首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Varicella-zoster virus (VZV) encodes within its unique long region a gene product with protein kinase motifs. In a previous study, we demonstrated that immunoprecipitated VZV open reading frame (ORF) 47 protein was associated with a functional protein kinase activity, on the basis of its ability to both autophosphorylate and phosphorylate artificial substrates. To further define potential substrates of ORF 47-associated protein kinase, we analyzed individual viral phosphoproteins to determine whether any were modified by the viral protein kinase. These candidates included gene products of VZV ORFs 4, 61, 62, and 63, which are homologs of herpes simplex virus type 1 (HSV-1) immediate-early proteins. Each of the above VZV proteins was coimmunoprecipitated with ORF 47 kinase, and the immune complex was incubated in a protein kinase assay. Under these conditions, only the VZV immediate-early ORF 62 protein was phosphorylated by ORF 47-associated protein kinase. The specificity of this phosphorylation event was analyzed by a competition assay in which a recombinant ORF 47 protein lacking enzymatic activity was able to reduce the amount of phosphorylation of ORF 62 protein by VZV ORF 47-associated kinase. To provide an additional evaluation of specificity, the experiment was repeated with [32P]GTP instead of [32P]ATP, because the VZV ORF 47 kinase has the distinctive property of using GTP as a phosphate donor. Again the ORF 62 substrate was phosphorylated. In summary, the VZV ORF 47-associated protein kinase (the HSV-1 UL13 homolog) catalyzed the in vitro phosphorylation of the VZV ORF 62 protein, the homolog of the HSV-1 ICP4 regulatory protein.  相似文献   

2.
To investigate the role of varicella-zoster virus (VZV) open reading frame 47 (ORF47) protein kinase during infection, a VZV mutant was generated in which two contiguous stop codons were introduced into ORF47, thus eliminating expression of the ORF47 kinase. ORF47 kinase was not essential for the growth of VZV in cultured cells, and the growth rate of the VZV mutant lacking ORF47 protein was indistinguishable from that of parental VZV. Nuclear extracts from cells infected with parental VZV contained several phosphorylated proteins which were not detected in extracts from cells infected with the ORF47 mutant. The herpes simplex virus type 1 (HSV-1) UL13 protein (the homolog of VZV ORF47 protein) is responsible for the posttranslational processing associated with phosphorylation of HSV-1 ICP22 (the homolog of VZV ORF63 protein). Immunoprecipitation of 32P-labeled proteins from cells infected with parental virus and those infected with ORF47 mutant virus yielded similar amounts of the VZV phosphoproteins encoded by ORF4, ORF62, ORF63, and ORF68 (VZV gE), and the electrophoretic migration of these proteins was not affected by the lack of ORF47 kinase. Therefore, while the VZV ORF47 protein is capable of phosphorylating several cellular or viral proteins, it is not required for phosphorylation of the ORF63 protein in virus-infected cells.  相似文献   

3.
4.
T C Heineman  K Seidel    J I Cohen 《Journal of virology》1996,70(10):7312-7317
Varicella-zoster virus (VZV) open reading frames (ORFs) 47 and 66 encode proteins that are homologous to a family of eukaryotic serine-threonine kinases. Prior studies showed that the VZV ORF47 protein has kinase activity in vitro and is dispensable for replication in cultured cells. To examine the role of the ORF66 protein during infection, we constructed VZV recombinants that are unable to express either the ORF66 protein (ROka 66S) or both the ORF47 and ORF66 proteins (ROka 47S/66S). VZV unable to express ORF66 grew to titers similar to those of the parental VZV (ROka) in vitro; however, VZV lacking both ORF66 and ORF47 grew to titers lower than those of ROka. Nuclear extracts from ROka 66S- or ROka 47S-infected cells showed a 48-kDa phosphoprotein(s); a phosphoprotein with a similar size was not present in nuclear extracts from ROka 47S/66S-infected cells. To determine the role of the ORF66 protein in the phosphorylation of specific VZV-encoded proteins, we immunoprecipitated known VZV phosphoproteins (ORF4, ORF62, ORF63, and ORF68 proteins) from nuclear extracts of phosphate-labeled cells infected with ROka, ROka 66S, or ROka 47S/66S. Each of the VZV phosphoproteins was phosphorylated to a similar extent in the presence or absence of either the ORF66 protein or both the ORF66 and ORF47 proteins. From these studies we conclude (i) neither ORF66 alone nor ORF66 and ORF47 in combination are essential for VZV growth in cultured cells, (ii) ORF66 either is a protein kinase or induces protein kinase activity during infection, and (iii) the VZV phosphoproteins encoded by ORF4, ORF62, ORF63, and ORF68 do not require either ORF66 alone or ORF66 and ORF47 for phosphorylation in vitro.  相似文献   

