首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Protein phosphatase 2C (PP2C) is a Mn2+- or Mg2+-dependent protein Ser/Thr phosphatase that is essential for regulating cellular stress responses in eukaryotes. The crystal structure of human PP2C reveals a novel protein fold with a catalytic domain composed of a central beta-sandwich that binds two manganese ions, which is surrounded by alpha-helices. Mn2+-bound water molecules at the binuclear metal centre coordinate the phosphate group of the substrate and provide a nucleophile and general acid in the dephosphorylation reaction. Our model presents a framework for understanding not only the classical Mn2+/Mg2+-dependent protein phosphatases but also the sequence-related domains of mitochondrial pyruvate dehydrogenase phosphatase, the Bacillus subtilus phosphatase SpoIIE and a 300-residue domain within yeast adenyl cyclase. The protein architecture and deduced catalytic mechanism are strikingly similar to the PP1, PP2A, PP2B family of protein Ser/Thr phosphatases, with which PP2C shares no sequence similarity, suggestive of convergent evolution of protein Ser/Thr phosphatases.  相似文献   

2.
The extracellular signal-regulated protein kinase 2 (ERK2) is the founding member of a family of mitogen-activated protein kinases (MAPKs) that are central components of signal transduction pathways for cell proliferation, stress responses, and differentiation. The MAPKs are unique among the Ser/Thr protein kinases in that they require both Thr and Tyr phosphorylation for full activation. The dual phosphorylation of Thr-183 and Tyr-185 in ERK2 is catalyzed by MAPK/ERK kinase 1 (MEK1). However, the identity and relative activity of protein phosphatases that inactivate ERK2 are less well established. In this study, we performed a kinetic analysis of ERK2 dephosphorylation by protein phosphatases using a continuous spectrophotometric enzyme-coupled assay that measures the inorganic phosphate produced in the reaction. Eleven different protein phosphatases, many previously suggested to be involved in ERK2 regulation, were compared, including tyrosine-specific phosphatases (PTP1B, CD45, and HePTP), dual specificity MAPK phosphatases (VHR, MKP3, and MKP5), and Ser/Thr protein phosphatases (PP1, PP2A, PP2B, PP2C alpha, and lambda PP). The results provide biochemical evidence that protein phosphatases display exquisite specificity in their substrate recognition and implicate HePTP, MKP3, and PP2A as ERK2 phosphatases. The fact that ERK2 inactivation could be carried out by multiple specific phosphatases shows that signals can be integrated into the pathway at the phosphatase level to determine the cellular response to external stimuli. Important insights into the roles of various protein phosphatases in ERK2 kinase signaling are obtained, and further analysis of the mechanism by which different protein phosphatases recognize and inactivate MAPKs will increase our understanding of how this kinase family is regulated.  相似文献   

3.
Protein phosphorylation plays central roles in a wide variety of signal transduction pathways and most phosphorylated proteins contain multi-phosphorylated sites. PPM1 type Ser/Thr protein phosphatase family is known to show rigid substrate specificity unlike other Ser/Thr phosphatase PPP family including PP1, PP2A and PP2B. PPM1 type phosphatases are reported to play important roles in growth regulation and in cellular stress signalling. In this study, we developed a phosphatase assay of PPM1D using phosphatase motif-specific antibody. PPM1D is a member of PPM1 type Ser/Thr phosphatase and known to dephosphorylate Ser(P)-Gln sequence. The gene amplification and overexpression of PPM1D were reported in many human cancers. We generated the monoclonal antibody specific for the Ser(P)-Gln sequence, named 3G9-H11. The specificity of this method using ELISA enables the convenient measurement of the dephosphorylation level of only PPM1D target residues of substrate peptides with multiple phosphorylated sites in the presence of multiple phosphatases. In addition, the antibody was applicable to immunoblotting assay for PPM1D function analysis. These results suggested that this method should be very useful for the PPM1D phosphatase assay, including high-throughput analysis and screening of specific inhibitors as anti-cancer drugs. The method using phosphatase motif-specific antibody can be applied to other PPM1 phosphatase family.  相似文献   

