首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photorhabdus luminescens toxin complex (Tc) has been characterized as a potent three-component insecticidal protein complex. Homologues of genes encoding P. luminescens Tc components have been identified in several other enterobacteria and in Gram-positive bacteria, showing these genes are widespread in bacteria. In particular, tc gene homologues have been identified in Yersinia enterocolitica, Yersinia pseudotuberculosis and Yersinia pestis and may have a role in Y. pestis evolution. Y. enterocolitica tc genes have been shown to be active against Manduca sexta larvae. Here, we demonstrate that expression optimization is essential to obtain bioactive P. luminescens Tc proteins and demonstrate that TcaAB and TcdB + TccC are stand-alone toxins against a M. sexta insect model. Moreover, we report that Y. pseudotuberculosis IP32953 Tc proteins are also toxic to M. sexta larvae but do not cross-potentiate as P. luminescens Tc components.  相似文献   

2.
Insect blood (hemolymph) contains prophenoloxidase, a proenzyme that is activated to protective phenoloxidase when the insect is damaged or challenged with microorganisms. The Gram-negative bacterium Photorhabdus luminescens kills the lepidopteron insect Manduca sexta by using a variety of toxins. We screened P. luminescens and Photorhabdus asymbiotica cosmid libraries in an Escherichia coli host against previously activated M. sexta hemolymph phenoloxidase and identified three overlapping cosmid clones from P. luminescens and five from P. asymbiotica that suppressed the activity of the enzyme both in vitro and in vivo . Genome alignments of cosmid end sequences from both species confirmed that they contained orthologous loci. We examined one of the cosmids from P. luminescens in detail: it induced the formation of significantly fewer melanotic nodules, proliferated faster within the insect host and was significantly more virulent towards fifth-stage larvae than E. coli control bacteria. Insertional mutagenesis of this cosmid yielded 11 transposon mutants that were no longer inhibitory. All of these were insertions into a single 5.5-kb locus, which contained three ORFs and was homologous to the maltodextrin phosphorylase locus of E. coli . The implications of this novel inhibitory factor of insect phenoloxidase for Photorhabdus virulence are discussed.  相似文献   

3.
Photorhabdus sp. strain Az29 is symbiotic with an Azorean nematode of the genus Heterorhabditis in a complex that is highly virulent to insects even at low temperatures. The virulence of the bacteria is mainly attributed to toxins and bacterial enzymes secreted during parasitism. The bacteria secrete proteases during growth, with a peak at the end of the exponential growth phase. Protease secretion was higher in cultures growing at lower temperatures. At 10 degrees C the activity was highest and remained constant for over 7 days, whereas at 23 and 28 degrees C it showed a steady decrease. Two proteases, PrtA and PrtS, that are produced in the growth medium were purified by liquid chromatography. PrtA was inhibited by 1,10-phenantroline and by EDTA and had a molecular mass of 56 kDa and an optimal activity at pH 9 and 50 degrees C. Sequences of three peptides of PrtA showed strong homologies with alkaline metalloproteases from Photorhabdus temperata K122 and Photorhabdus luminescens W14. Peptide PrtA-36 contained the residues characteristic of metzincins, known to be involved in bacterial virulence. In vitro, PrtA inhibited antibacterial factors of inoculated Lepidoptera and of cecropins A and B. PrtS had a molecular mass of 38 kDa and was inhibited by 1,10-phenanthroline but not by EDTA. Its activity ranged between 10 and 80 degrees C and was optimal at pH 7 and 50 degrees C. PrtS also destroyed insect antibacterial factors. Three fragments of PrtS showed homology with a putative metalloprotease of P. luminescens TTO1. Polyclonal antibody raised against PrtA did not recognize PrtS, showing they are distinct molecules.  相似文献   