5.
6.
Kenyon TK  Cohen JI  Grose C 《Journal of virology》2002,76(21):10980-10993
Like all alphaherpesviruses, varicella-zoster virus (VZV) infection proceeds by both cell-cell spread and virion production. Virions are enveloped within vacuoles located near the trans-Golgi network (TGN), while in cell-cell spread, surface glycoproteins fuse cells into syncytia. In this report, we delineate a potential role for serine/threonine phosphorylation of the cytoplasmic tail of the predominant VZV glycoprotein, gE, in these processes. The fact that VZV gE (formerly called gpI) is phosphorylated has been documented (E. A. Montalvo and C. Grose, Proc. Natl. Acad. Sci. USA 83:8967-8971, 1986), although respective roles of viral and cellular protein kinases have never been delineated. VZV ORF47 is a viral serine protein kinase that recognized a consensus sequence similar to that of casein kinase II (CKII). During open reading frame 47 (ORF47)-specific in vitro kinase assays, ORF47 phosphorylated four residues in the cytoplasmic tail of VZV gE (S593, S595, T596, and T598), thus modifying the known phosphofurin acidic cluster sorting protein 1 domain. CKII phosphorylated gE predominantly on the two threonine residues. In wild-type-virus-infected cells, where ORF47-mediated phosphorylation predominated, gE endocytosed and relocalized to the TGN. In cells infected with a VZV ORF47-null mutant, internalized VZV gE recycled to the plasma membrane and did not localize to the TGN. The mutant virus also formed larger syncytia than the wild-type virus, linking CKII-mediated gE phosphorylation with increased cell-cell spread. Thus, ORF47 and CKII behaved as "team players" in the phosphorylation of VZV gE. Taken together, the results showed that phosphorylation of VZV gE by ORF47 or CKII determined whether VZV infection proceeded toward a pathway likely involved with either virion production or cell-cell spread.  相似文献   

7.
Varicella-zoster virus (VZV) open reading frame (ORF) 62 potentially encodes a protein with considerable amino acid homology to the herpes simplex virus (HSV) immediate-early regulatory polypeptide ICP4 (or IE3). To identify and characterize its protein product(s) (IE62), we used a rabbit antiserum prepared against a synthetic peptide corresponding to the C-terminal 13 amino acids of the predicted protein. This antiserum reacted with phosphorylated polypeptides of 175 to 180 kDa that were made in VZV-infected cells and in cells infected with a vaccinia virus recombinant expressing IE62, but not in control-infected cells, confirming its specificity and reactivity to the IE62 protein. The antiserum recognized a 175-kDa polypeptide in purified virions that comigrated with a major structural protein. Comparison of this reactivity with that of an antipeptide antiserum directed against the VZV ORF 10 product (homologous to the HSV major structural protein VP16) indicates similar levels of ORF 62 and ORF 10 polypeptides in VZV virions. In contrast, antipeptide antiserum directed against the VZV ORF 29 product, the homolog of the HSV major DNA-binding protein, failed to recognize any protein in our virion preparations. Treatment of virions with detergents that disrupt the virion envelope did not dissociate IE62 from the nucleocapsid-tegument structure of the virion. Differential sensitivity of VZV virion IE62 to trypsin digestion in the presence or absence of Triton X-100 indicates that IE62 is protected from trypsin degradation by the virus envelope; since it is not a nucleocapsid protein, we conclude that it is part of the tegument. Finally, we show that the virion 175-kDa protein either can autophosphorylate or is a major substrate in vitro for virion-associated protein kinase activity.  相似文献   