4.
Type 2C Ser/Thr phosphatases are a remarkable class of protein phosphatases, which are conserved in eukaryotes and involved in a large variety of functional processes. Unlike in other Ser/Thr phosphatases, the catalytic polypeptide is not usually associated with regulatory subunits, and functional specificity is achieved by encoding multiple isoforms. For fungi, most information comes from the study of type 2C protein phosphatase (PP2C) enzymes in Saccharomyces cerevisiae, where seven PP2C-encoding genes (PTC1 to -7) with diverse functions can be found. More recently, data on several Candida albicans PP2C proteins became available, suggesting that some of them can be involved in virulence. In this work we review the available literature on fungal PP2Cs and explore sequence databases to provide a comprehensive overview of these enzymes in fungi.  相似文献   

5.
Dual-specificity protein phosphatases (DSPs) dephosphorylate proteins at Ser/Thr and Tyr. FYVE domain is a double zinc finger motif which specifically binds phosphatidylinositol(3)-phosphate. Here, we report a novel dual specificity phosphatase that contains a FYVE domain at the C-terminus. We designate the protein FYVE-DSP1. Molecular cloning yielded three isoforms of the enzyme presumably derived from alternate RNA splicing. Sequence alignment revealed that the catalytic phosphatase domain of FYVE-DSP1 closely resembled that of myotubularin, while its FYVE domain has all the conserved amino acid residues found in other proteins of the same family. Recombinant FYVE-DSP1 is partitioned in both cytosolic and membrane fractions. It dephosphorylates proteins phosphorylated on Ser, Thr, and Tyr residues and low molecular weight phosphatase substrate para-nitrophenylphosphate. It shows typical characteristics of other DSPs and protein tyrosine phosphatases (PTPs). These include inhibition by sodium vanadate and pervanadate, pH dependency, and inactivation by mutation of the key cysteinyl residue at the phosphatase signature motif. Finally, PCR analyses demonstrated that FYVE-DSP1 is widely distributed in human tissues but different spliced forms expressed differently.  相似文献   

6.
MAP kinases (MAPKs) are enzymes directly involved in the control of cellular homeostasis in response to external cues, from differentiation and developmental processes to cell transformation. The activation status of MAPKs, both in magnitude and in duration, reflects the balance of phosphorylation at their Thr and Tyr regulatory residues by specific MAPK kinases and their dephosphorylation by inactivating protein serine/threonine phosphatases (PPs) and protein tyrosine phosphatases (PTPs). The dephosphorylation of MAPKs by PTPs relies on molecular docking between the two enzymes at specific interaction sites. Here we outline a one-step method to identify ERK1/2 and p38α mutations that prevent binding and inactivation by PTPs (tyrosine- or dual-specificity phosphatases) based on the use of anti-pTyr antibodies and cell lysis buffers lacking or containing the broad PTP inhibitor sodium orthovanadate (Na3VO4).  相似文献   

7.
8.
9.
Bacteria usually use two-component systems for signal transduction, while eukaryotic organisms employ Ser/Thr and Tyr kinases and phosphatases for the same purpose. Many prokaryotes turn out to harbor Ser/Thr and Tyr kinases, Ser/Thr and Tyr phosphatases, and their accessory components as well. The sequence determination of the genome of the cyanobacterium Synechocystis sp. strain PCC 6803 offers the possibility to survey the extent of such molecules in a prokaryotic organism. This cyanobacterium possesses seven Ser/Thr kinases, seven Ser/Thr and Tyr phosphatases, one protein kinase interacting protein, one protein kinase regulatory subunit and several WD40-repeat-containing proteins. The majority of the protein phosphatases presented in this study were previously reported as hypothetical proteins. We analyze here the structure and genetic organization of these ORFs in the hope of providing a guidance for their functional analysis. Unlike their eukaryotic counterparts, many of these genes are clustered on the chromosome, and this genetic organization offers the opportunity to study their possible interaction. In several cases, genes of two-component transducers are found within the same cluster as those encoding a Ser/Thr kinase or a Ser/Thr phosphatase; the implication for signal transduction mechanism will be discussed.  相似文献   

