  相似文献   

6.
Based on the complex ligand (CuL H2L = 2,3-dioxo-5,6:15,16-dibenzo-1,4,8,13-tetraazacyclotetradeca-7,13-diene), which includes macrocyclic oxamido bridge, three trinuclear complexes were prepared. They are of the formula [(CuL)2M(ClO4)2] (M = Co(1), Ni(2)) and [(CuL)2Zn(CH3OH)2] · (ClO4)2 (3). The crystal structures of the three complexes have been determined and the M(II) of the three complexes all exist on the mirror plane. Complex 1 is the first Cu-Co complex bridged by oxamido. Their magnetic properties were studied by susceptibility versus temperature measurement, the best fitting of the experimental data led to J = −28.12 cm−1 for 1, J = −42.88 cm−1 for 2, and J = −2.13 cm−1 for 3.  相似文献   

7.
Two alternating 1-D metal-radical linear [L:Cu(hfac)2]n and zig-zag [L:Mn(hfac)2]n chains (where L = 4-trimethylsilylethynyl-1-(4,4,5,5-tetramethyl-3-oxylimidazoline-1-oxide)benzene) and hfac = hexafluoroacetylacetonate) are described and characterized by X-ray diffraction of their crystals. Bulk magnetic measurements of L:Cu(hfac)2 indicated a ferromagnetic interaction with J = 6 cm−1 and L:Mn(hfac)2 yielded ferrimagnetic interactions with J = −95 cm−1. For the latter, a strong increase of their magnetic moment at lowest temperatures was observed only at very low static magnetic field, while for Hdc > 0.05 T saturation effect led to a downward slope after reaching a maximum.  相似文献   

8.
Six complexes (1-6) with the type of [Ru(bpy)2L]X2 (1-3: L = L1-L3, X = Cl; 4-6: L = L1-L3, X = PF6) were synthesized based on 2,2′-bipyridine and three 2,2′-bipyridine derivatives L1, L2 and L3 (L1 = 5,5′-dibromo-2,2′-bipyridine, L2 = 5-bromo-5′-carbazolyl-2,2′-bipyridine, L3 = 5,5′-dicarbazolyl-2,2′-bipyridine). The complexes 1-6 were characterized by 1H NMR, MS(ESI) and IR spectra, along with the X-ray crystal structure analysis for 1, 5 and 6. Their photophysical properties and electrochemiluminescence (ECL) properties were investigated in detail. In the UV-Vis absorption spectra, all complexes 1-6 show strong intraligand (π → π) transitions and metal-ligand charge transfer (MLCT, dπ (Ru) → π) bands. Upon the excitation wavelengths at ∼508 nm, all complexes 1-6 exhibit typical MLCT emission of ruthenium(II) polypyridyl complexes. The introduction of carbazole moieties improves the MLCT absorption and emission intensity. The ruthenium(II) complexes 1-6 exhibit good electrochemiluminescence (ECL) properties in [Ru(bpy)2L]2+/tri-n-propylamine (TPrA) acetonitrile solution and the complexes with PF6 showed higher ECL emission intensity than that of the complexes with Cl based on the same ligands.  相似文献   

9.
Four new zinc(II) cyclams of the composition {Zn(L)(tp2−) · H2O}n (1), {Zn(L)(H2bta2−) · 2H2O}n (2), [Zn2(L)2(ox2−)] 2ClO4 · 2DMF (3), and Zn(L)(H2btc)2 · 2DMF (4), where L = cyclam, tp2− = 1,4-benzenedicarboxylate ion, H2bta2− = 1,2,4,5-benzenetetracarboxylate ion, ox2− = oxalate ion, DMF = N,N-dimethylformamide, and H2btc = 1,3,5-benzenetricarboxylate ion, have been synthesized and structurally characterized by a combination of analytical, spectroscopic and crystallographic methods. The carboxylato ligands in the complexes 1-4 show strong coordination tendencies toward zinc(II) cyclams with hydrogen bonding interactions between the pre-organized N-H groups of the macrocycle and oxygen atoms of the carboxylato ligands. The macrocycles in 1, 2, and 4 adopt trans-III configurations with the appropriate R,R,S,S arrangement of the four chiral nitrogen centers, respectively. However, the complex 3 shows an unusual cis V conformation with the R,R,R,R nitrogen configuration. The finding of strong interactions between the carboxylato ligands and the zinc(II) ions may provide additional knowledge for the improved design of receptor-targeted zinc(II) cyclams in anti-HIV agents.  相似文献   