4.
5.
Bacteriocins are proteins produced by bacteria to destroy other bacteria occupying their ecological niche. Photorhabdus luminescens is an insect pathogenic bacterium carried by an entomopathogenic nematode and occupies several different niches in its life cycle. The nematode enters the insect and releases a single strain of P. luminescens. The bacteria then kill the host and the bacteria and nematodes replicate within the cadaver. Strikingly, at the end of the infection the cadaver is still occupied by a single strain of bacterium, suggesting that P. luminescens can destroy other bacteria entering, or present within, the insect. Here we describe four loci encoding 'lumicins' in P. luminescens subsp. akhurstii strain W14. The lumicins are novel bacteriocins capable of killing other strains of Photorhabdus and Escherichia coli. These loci predict killer proteins and multiple dual type immunity proteins with domains similar to pyocins and colicins. The killer proteins are chimeric in nature with multiple domains, one of which is similar to the uropathogenic-specific protein (USP) described from uropathogenic E. coli. The implications of these novel bacteriocins for the lifestyle of Photorhabdus and the potential role of USP as a bacteriocin in E. coli are discussed.  相似文献   

6.
The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens   总被引:13,自引:0,他引:13  
Photorhabdus luminescens is a symbiont of nematodes and a broad-spectrum insect pathogen. The complete genome sequence of strain TT01 is 5,688,987 base pairs (bp) long and contains 4,839 predicted protein-coding genes. Strikingly, it encodes a large number of adhesins, toxins, hemolysins, proteases and lipases, and contains a wide array of antibiotic synthesizing genes. These proteins are likely to play a role in the elimination of competitors, host colonization, invasion and bioconversion of the insect cadaver, making P. luminescens a promising model for the study of symbiosis and host-pathogen interactions. Comparison with the genomes of related bacteria reveals the acquisition of virulence factors by extensive horizontal transfer and provides clues about the evolution of an insect pathogen. Moreover, newly identified insecticidal proteins may be effective alternatives for the control of insect pests.  相似文献   

7.
Xenorhabdus nematophila, the mutualistic bacterium of the nematode Steinernema carpocapsae, produces the R-type bacteriocin called xenorhabdicin, which is thought to confer a competitive advantage for growth in the insect host. We have identified a P2-like tail synthesis gene cluster (xnp1) that is required for xenorhabdicin production. The xnp1 genes were expressed constitutively during growth and were induced by mitomycin C. Deletion of either the sheath (xnpS1) or fiber (xnpH1) genes eliminated xenorhabdicin production. Production of R-type bacteriocins in a host organism had not been shown previously. We show that xenorhabdicin is produced in the hemocoel of insects infected with the wild type but not with the ΔxnpS1 deletion strain. Xenorhabdicin prepared from the wild-type strain killed the potential competitor Photorhabdus luminescens TT01. P. luminescens was eliminated during coculture with wild-type X. nematophila but not with the ΔxnpS1 strain. Furthermore, P. luminescens inhibited reproduction of S. carpocapsae in insect larvae, while coinjection with wild-type X. nematophila, but not the ΔxnpS1, strain restored normal reproduction, demonstrating that xenorhabdicin was required for killing P. luminescens and protecting the nematode partner. Xenorhabdicin killed X. nematophila from Steinernema anatoliense, demonstrating for the first time that it possesses intraspecies activity. In addition, activity was variable against diverse strains of Xenorhabdus and Photorhabdus and was not correlated with phylogenetic distance. These findings are discussed in the context of the role of xenorhabdicin in the life cycle of the mutualistic bacterium X. nematophila.  相似文献   

8.
9.
Pseudomonas fluorescens CHA0 and the related strain Pf-5 are well-characterized representatives of rhizosphere bacteria that have the capacity to protect crop plants from fungal root diseases, mainly by releasing a variety of exoproducts that are toxic to plant pathogenic fungi. Here, we report that the two plant-beneficial pseudomonads also exhibit potent insecticidal activity. Anti-insect activity is linked to a novel genomic locus encoding a large protein toxin termed Fit (for P.   f luorescens i nsecticidal t oxin) that is related to the insect toxin Mcf ( M akes c aterpillars f loppy) of the entomopathogen Photorhabdus luminescens , a mutualist of insect-invading nematodes. When injected into the haemocoel, even low doses of P. fluorescens CHA0 or Pf-5 killed larvae of the tobacco hornworm Manduca sexta and the greater wax moth Galleria mellonella . In contrast, mutants of CHA0 or Pf-5 with deletions in the Fit toxin gene were significantly less virulent to the larvae. When expressed from an inducible promoter in a non-toxic Escherichia coli host, the Fit toxin gene was sufficient to render the bacterium toxic to both insect hosts. Our findings establish the Fit gene products of P. fluorescens CHA0 and Pf-5 as potent insect toxins that define previously unappreciated anti-insect properties of these plant-colonizing bacteria.  相似文献   