10.
Protein phosphatase M family (PPM; Mg2+-dependent protein phosphatases), which specifically dephosphorylates serine/threonine residues, consists of pyruvate dehydrogenase phosphatases, SpoIIE, adenylate cyclase and protein phosphatase type 2Cs (PP2Cs). To identify Candida albicans PP2Cs, the archetype of the PPM Ser/Thr phosphatases, we thoroughly searched the public C. albicans genome database and identified seven PP2C members. One of the PP2Cs in C. albicans, designated as CaPTC8 gene, represents a new member of PP2C genes. Northern blot analysis showed that the expression of CaPTC8 was positively responsive to high osmolarity, temperature or serum-stimulated filamentous growth. Gene disruption further demonstrated that deletion of CaPTC8 gene caused the defect of hyphal formation. Sequence analysis revealed that two conserved amino acids His and Asn in the prototypical members of the PPM family were substituted by Val and Asp in the PTC8p-like proteins. In addition, posterior analysis for site-specific profile showed that seven more sites are under the selection of functional divergence between these two groups of proteins. Three-dimensional homology modeling illustrated the signatures of the two groups in the conserved catalytic region of the protein phosphatases. Hence, CaPTC8 plays a role in stress responses and is required for the yeast-hyphal transition, and the CaPTC8-related genes are evolutionarily conserved. The phylogenetic relationships of all members of the PPM family strongly support the existence of a distinct and new subfamily of the PP2C-related proteins, PP2CR.  相似文献   

11.
The protein phosphatase 2C (PP2C) family represents one of the four major protein Ser/Thr phosphatase activities in mammalian cells and contains at least 13 distinct gene products. Although PP2C family members regulate a variety of cellular functions, mechanisms of regulation of their activities are largely unknown. Here, we show that PP2Czeta, a PP2C family member that is enriched in testicular germ cells, is phosphorylated by c-Jun NH 2-terminal kinase (JNK) but not by p38 in vitro. Mass spectrometry and mutational analyses demonstrated that phosphorylation occurs at Ser (92), Thr (202), and Thr (205) of PP2Czeta. Phosphorylation of these Ser and Thr residues of PP2Czeta ectopically expressed in 293 cells was enhanced by osmotic stress and was attenuated by a JNK inhibitor but not by p38 or MEK inhibitors. Phosphorylation of PP2Czeta by TAK1-activated JNK repressed its phosphatase activity in cells, and alanine mutation at Ser (92) but not at Thr (202) or Thr (205) suppressed this inhibition. Taken together, these results suggest that specific phosphorylation of PP2Czeta at Ser (92) by stress-activated JNK attenuates its phosphatase activity in cells.  相似文献   

12.
We have identified a new homologue of protein phosphatase type 1 from Plasmodium falciparum, designated PfPP1, which shows 83-87% sequence identity with yeast and mammalian PP1s at the amino acid level. The PfPP1 sequence is strikingly different from all other P. falciparum Ser/Thr phosphatases cloned so far. The deduced 304 amino acid sequence revealed the signature sequence of Ser/Thr phosphatase LRGNHE, and two putative protein kinase C and five putative casein kinase II phosphorylation sites. Calyculin A, a potent inhibitor of Ser/Thr phosphatase 1 and 2A showed hyperphosphorylation of a 51kDa protein among other parasite proteins. Okadaic acid on the other hand, was without any effect suggesting that PP1 activity might predominate over PP2A activity in intra-erythrocytic P. falciparum. Complementation studies showed that PfPP1 could rescue low glycogen phenotype of Saccharomyces cerevisiae glc7 (PP1) mutant, strongly suggesting functional interaction of PfPP1 and yeast proteins involved in glycogen metabolism.  相似文献   

13.
Protein phosphorylation plays critical roles in many regulatory mechanisms controlling cell activities and thus involved in various diseases. The cellular equilibrium of phosphorylation is regulated through the actions of protein kinases and phosphatases. Therefore, these regulatory proteins have emerged as promising targets for drug development. In this study, we screened protein tyrosine phosphatases (PTPs) by in vitro phosphatase assays to identify PTPs that are inhibited by 8-hydroxy-7-(6-sulfonaphthalen-2-yl)diazenyl-quinoline-5-sulfonic acid (NSC-87877), a potent inhibitor of SHP-1 and SHP-2 PTPs. Phosphatase activity of dual-specificity protein phosphatase 26 (DUSP26) was decreased by the inhibitor in a dose-dependent manner. Kinetic studies with NSC-87877 and DUSP26 revealed a competitive inhibition. NSC-87877 effectively inhibited DUSP26-mediated dephosphorylation of p38, a member of mitogen-activated protein kinase (MAPK) family. Since DUSP26 is involved in survival of anaplastic thyroid cancer (ATC) cells, NSC-87877 could be a therapeutic reagent for treating ATC.  相似文献   