8.
Varicella-zoster virus (VZV) encodes five gene products that do not have homologs in herpes simplex virus. One of these genes, VZV open reading frame 32 (ORF32), is predicted to encode a protein of 16 kDa. VZV ORF32 protein was shown to be phosphorylated and located in the cytosol of virus-infected cells. Antibody to ORF32 protein immunoprecipitated 16- and 18-kDa phosphoproteins from VZV-infected cells. Since VZV encodes two protein kinases that might phosphorylate ORF32 protein, immunoprecipitations were performed with cells infected with VZV mutants unable to express either of the viral protein kinases. Cells infected with VZV unable to express the ORF66 protein kinase contained both the 16- and 18-kDa ORF32 phosphoproteins; however, cells infected with the VZV ORF47 protein kinase mutant showed only the 16-kDa ORF32 phosphoprotein. Treatment of [35S]methionine-labeled proteins with calf intestine alkaline phosphatase resulted in a decrease in size of the ORF32 proteins from 16 and 18 kDa to 15 and 17 kDa, respectively. VZV unable to express ORF32 protein replicated in human melanoma cells to titers similar to those seen with parental virus; however, VZV unable to express ORF32 was impaired for replication in U20S osteosarcoma cells. Thus, VZV ORF32 protein is posttranslationally modified by the ORF47 protein kinase. Since the VZV ORF47 protein kinase has recently been shown to be critical for replication in human fetal skin and lymphocytes, its ability to modify the ORF32 protein suggests that the latter protein may have a role for VZV replication in human tissues.  相似文献   

9.
10.
To investigate the role of the ORF47 protein kinase of varicella-zoster virus (VZV), we constructed VZV recombinants with targeted mutations in conserved motifs of ORF47 and a truncated ORF47 and characterized these mutants for replication, phosphorylation, and protein-protein interactions in vitro and for infectivity in human skin xenografts in the SCID-hu mouse model in vivo. Previous experiments showed that ROka47S, a null mutant that makes no ORF47 protein, did not replicate in skin in vivo (J. F. Moffat, L. Zerboni, M. H. Sommer, T. C. Heineman, J. I. Cohen, H. Kaneshima, and A. M. Arvin, Proc. Natl. Acad. Sci. USA 95:11969-11974, 1998). The construction of VZV recombinants with targeted ORF47 mutations made it possible to assess the effects on VZV infection of human skin xenografts of selectively abolishing ORF47 protein kinase activity. ORF47 mutations that resulted in a C-terminal truncation or disrupted the DYS kinase motif eliminated ORF47 kinase activity and were associated with extensive nuclear retention of ORF47 and IE62 proteins in vitro. Disrupting ORF47 kinase function also resulted in a marked decrease in VZV replication and cutaneous lesion formation in skin xenografts in vivo. However, infectivity in vivo was not blocked completely as long as the capacity of ORF47 protein to bind IE62 protein was preserved, a function that we identified and mapped to the N-terminal domain of ORF47 protein. These experiments indicate that ORF47 kinase activity is of critical importance for VZV infection and cell-cell spread in human skin in vivo but suggest that it is the formation of complexes between ORF47 and IE62 proteins, both VZV tegument components, that constitutes the essential contribution of ORF47 protein to VZV replication in vivo.  相似文献   

11.
12.
Varicella-zoster virus (VZV) open reading frame 63 (ORF63), located between nucleotides 110581 and 111417 in the internal repeat region, encodes a nuclear phosphoprotein which is homologous to herpes simplex virus type 1 (HSV-1) ICP22 and is duplicated in the terminal repeat region as ORF70 (nucleotides 118480 to 119316). We evaluated the role of ORFs 63 and 70 in VZV replication, using recombinant VZV cosmids and PCR-based mutagenesis to make single and dual deletions of these ORFs. VZV was recovered within 8 to 10 days when cosmids with single deletions were transfected into melanoma cells along with the three intact VZV cosmids. In contrast, VZV was not detected in transfections carried out with a dual deletion cosmid. Infectious virus was recovered when ORF63 was cloned into a nonnative AvrII site in this cosmid, confirming that failure to generate virus was due to the dual ORF63/70 deletion and that replication required at least one gene copy. This requirement may be related to our observation that ORF63 interacts directly with ORF62, the major immediate-early transactivating protein of VZV. ORF64 is located within the inverted repeat region between nucleotides 111565 and 112107; it has some homology to the HSV-1 Us10 gene and is duplicated as ORF69 (nucleotides 117790 to 118332). ORF64 and ORF69 were deleted individually or simultaneously using the VZV cosmid system. Single deletions of ORF64 or ORF69 yielded viral plaques with the same kinetics and morphology as viruses generated with the parental cosmids. The dual deletion of ORF64 and ORF69 was associated with an abnormal plaque phenotype characterized by very large, multinucleated syncytia. Finally, all of the deletion mutants that yielded recombinants retained infectivity for human T cells in vitro and replicated efficiently in human skin in the SCIDhu mouse model of VZV pathogenesis.  相似文献   