10.
Two new neutral, binuclear CuIICuII bis(oxamato) complexes with the formula [Cu2(opba)(pmdta)(MeOH)] · 1/2MeOH · dmf (3) and [Cu2(nabo)(pmdta)(MeOH)] (4), with opba = o-phenylene-bis(oxamato), nabo = 2,3-naphthalene-bis(oxamato), pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine and dmf = dimethylformamide have been synthesized and their crystal structures have been determined. The structure of 3 consists of dimeric [Cu2(opba)(pmdta)(MeOH)] entities, joined together by mutual intermolecular Cu?O contacts of the Cu2+ ion of one [Cu(opba)]2− complex fragment and one carboxylate atom of the oxamato group of a second [Cu(opba)]2− complex fragment. The structure of 4 consists of neutral binuclear complexes joined together by hydrogen bonds and π-π interactions, giving rise to an unique supramolecular 1D-chain. The magnetic properties of 3 and 4 were studied by susceptibility measurements versus temperature. For the intramolecular J parameter, identical values of (−114 ± 2) cm−1 (3) and (−112 ± 2) cm−1 (4) were obtained.  相似文献   

11.
Two new squarato-bridged Fe(II) polymeric networks of molecular formula [Fe(squarate)(bpp)2(H2O)2] (1) and [Fe(squarate)(bpee)(H2O)2] (2) [bpp = 1,3-bis(4-pyridyl)propane; bpee = 1,2-bis(4-pyridyl)ethylene; ] have been synthesized and characterized by single-crystal X-ray diffraction studies and low temperature (300-2 K) magnetic measurements. Complex 1 is a 1D coordination chain of Fe(H2O)2 units connected by μ-O,O″ squarate dianions with monocoordinated bpp ligands dangling from the polymer. These 1D chains ultimately transform to a thick 2D layer through π-π interaction of pyridyl rings as well as through hydrogen bonds. Whereas structural determination of complex 2 reveals an inclined interpenetrated 3D architecture. Magnetic data for both the complexes 1 and 2 have been fitted using the Fisher formula for S = 2 system and show antiferromagnetic coupling for both the complexes. The best fit parameters are J = −0.40 cm−1, g = 2.30 and R = 0.01 for complex 1 and J = −0.49 cm−1, g = 2.08 and R = 1.9 × 10−3 for complex 2.  相似文献   

12.
Hexa-coordinated chelate complex cis-[Ru(CO)2I2(P∩S)] (1a) {P∩S = η2-(P,S)-coordinated} and penta-coordinated non-chelate complexes cis-[Ru(CO)2I2(P∼S)] (1b-d) {P∼S = η1-(P)-coordinated} are produced by the reaction of polymeric [Ru(CO)2I2]n with equimolar quantity of the ligands Ph2P(CH2)nP(S)Ph2 {n = 1(a), 2(b), 3(c), 4(d)} in dichloromethane at room temperature. The bidentate nature of the ligand a in the complex 1a leads to the formation of five-membered chelate ring which confers extra stability to the complex. On the other hand, 1:2 (Ru:L) molar ratio reaction affords the hexa-coordinated non-chelate complexes cis,cis,trans-[Ru(CO)2I2(P∼S)2] (2a-d) irrespective of the ligands. All the complexes show two equally intense terminal ν(CO) bands in the range 2028-2103 cm−1. The ν(PS) band of complex 1a occurs 23 cm−1 lower region compared to the corresponding free ligand suggesting chelation via metal-sulfur bond formation. X-ray crystallography reveals that the Ru(II) atom occupies the center of a slightly distorted octahedral geometry. The complexes have also been characterized by elemental analysis, 1H, 13C and 31P NMR spectroscopy.  相似文献   

13.
Two 1D complexes [Mn(4- methylpyrazole)3(H2O)(tp)]n (2) and [Mn(4-methylpyrazole)4(tp)]n (3) (tp = terephthalate) were synthesized and characterized by means of X-ray analysis and magnetic studies. The molecular structure of 2 reveals that Mn(II) centers with asymmetric coordination surroundings are bridged by crystallographically different tp ligands, forming a 1D chain. The 1D coordination chains are interconnected by hydrogen bonds between free carboxylate oxygen atoms in a chain and hydrogens of pyrazole nitrogen atoms in neighboring chains, leading to a 3D framework. Compound 3 also exhibits a 1D coordination chain which is hydrogen-bonded to adjacent chains, providing a 2D sheet structure. Interestingly, the structures include intra- and interchain hydrogen bonds contributed from N-H groups of the capping 4-methylpyrazole ligands. Magnetic measurements show weak antiferromagnetic interactions with exchange coupling parameters of J = −0.018 cm−1 for 2 and J = −0.062 cm−1 for 3 through the extended tp ligand on the basis of an infinite chain model (H = −JSi · Si + 1).  相似文献   