10.
Photorhabdus is an entomopathogenic bacterium belonging to the Enterobacteriaceae. The genome of the TT01 strain of Photorhabdus luminescens was recently sequenced and a large number of toxin-encoding genes were found. Genomic analysis predicted the presence on the chromosome of genes encoding a type three secretion system (TTSS), the main role of which is the delivery of effector proteins directly into eukaryotic host cells. We report here the functional characterization of the TTSS. The locus identified encodes the secretion/translocation apparatus, gene expression regulators and an effector protein - LopT - homologous to the Yersinia cysteine protease cytotoxin YopT. Heterologous expression in Yersinia demonstrated that LopT was translocated into mammal cells in an active form, as shown by the appearance of a form of the RhoA GTPase with modified electrophoretic mobility. In vitro study showed that recombinant LopT was able to release RhoA and Rac from human and insect cell membrane. In vivo assays of infection of the cutworm Spodoptera littoralis and the locust Locusta migratoria with a TT01 strain carrying a translational fusion of the lopT gene with the gfp reporter gene revealed that the lopT gene was switched on only at sites of cellular defence reactions, such as nodulation, in insects. TTSS-mutant did not induce nodule formation and underwent phagocytosis by insect macrophage cells, suggesting that the LopT effector plays an essential role in preventing phagocytosis and indicating an unexpected link between TTSS expression and the nodule reaction in insects.  相似文献   

11.
Photorhabdus luminescens is an insect pathogen associated with specific soil nematodes. The bacterium has a complex life cycle with a symbiotic stage in which bacteria colonize the intestinal tract of the nematodes, and a pathogenic stage against susceptible larval-stage insect. Symbiosis-"deficient" phenotypic variants (known as secondary forms) arise during prolonged incubation. Correspondence analysis of the in silico proteome translated from the genome sequence of strain TT01 identified two major biases in the amino acid composition of the proteins. We analyzed the proteome, separating three classes of extracts: cellular, extracellular, and membrane-associated proteins, resolved by 2-DE. Approximately 450 spots matching the translation products of 231 different coding DNA sequences were identified by PMF. A comparative analysis was performed to characterize the protein content of both variants. Differences were evident during stationary growth phase. Very few proteins were found in variant II supernatants, and numerous proteins were lacking in the membrane-associated fraction. Proteins up-regulated by the phenotypic variation phenomenon were involved in oxidative stress, energy metabolism, and translation. The transport and binding of iron, sugars and amino acids were also affected and molecular chaperones were strongly down-regulated. A potential role for H-NS in phenotypic variation control is discussed.  相似文献   

12.
13.
Invertebrates, including insects, are being developed as model systems for the study of bacterial virulence. However, we understand little of the interaction between bacteria and specific invertebrate tissues or the immune system. To establish an infection model for Photorhabdus, which is released directly into the insect blood system by its nematode symbiont, we document the number and location of recoverable bacteria found during infection of Manduca sexta. After injection into the insect larva, P. luminescens multiplies in both the midgut and haemolymph, only later colonizing the fat body and the remaining tissues of the cadaver. Bacteria persist by suppressing haemocyte-mediated phagocytosis and culture supernatants grown in vitro, as well as plasma from infected insects, suppress phagocytosis of P. luminescens. Using GFP-labelled bacteria, we show that colonization of the gut begins at the anterior of the midgut and proceeds posteriorly. Within the midgut, P. luminescens occupies a specific niche between the extracellular matrix and basal membrane (lamina) of the folded midgut epithelium. Here, the bacteria express the gut-active Toxin complex A (Tca) and an RTX-like metalloprotease PrtA. This close association of the bacteria with the gut, and the production of toxins and protease, triggers a massive programmed cell death of the midgut epithelium.  相似文献   