13.
Several functions have been attributed to the serine/threonine protein kinase encoded by open reading frame 66 (ORF66) of varicella-zoster virus (VZV), including modulation of the apoptosis and interferon pathways, down-regulation of major histocompatibility complex class I cell surface expression, and regulation of IE62 localization. The amino acid sequence of the ORF66 protein contains a recognizable conserved kinase domain. Point mutations were introduced into conserved protein kinase motifs to evaluate their importance to ORF66 protein functions. Two substitution mutants were generated, including a G102A substitution, which blocked autophosphorylation and altered IE62 localization, and an S250P substitution, which had no effect on either autophosphorylation or IE62 localization. Both kinase domain mutants grew to titers equivalent to recombinant parent Oka (pOka) in vitro. pOka66G102A had slightly reduced growth in skin, which was comparable to the reduction observed when ORF66 translation was prevented by stop codon insertions in pOka66S. In contrast, infection of T-cell xenografts with pOka66G102A was associated with a significant decrease in infectious virus production equivalent to the impaired T-cell tropism found with pOka66S infection of T-cell xenografts in vivo. Disrupting kinase activity with the G102A mutation did not alter IE62 cytoplasmic localization in VZV-infected T cells, suggesting that decreased T-cell tropism is due to other ORF66 protein functions. The G102A mutation reduced the antiapoptotic effects of VZV infection of T cells. These experiments indicate that the T-cell tropism of VZV depends upon intact ORF66 protein kinase function.  相似文献   

14.
The immediate-early 63-kDa (IE63) protein of varicella-zoster virus (VZV) is a phosphoprotein encoded by open reading frame (ORF) ORF63/ORF70. To identify functional domains, 22 ORF63 mutations were evaluated for effects on IE63 binding to the major VZV transactivator, IE62, and on IE63 phosphorylation and nuclear localization in transient transfections, and after insertion into the viral genome with VZV cosmids. The IE62 binding site was mapped to IE63 amino acids 55 to 67, with R59/L60 being critical residues. Alanine substitutions within the IE63 center region showed that S165, S173, and S185 were phosphorylated by cellular kinases. Four mutations that changed two putative nuclear localization signal (NLS) sequences altered IE63 distribution to a cytoplasmic/nuclear pattern. Only three of 22 mutations in ORF63 were compatible with recovery of infectious VZV from our cosmids, but infectivity was restored by inserting intact ORF63 into each mutated cosmid. The viable IE63 mutants had a single alanine substitution, altering T171, S181, or S185. These mutants, rOKA/ORF63rev[T171], rOKA/ORF63rev[S181], and rOKA/ORF63rev[S185], produced less infectious virus and had a decreased plaque phenotype in vitro. ORF47 kinase protein and glycoprotein E (gE) synthesis was reduced, indicating that IE63 contributed to optimal expression of early and late gene products. The three IE63 mutants replicated in skin xenografts in the SCIDhu mouse model, but virulence was markedly attenuated. In contrast, infectivity in T-cell xenografts was not altered. Comparative analysis suggested that IE63 resembled the herpes simplex virus type 1 U(S)1.5 protein, which is expressed colinearly with ICP22 (U(S)1). In summary, most mutations of ORF63 made with our VZV cosmid system were lethal for infectivity. The few IE63 changes that were tolerated resulted in VZV mutants with an impaired capacity to replicate in vitro. However, the IE63 mutants were attenuated in skin but not T cells in vivo, indicating that the contribution of the IE63 tegument/regulatory protein to VZV pathogenesis depends upon the differentiated human cell type which is targeted for infection within the intact tissue microenvironment.  相似文献   