14.
Two oxamido-bridged trinuclear complexes of formula {[(LCu)(EtOH)]2Mn(EtOH)2}(ClO4)2 (1) and {[(LCu)(EtOH)]2Co(EtOH)2}(ClO4)2 · 2H2O (2) (H2L = 2,3-dioxo-5,6:13,14-dichlorobenzo-7,12-diphenyl-1,4,8,11-tetraazacyclo-pentadeca-7,11-diene) have been synthesized and structurally characterized. The central ions of complexes 1-2 (Mn(II), Co(II)) are all bridged by macrocyclic oxamido groups. Their magnetic properties were studied by susceptibility versus temperature measurement, the best fitting of the experimental data led to J = −16.91 cm−1 for 1 and J = −27.73 cm−1 for 2.  相似文献   

15.
The reaction of [C5H4(CH2)nX]Tl (1: n = 2, X = NMe2, OMe, CN; n = 3, X = NMe2) with [(η6-C6H6)RuCl(μ-Cl)]2, 2, afforded the sandwich compounds [{η5-C5H4(CH2)nX}Ru(η6-C6H6)]PF6, 3, and [η5-C5H4(CH2)nX]2Ru, 4. Photolytic cleavage of 3 in acetonitrile afforded the tethered products [{η5N-C5H4(CH2)nX}Ru(CH3CN)2]PF6, 5.  相似文献   

16.
The new mononuclear bis(oxamato) complex [n-Bu4N]2[Cu(obbo)] (1) (obbo=o-benzyl-bis(oxamato)) has been synthesized as a precursor for trinuclear oxamato-bridged transition metal complexes. Starting from 1 the homotrinuclear complexes [Cu3(obbo)(pmdta)2(NO3)](NO3)·CH2Cl2·H2O (2) and [Cu3(obbo)(tmeda)2(NO3)2(dmf)] (3) have been prepared, where pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine, tmeda = N,N,N′,N′-tetramethylethylenediamine and dmf = dimethylformamide. The crystal structures of 1-3 were solved. The magnetic properties of 2 and 3 were studied by susceptibility measurements versus temperature. For the intramolecular J parameter values of −111 cm−1 (2) and −363 cm−1 (3) were obtained.  相似文献   

17.
Bidentate ligands 2,2′-biquinoline (biq) and 6,6′-dimethyl-2,2′-bipyridine (dmbpy) with steric hindrance substituents cis to the nitrogen atoms have been used in the synthesis of transition metal complexes. Six new doubly end-on azido-bridged binuclear complexes [M2(biq)21,1-N3)2(N3)2] (M = Ni (1), M = Co (2)), [M2(biq)21,1-N3)2Cl2] (M = Ni (3), M = Co (4)), [M2(dmbpy)21,1-N3)2(N3)2] (M = Ni (5), M = Co (6)) and one end-to-end thiocyanato-bridged polymeric [Ni(dmbpy)(μ1,3-SCN)(NCS)]n (7) have been synthesized and characterized by single crystal X-ray diffraction analysis and magnetic studies. Complexes 1-6 comprise five-coordinate M(II) ions bridged by two end-on azide ligands. The bridging M-N-M bond angles are in the small range 104.1-105.2°. Complex 7 consists of a singly thiocyanate-bridged Ni(II) chain in which Ni(II) ions are five-coordinate. This research suggests that the bulky ligands play a key role in the formation of five-coordinate coordination structure. All complexes display intramolecular intermetallic ferromagnetic coupling with JNiNi and JCoCo of ca. 23 or 13 cm−1 based on the Hamiltonian (S1 = S2 = 1 for Ni2, or 3/2 for Co2). The singly SCN-bridged chainlike complex 7 shows intrachain ferromagnetic interaction with J = 3.96(2) cm−1 and D = −4.55(8) cm−1 (. Magneto-structural correlationship has been investigated.  相似文献   

18.
A 2D layer complex 1 and a linear trinuclear complex 2 with mixed ligands have been synthesized and characterized by elemental analyses, IR and single-crystal X-ray diffraction. In 1, the Mn(II) ions are six-coordinated and lie in distorted octahedron coordination environments. Complex 1 is connected into a 2D layer structure based on a linear trinuclear Mn3(admtrz)4(N3)6 (admtrz = 4-amino-3,5-dimethyl-1,2,4-triazole) building unit with either (6,3) topology when Mn1 cations as three-connected nodes or (4,4) network when the coordination trinuclear units being regarded as four connected nodes. In 2, the Co(II) ions are in slightly distorted octahedron coordination geometries. The magnetic behaviors are investigated in the temperature range 1.8-300 K. The magnetic susceptibility measurements show that the Mn(II) ions of complex 1 are weakly antiferromagnetically coupled with g = 1.98(1), J1 = −6.31(5) cm−1 and J2 = −1.88(1) cm−1. There is dominant zero field splitting (ZFS) effects with g values, g// = 2.38(2) and g = 4.96(4), indicated a significant presence of the spin-orbit coupling and magnetization experiment reveals large, uniaxial zero-field splitting parameters of D = −29.55 cm−1 for 2.  相似文献   