14.
The nematode Heterorhabditis bacteriophora is the vector for transmitting the entomopathogenic bacterium Photorhabdus luminescens between insect larvae. The dauer juvenile (DJ) stage nematode selectively retains P. luminescens in its intestine until it releases the bacteria into the hemocoel of an insect host. We report the results of studying the transmission of the bacteria by its nematode vector. Cells of P. luminescens labeled with green fluorescent protein preferentially colonized a region of the DJ intestine immediately behind the basal bulb, extending for various distances toward the anus. Incubation of DJ nematodes in vitro in insect hemolymph induced regurgitation of the bacteria. Following a 30-min lag, the bacteria migrated in a gradual and staggered movement toward and ultimately exited the mouth. This regurgitation reaction was induced by a low-molecular-weight, heat- and protease-stable, anionic component present in arthropod hemolymph and in supernatants from insect cell cultures. Nematodes anesthetized with levamisole or treated with the antihelmenthic agent ivermectin did not release their bacteria into hemolymph. The ability to visualize P. luminescens in the DJ nematode intestine provides the first clues to the mechanism of release of the bacteria during infection of insect larvae. This and the partial characterization of a component of hemolymph triggering release of the bacteria render this fascinating example of both a mutualistic symbiosis and disease transmission amenable to future genetic and molecular study.  相似文献   

15.
16.
Photorhabdus luminescens secretes both high molecular weight insecticidal toxin complexes and also a range of extracellular proteases into culture broth. Previous studies by others have suggested that insecticidal activity of the broth is associated with these proteases. However, by gene cloning and targeted knock-out, we have previously shown that oral insecticidal activity is associated with high molecular weight 'toxin complexes' (Tc) encoded by toxin complex or tc genes. Here we further clarify this distinction by biochemically separating the protease fractions away from the oral insecticidal activity of the Tc proteins. We purified three distinct protease fractions from the broth: one consisting of a single species of 55 kDa and two of several putatively related species of approximately 40 kDa. All of these clearly separate from the oral insecticidal activity associated with the high molecular weight Tc proteins and also show no effect on insect weight gain following injection into the haemocoel. Here we examine the substrate preferences and inhibitor profiles of these protease fractions and discuss their relationship with those previously described from other P. luminescens strains and phase variants.  相似文献   

17.
【目的】Photorhabdus luminescens TT01基因组中的一对ORF plu4437-plu4436(简称pirA2B2)的预测氨基酸序列与另一对已证明编码产物有口服杀虫活性的ORF plu4093-plu4092(简称pirA1B1)有50%和45%的一致性,本文旨在研究pirA2B2基因座的表达产物是否也有杀虫活性。【方法】PCR扩增并克隆了pirA2,pirB2和pirA2B2基因,构建了重组表达载体pQE-pirA2,pQE-pirB2和pQE-pirA2B2并分别转入M15菌株表达,经SDS-PAGE和Western blot检测证明,3个重组菌株经IPTG诱导后,分别成功表达了可溶的PirA2,PirB2和PirA2B2蛋白。用亲和层析结合脱盐技术对3个重组菌株表达的外源蛋白分别进行纯化,并通过生物测定确定纯化蛋白的杀虫活性。【结果】生物测定结果显示联合表达的PirA2B2对大蜡螟和斜纹夜蛾五龄幼虫均有明显的血腔杀虫活性,LD50分别为每虫4.0和2.8μg,单独表达的PirA2或PirB2对上述2种害虫没有血腔杀虫活性,但两者的混合物具有与两者联合表达相似的杀虫活性;PirA2B2对大蜡螟和斜纹夜蛾初孵幼虫均无口服杀虫活性。【结论】pirA2B2是P.luminescens TT01菌株基因组中的另一个二元杀虫毒素基因。【意义】pirA2B2的成功克隆表达和杀虫功能的确定为进一步研究其与pirA1B1的关系以及该基因的表达调控等打下了基础。  相似文献   