14.
Stress-activated protein kinase (SAPK) signaling plays essential roles in eliciting adequate cellular responses to stresses and proinflammatory cytokines. SAPK pathways are composed of three successive protein kinase reactions. The phosphorylation of SAPK signaling components on Ser/Thr or Thr/Tyr residues suggests the involvement of various protein phosphatases in the negative regulation of these systems. Accumulating evidence indicates that three families of protein phosphatases, namely the Ser/Thr phosphatases, the Tyr phosphatases and the dual specificity Ser/Thr/Tyr phosphatases regulate these pathways, each mediating a distinct function. Differences in substrate specificities and regulatory mechanisms for these phosphatases form the molecular basis for the complex regulation of SAPK signaling. Here we describe the properties of the protein phosphatases responsible for the regulation of SAPK signaling pathways.  相似文献   

15.
Bhaduri A  Sowdhamini R 《Gene》2006,366(2):246-255
Intricate molecular signalling within cellular environment is manifested through phosphorylation of proteins. Regulation of the phosphorylation state is executed through complex networking among kinases and their biochemical antagonists, the protein phosphatases. Protein dephosphorylation in eukaryotic systems is largely performed through four structurally distinct Ser/Thr and Tyr O-protein phosphatase superfamilies. 555 O-protein phosphatases, belonging to the four distinct families, could be identified using sensitive sequence search techniques across five eukaryotic model organisms (yeast, fly, worm, mouse and humans). These phosphatases could be grouped into 49 subfamilies associated with distinct domain architecture and discrete biochemical function. Only five of the architectures are shared across the five eukaryotic genomes. Interestingly, the number of occurrence of tyrosine phosphatases is correlated to the complexity of the genome. Analysis of domain architectures suggests amenability of the tyrosine phosphatases to occur in complex architectures unlike Ser/Thr phosphatases. Domain duplication and shuffling is shown as the customary mechanism for the evolution of the phosphatases. Several architectures are common between humans and other genomes, which are probably non-linearly inherited in humans or specifically lost in several others.  相似文献   

16.
FTDP-17 missense tau mutations: G272V, P301L, V337M and R406W promote tau phosphorylation in human and transgenic mice brains by interfering with the tau phosphorylation/dephosphorylation balance. The effect of FTDP-17 mutations on tau phosphorylation by different kinases has been studied previously. However, it is not known how various FTDP-17 mutations affect tau dephosphorylation by phosphoprotein phosphatases. In this study we have observed that when transfected into HEK-293 cells, tau is phosphorylated on various sites that are also phosphorylated in diseased human brains. When transfected cells are lysed and incubated, endogenously phosphorylated tau is dephosphorylated by cellular protein phosphatase 1 (PP1), phosphatase 2A (PP2A) and phosphatase 2B (PP2B), which are also present in the lysate. By using this assay and specific inhibitors of PP1, PP2A and PP2B, we have observed that the G272V mutation promotes tau dephosphorylation by PP2A at Ser(396/404), Ser(235), Thr(231), Ser(202/205) and Ser(214) and by PP2B at Ser(214) but inhibits dephosphorylation by PP2B at Ser(396/404). The P301L mutation promotes tau dephosphorylation at Thr(231) by PP1 and at Ser(396/404), Thr(231), Ser(235) and Ser(202/205) by PP2A but inhibits dephosphorylation at Ser(214) by PP2B. The V337M mutation promotes tau dephosphorylation at Ser(235), Thr(231) and Ser(202/205) by PP2A and at Ser(202/205) by PP2B whereas the R406W mutation promotes tau dephosphorylation at Ser(396/404) by PP1, PP2A and PP2B but inhibits dephosphorylation at Ser(202/205) and Ser(235) by PP1 and PP2A, respectively. Our results indicate that each FTDP-17 tau mutation not only site-specifically inhibits tau dephosphorylation on some sites but also promotes dephosphorylation by phosphatases on other sites.  相似文献   

17.
Protein phosphatase 2C (PP2C) function in higher plants   总被引:18,自引:0,他引:18  
In the past few years, molecular cloning studies have revealed the primary structure of plant protein serine/threonine phosphatases. Two structurally distinct families, the PP1/PP2A family and the PP2C family, are present in plants as well as in animals. This review will focus on the plant PP2C family of protein phosphatases. Biochemical and molecular genetic studies in Arabidopsis have identified PP2C enzymes as key players in plant signal transduction processes. For instance, the ABI1/ABI2 PP2Cs are central components in abscisic acid (ABA) signal transduction. Arabidopsis mutants containing a single amino acid exchange in ABI1 or ABI2 show a reduced response to ABA. Another member of the PP2C family, kinase-associated protein phosphatase (KAPP), appears to be an important element in some receptor-like kinase (RLK) signalling pathways. Finally, an alfalfa PP2C acts as a negative regulator of a plant mitogen-activated protein kinase (MAPK) pathway. Thus, the plant PP2Cs function as regulators of various signal transduction pathways.  相似文献   