15.
The protein product of varicella-zoster virus (VZV) ORF47 is a serine/threonine protein kinase and tegument component. Evaluation of two recombinants of the Oka strain, rOka47DeltaC, with a C-terminal truncation of ORF47, and rOka47D-N, with a point mutation in the conserved kinase motif, showed that ORF47 kinase function was necessary for optimal VZV replication in human skin xenografts in SCID mice but not in cultured cells. We now demonstrate that rOka47DeltaC and rOka47D-N mutants do not infect human T-cell xenografts. Differences in the growth of kinase-defective ORF47 mutants allowed an examination of requirements for VZV pathogenesis in skin and T cells in vivo. Although virion assembly was reduced and no virion transport to cell surfaces was observed, epidermal cell fusion persisted, and VZV polykaryocytes were generated by rOka47DeltaC and rOka47D-N in skin. Virion assembly was also impaired in vitro, but VZV-induced cell fusion continued to cause syncytia in cultured cells infected with rOka47DeltaC or rOka47D-N. Intracellular trafficking of envelope glycoprotein E and the ORF47 and IE62 proteins, components of the tegument, was aberrant without ORF47 kinase activity. In summary, normal VZV virion assembly appears to require ORF47 kinase function. Cell fusion was induced by ORF47 mutants in skin, and cell-cell spread occurred even though virion formation was deficient. VZV-infected T cells do not undergo cell fusion, and impaired virion assembly by ORF47 mutants was associated with a complete elimination of T-cell infectivity. These observations suggest a differential requirement for cell fusion and virion formation in the pathogenesis of VZV infection in skin and T cells.  相似文献   

16.
The varicella-zoster virus (VZV) open reading frame 61 (ORF61) protein is thought to be the homolog of herpes simplex virus type 1 (HSV-1) ICP0, based on gene location and limited amino acid homology. However, HSV-1 ICP0 trans activates HSV-1 genes, while VZV ORF61 protein trans represses the function of VZV trans activators on VZV promoters in transient expression assays. To investigate the functional relatedness of HSV-1 ICP0 and VZV ORF61 protein, we established Vero and MeWo cell lines which stably express VZV ORF61 under the control of a metallothionein promoter and performed complementation studies with an HSV-1 ICP0 deletion mutant (7134). Mutant 7134 is impaired for plaque formation and replication at a low multiplicity of infection in cell culture, but these defects were complemented by up to 200-fold in Vero cell lines expressing VZV ORF61. Likewise, the efficiency of plaque formation was improved by up to 100-fold in MeWo cell lines expressing VZV ORF61. A cell line expressing another VZV immediate-early gene product (ORF62) was unable to complement mutant 7134. HSV-1 mutants which are deleted for other HSV-1 immediate-early gene products (ICP4, ICP27) were unable to grow in VZV ORF61-expressing cell lines. These results indicate that, despite marked differences in their sequences and in effects on their cognate promoters in transient expression assays, VZV ORF61 protein is the functional homolog of HSV-1 ICP0.  相似文献   

17.
J I Cohen  K Seidel 《Journal of virology》1994,68(12):7850-7858
Varicella-zoster virus (VZV) open reading frame 10 (ORF10) protein in the homolog of the herpes simplex virus type 1 (HSV-1) protein VP16. VZV ORF10 transactivates the VZV IE62 gene and is a tegument protein present in the virion. HSV-1 VP16, a potent transactivator of HSV-1 immediate-early genes and tegument protein, is essential for HSV-1 replication in vitro. To determine whether VZV ORF10 is required for viral replication in vitro, we constructed two VZV mutants which were unable to express ORF10. One mutant had a stop codon after the 61st codon of the ORF10 gene, and the other mutant was deleted for all but the last five codons of the gene. Both VZV mutants grew in cell culture to titers similar to that of the parental virus. To determine whether HSV-1 VP16 alters the growth of VZV, we constructed a VZV mutant in which VP16 was inserted in place of ORF10. Using immune electron microscopy, we found that HSV-1 VP16 was present in the tegument of the recombinant VZV virions. The VZV VP16 substitution mutant produced smaller plaques and grew to a lower titer than parental virus. Thus, VZV ORF10 is not required for growth of the virus in vitro, and substitution of HSV-1 VP16 for VZV ORF10 impairs the growth of VZV.  相似文献   