18.
Reproduction of entomopathogenic nematodes requires that they escape recognition by a host's immune system or that they have mechanisms to escape encapsulation and melanization. We investigated the immune responses of larvae for the greater wax moth (Galleria mellonella), tobacco hornworm (Manduca sexta), Japanese beetle (Popillia japonica), northern masked chafer (Cyclocephala borealis), oriental beetle (Exomala orientalis) and adult house crickets (Acheta domesticus), challenged with infective juveniles from different species and strains of entomopathogenic nematodes. The in vivo immune responses of hosts were correlated with nematode specificity and survival found by infection assays. In P. japonica, 45% of injected infective juveniles from Steinernema glaseri NC strain survived; whereas the hemocytes from the beetle strongly encapsulated and melanized the Heterorhabditis bacteriophora HP88 strain, S. glaseri FL strain, Steinernema scarabaei and Steinernema feltiae. Overall, H. bacteriophora was intensively melanized in resistant insect species (E. orientalis, P. japonica and C. borealis) and had the least ability to escape the host immune response. Steinernema glaseri NC strain suppressed the immune responses in susceptible hosts (M. sexta, E. orientalis and P. japonica), whereas S. glaseri FL strain was less successful. Using an in vitro assay, we found that hemocytes from G. mellonella, P. japonica, M. sexta and A. domestica recognized both nematode species quickly. However, many S. glaseri in M. sexta and H. bacteriophora in G. mellonella escaped from hemocyte encapsulation by 24h. These data indicate that, while host recognition underlies some of the differences between resistant and susceptible host species, escape from encapsulation following recognition can also allow successful infection. Co-injected surface-coat proteins from S. glaseri did not protect H. bacteriophora in M. sexta but did protect H. bacteriophora in E. orientalis larva; therefore, surface coat proteins do not universally convey host susceptibility. Comparisons of surface coat proteins by native and SDS-PAGE demonstrated different protein compositions between H. bacteriophora and S. glaseri and between the two strains of S. glaseri.  相似文献   

19.
Photorhabdus is a genus of gram-negative Enterobacteriaceae that is pathogenic to insect larvae while also maintaining a mutualistic relationship with nematodes from the family Heterorhabditis, where the bacteria occupy the gut of the infective juvenile (IJ) stage of the nematode. In this study we describe the identification and characterization of a mutation in the pbgE1 gene of Photorhabdus luminescens TT01, predicted to be the fifth gene in the pbgPE operon. We show that this mutant, BMM305, is strongly attenuated in virulence against larvae of the greater wax moth, Galleria mellonella, and we report that BMM305 is more sensitive to the cationic antimicrobial peptide, polymyxin B, and growth in mildly acidic pH than the parental strain of P. luminescens. Moreover, we also show that the lipopolysaccharide (LPS) present on the surface of BMM305 does not appear to contain any O antigen. Complementation studies reveal that the increased sensitivity to polymyxin B and growth in mildly acidic pH can be rescued by the in trans expression of pbgE1, while the defects in O-antigen assembly and pathogenicity require the in trans expression of pbgE1 and the downstream genes pbgE2 and pbgE3. Finally, we show that BMM305 is defective in symbiosis as this mutant is unable to colonize the gut of the IJ stage of the nematode. Therefore, we conclude that the pbgPE operon is required for both pathogenicity and symbiosis in P. luminescens.  相似文献   

20.
Photorhabdus sp. strain Az29 is symbiotic with an Azorean nematode of the genus Heterorhabditis in a complex that is highly virulent to insects even at low temperatures. The virulence of the bacteria is mainly attributed to toxins and bacterial enzymes secreted during parasitism. The bacteria secrete proteases during growth, with a peak at the end of the exponential growth phase. Protease secretion was higher in cultures growing at lower temperatures. At 10°C the activity was highest and remained constant for over 7 days, whereas at 23 and 28°C it showed a steady decrease. Two proteases, PrtA and PrtS, that are produced in the growth medium were purified by liquid chromatography. PrtA was inhibited by 1,10-phenantroline and by EDTA and had a molecular mass of 56 kDa and an optimal activity at pH 9 and 50°C. Sequences of three peptides of PrtA showed strong homologies with alkaline metalloproteases from Photorhabdus temperata K122 and Photorhabdus luminescens W14. Peptide PrtA-36 contained the residues characteristic of metzincins, known to be involved in bacterial virulence. In vitro, PrtA inhibited antibacterial factors of inoculated Lepidoptera and of cecropins A and B. PrtS had a molecular mass of 38 kDa and was inhibited by 1,10-phenanthroline but not by EDTA. Its activity ranged between 10 and 80°C and was optimal at pH 7 and 50°C. PrtS also destroyed insect antibacterial factors. Three fragments of PrtS showed homology with a putative metalloprotease of P. luminescens TTO1. Polyclonal antibody raised against PrtA did not recognize PrtS, showing they are distinct molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号