18.
The protein phosphatase encoded by bacteriophage lambda (lambda PP) belongs to a family of Ser/Thr phosphatases (Ser/Thr PPases) that includes the eukaryotic protein phosphatases 1 (PP1), 2A (PP2A), and 2B (calcineurin). These Ser/Thr PPases and the related purple acid phosphatases (PAPs) contain a conserved phosphoesterase sequence motif that binds a dinuclear metal center. The mechanisms of phosphoester hydrolysis by these enzymes are beginning to be unraveled. To utilize lambda PP more effectively as a model for probing the catalytic mechanism of the Ser/Thr PPases, we have determined its crystal structure to 2.15 A resolution. The overall fold resembles that of PP1 and calcineurin, including a conserved beta alpha beta alpha beta structure that comprises the phosphoesterase motif. Substrates and inhibitors probably bind in a narrow surface groove that houses the active site dinuclear Mn(II) center. The arrangement of metal ligands is similar to that in PP1, calcineurin, and PAP, and a bound sulfate ion is present in two novel coordination modes. In two of the three molecules in the crystallographic asymmetric unit, sulfate is coordinated to Mn2 in a monodentate, terminal fashion, and the two Mn(II) ions are bridged by a solvent molecule. Two additional solvent molecules are coordinated to Mn1. In the third molecule, the sulfate ion is triply coordinated to the metal center with one oxygen coordinated to both Mn(II) ions, one oxygen coordinated to Mn1, and one oxygen coordinated to Mn2. The sulfate in this coordination mode displaces the bridging ligand and one of the terminal solvent ligands. In both sulfate coordination modes, the sulfate ion is stabilized by hydrogen bonding interactions with conserved arginine residues, Arg 53 and Arg 162. The two different active site structures provide models for intermediates in phosphoester hydrolysis and suggest specific mechanistic roles for conserved residues.  相似文献   

19.
Myxococcus xanthus is a Gram-negative bacterium with a complex life cycle that includes vegetative swarming on rich medium and, upon starvation, aggregation to form fruiting bodies containing spores. Both of these behaviours require multiple Ser/Thr protein kinases. In this paper, we report the first Ser/Thr protein phosphatase gene, pph1, from M. xanthus. DNA sequence analysis of pph1 indicates that it encodes a protein of 254 residues (Mr = 28 308) with strong homology to eukaryotic PP2C phosphatases and that it belongs to a new group of bacterial protein phosphatases that are distinct from bacterial PP2C phosphatases such as RsbU, RsbX and SpoIIE. Recombinant His-tagged Pph1 was purified from Escherichia coli and shown to have Mn2+ or Mg2+ dependent, okadaic acid-resistant phosphatase activity on a synthetic phosphorylated peptide, RRA(pT)VA, indicating that Pph1 is a PP2C phosphatase. Pph1-expression was observed under both vegetative and developmental conditions, but peaked during early aggregation. A pph1 null mutant showed defects during late vegetative growth, swarming and glycerol spore formation. Under starvation-induced developmental conditions, the mutant showed reduced aggregation and failure to form fruiting bodies with viable spores. Using the yeast two-hybrid system, we have observed a strong interaction between Pph1 and the M. xanthus protein kinase Pkn5, a negative effector of development. These results suggest a functional link between a Pkn2-type protein kinase and a PP2C phosphatase.  相似文献   

20.
This review presents the accumulating evidence for the roles of protein phosphatase 6 (PP6) in cell cycle, DNA damage repair, inflammatory signaling, lymphocyte development, virus infection, tumor formation/progression, cell/tissue size, and non-coding RNA-mediated regulation. PP6 is an evolutionarily conserved and ubiquitously expressed Ser/Thr protein phosphatase most closely related to protein phosphatase 2A (PP2A) and protein phosphatase 4 (PP4). Although abundantly expressed in cells with multiple roles in cellular signaling, PP6 has received less attention than its close relative PP2A. Many studies used okadaic acid as “PP2A” inhibitor, even though these toxins also inhibit PP6 activity, so effects of the inhibitor could have been due to inhibition of both phosphatases. PP6 has its own dedicated subunits that assemble into heterotrimers that presumably fulfill its discrete functions in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号