18.
Zhang Z  Rowe J  Wang W  Sommer M  Arvin A  Moffat J  Zhu H 《Journal of virology》2007,81(17):9024-9033
To efficiently generate varicella-zoster virus (VZV) mutants, we inserted a bacterial artificial chromosome (BAC) vector in the pOka genome. We showed that the recombinant VZV (VZV(BAC)) strain was produced efficiently from the BAC DNA and behaved indistinguishably from wild-type virus. Moreover, VZV's cell-associated nature makes characterizing VZV mutant growth kinetics difficult, especially when attempts are made to monitor viral replication in vivo. To overcome this problem, we then created a VZV strain carrying the luciferase gene (VZV(Luc)). This virus grew like the wild-type virus, and the resulting luciferase activity could be quantified both in vitro and in vivo. Using PCR-based mutagenesis, open reading frames (ORF) 0 to 4 were individually deleted from VZV(Luc) genomes. The deletion mutant viruses appeared after transfection into MeWo cells, except for ORF4, which was essential. Growth curve analysis using MeWo cells and SCID-hu mice indicated that ORF1, ORF2, and ORF3 were dispensable for VZV replication both in vitro and in vivo. Interestingly, the ORF0 deletion virus showed severely retarded growth both in vitro and in vivo. The growth defects of the ORF0 and ORF4 mutants could be fully rescued by introducing wild-type copies of these genes back into their native genome loci. This work has validated and justified the use of the novel luciferase VZV BAC system to efficiently generate recombinant VZV variants and ease subsequent viral growth kinetic analysis both in vitro and in vivo.  相似文献   

19.
The pathogenesis of varicella-zoster virus (VZV) involves a cell-associated viremia during which infectious virus is carried from sites of respiratory mucosal inoculation to the skin. We now demonstrate that VZV infection of T cells is associated with robust virion production and modulation of the apoptosis and interferon pathways within these cells. The VZV serine/threonine protein kinase encoded by ORF66 is essential for the efficient replication of VZV in T cells. Preventing ORF66 protein expression by stop codon insertion (pOka66S) impaired the growth of the parent Oka (pOka) strain in T cells in SCID-hu T-cell xenografts in vivo and reduced formation of VZV virions. The lack of ORF66 protein also increased the susceptibility of infected T cells to apoptosis and reduced the capacity of the virus to interfere with induction of the interferon (IFN) signaling pathway following exposure to IFN-gamma. However, preventing ORF66 protein expression only slightly reduced growth in melanoma cells in culture and did not diminish virion formation in these cells. The pOka66S virus showed only a slight defect in growth in SCID-hu skin implants compared with intact pOka. These observations suggest that the ORF66 kinase plays a unique role during infection of T cells and supports VZV T-cell tropism by contributing to immune evasion and enhancing survival of infected T cells.  相似文献   

20.
The varicella-zoster virus (VZV) open reading frame 10 (ORF10) protein is the homolog of the herpes simplex virus type 1 (HSV-1) protein VP16. These are two virion tegument proteins that have extensive amino acid sequence identity in their amino-terminal and middle domains. ORF10, however, lacks the acidic carboxy terminus which is critical for transactivation by VP16. Earlier studies showed that VZV ORF10 does not form a tertiary complex with the TAATGARAT regulatory element (where R is a purine) with which HSV-1 VP16 interacts, suggesting that ORF10 may not have transactivating ability. Using transient-expression assays, we show that VZV ORF10 is able to transactivate VZV immediate-early (IE) gene (ORF62) and HSV-1 IE gene (ICP4 and ICP0) promoters. Furthermore, cell lines stably expressing ORF10 complement the HSV-1 mutant in1814, which lacks the transactivating function of VP16, and enhance the de novo synthesis of infectious virus following transfection of HSV-1 virion DNA. These results indicate that ORF10, like its HSV-1 homolog VP16, is a transactivating protein despite the absence of sequences similar to the VP16 carboxy-terminal domain. The transactivating function of the VZV ORF10 tegument protein may be critical for efficient initiation of viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号