19.
The complexes [Cu2(ox)(phen)2(H2O)2](NO3)2 (1), [Cu2(sq)(pmdien)2(H2O)2](ClO4)2 (2) and {[Cu3(pdc)3(4,4′-bipy)1.5(H2O)2.25] · 2.5(H2O)}n (3) [phen = 1,10-phenanthroline; pmdien = N,N,N′,N′,N″-pentamethyldiethylenetriamine; 4,4′-bipy = 4,4′-bipyridine; ox = oxalate dianion; sq = squarate dianion and pdc = pyridine 2,6-dicarboxylate] have been synthesized and characterized by X-ray single crystal structure determination, low temperature magnetic measurement and thermal study. Structure determination reveals that 1 and 2 are dinuclear copper(II) complexes bridged by oxalate and squarate dianions, respectively, while 3 is a hexanuclear species formed by three Cu(pdc)(H2O)-(4,4′-bipy)-Cu(pdc)(H2O) fragments, connected through long Cu-O(pdc) bonds in a centrosymmetric arrangement. In complex 1 H-bonds occurring between the coordinated water molecules and lattice nitrate anions result in eight-membered ring clusters with the concomitant formation of 1D supramolecular chain. The adjacent chains undergo π-π stacking forming a 2D architecture. In the crystal of 3 an extensive H-bonding scheme gives rise to a 3D supramolecular network. Low temperature magnetic study shows a strong antiferromagnetic coupling in 1 (J = −288 ± 2 cm−1, g = 2.21 ± 0.01, R = 1.2 × 10−6); and a very weak interaction in 2 and 3, the best-fit parameters being: J = −0.21 cm−1, g = 2.12 ± 0.01, R = 1.1 × 10−6 (2) and J = −1.34 cm−1 ± 0.1, g = 2.14 ± 0.01, R = 1.2 × 10−6 (3) (R defines as .  相似文献   

20.
Crystallisation of simple cyanoruthenate complex anions [Ru(NN)(CN)4]2− (NN = 2,2′-bipyridine or 1,10-phenanthroline) in the presence of Lewis-acidic cations such as Ln(III) or guanidinium cations results, in addition to the expected [Ru(NN)(CN)4]2− salts, in the formation of small amounts of salts of the dinuclear species [Ru2(NN)2(CN)7]3−. These cyanide-bridged anions have arisen from the combination of two monomer units [Ru(NN)(CN)4]2− following the loss of one cyanide, presumably as HCN. The crystal structures of [Nd(H2O)5.5][Ru2(bipy)2(CN)7] · 11H2O and [Pr(H2O)6][Ru2(phen)2(CN)7] · 9H2O show that the cyanoruthenate anions form Ru-CN-Ln bridges to the Ln(III) cations, resulting in infinite coordination polymers consisting of fused Ru2Ln2(μ-CN)4 squares and Ru4Ln2(μ-CN)6 hexagons, which alternate to form a one-dimensional chain. In [CH6N3]3[Ru2(bipy)2(CN)7] · 2H2O in contrast the discrete complex anions are involved in an extensive network of hydrogen-bonding involving terminal cyanide ligands, water molecules, and guanidinium cations. In the [Ru2(NN)2(CN)7]3− anions themselves the two NN ligands are approximately eclipsed, lying on the same side of the central Ru-CN-Ru axis, such that their peripheries are in close contact. Consequently, when NN = 4,4′-tBu2-2,2′-bipyridine the steric bulk of the t-butyl groups prevents the formation of the dinuclear anions, and the only product is the simple salt of the monomer, [CH6N3]2[Ru(tBu2bipy)(CN)4] · 2H2O. We demonstrated by electrospray mass spectrometry that the dinuclear by-product [Ru2(phen)2(CN)7]3− could be formed in significant amounts during the synthesis of monomeric [Ru(phen)(CN)4]2− if the reaction time was too long or the medium too acidic. In the solid state the luminescence properties of [Ru2(bipy)2(CN)7]3− (as its guanidinium salt) are comparable to those of monomeric [Ru(bipy)(CN)4]2−, with a 3MLCT emission at 581 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号