首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
DNA from a rat hippocampus cDNA library and sets of highly degenerate oligonucleotide primers directed toward conserved regions of previously cloned G-protein receptors were used in the polymerase chain reaction to selectively amplify and clone new members of this gene family. A human hippocampus cDNA library was screened with a 610 base pair fragment generated by PCR and a cDNA clone, H318/3, was isolated. The deduced amino acid sequence of this clone encoded a protein of 501 amino acids that showed strong sequence homology to previously cloned G-protein receptors. Nucleotide sequence analysis revealed clone H318/3 was 78% homologous to a rat alpha 1A adrenergic receptor with homology being 95% when comparisons were made in the region that lies between the first to the seventh transmembrane domains. Based on this high degree of sequence homology, we conclude that clone H318/3 represents a cDNA for a human alpha 1A adrenergic receptor.  相似文献   

4.
Estrogen-induced hamster kidney tumor model serves as a useful model to study the biochemical and molecular mechanisms of hormonal carcinogenesis. In this model, we have demonstrated an increased expression of estrogen receptor mRNA and protein in estrogen-treated kidneys and in estrogen-induced tumors. The sequence information for hamster estrogen receptor gene is not known and has been investigated in this study. A hamster uterus cDNA library was constructed and the 5'-region of the hamster estrogen receptor cDNA cloned from this library using polymerase chain reaction (PCR) methodology. Additionally, hamster kidney polyadenylated RNA was reverse transcribed and PCR amplified using primers that were designed based on maximum homology between mouse, rat and human estrogen receptor cDNAs. These PCR amplified fragments were cloned into plasmid vectors and clones with the expected size of the insert subjected to Southern blot analysis using human estrogen receptor cDNA as a probe. The positive clones on Southern blot analysis and the PCR amplified products from these clones were subjected to DNA sequence analysis. Using this strategy, a full length, 1978 bp hamster estrogen receptor cDNA has been cloned which shows 87% homology with human, 90% with rat and 91% with mouse estrogen receptor cDNA. The deduced amino acid shares 88% homology with human, and 93% with rat and mouse estrogen receptors. Hamster estrogen receptor domain C (DNA binding domain) shows a 100% homology with a similar domain from mouse, rat, human, pig, sheep, horse and chicken estrogen receptor (Genebank reference ID: AF 181077).  相似文献   

5.
We have screened an adult rat cerebellar cDNA library in search of novel protein tyrosine-kinase (PTK) cDNAs. A cDNA for a putative PTK, trkB, was cloned, and its sequence indicates that it is likely to be derived from a gene for a ligand-regulated receptor closely related to the human trk oncogene. Northern (RNA) analysis showed that the trkB gene is expressed predominantly in the brain and that trkB expresses multiple mRNAs, ranging from 0.7 to 9 kb. Hybridization of cerebral mRNAs with a variety of probes indicates that there are mRNAs encoding truncated trkB receptors. Two additional types of cDNA were isolated, and their sequences are predicted to encode two distinct C-terminally truncated receptors which have the complete extracellular region and transmembrane domain, but which differ in their short cytoplasmic tails.  相似文献   

6.
The peptides substance K and substance P evoke a variety of biological responses via distinct, guanosine-nucleotide-binding-regulatory-protein-coupled receptors. We have screened a murine genomic cosmid library using oligonucleotide probes and have isolated, cloned and characterized the substance K receptor and the substance P receptor genes. The coding portion of the substance K receptor gene consists of five exons distributed over 13 kbp. The substance P receptor gene is considerably larger than that of substance K (more than 30 kbp), however, the boundaries of the four exons that have been characterized in the substance P receptor gene correspond exactly to the homologous exons in the substance K receptor gene. To verify the identity of the isolated genes, we have cloned the corresponding cDNA by means of the polymerase chain reaction and we have expressed these cDNA species in Xenopus laevis oocytes. The ligand binding characteristics determined in this system pharmacologically confirm the identity of the two receptors. The deduced amino acid sequence of the mouse substance K receptor is 94% identical to the rat sequence and 85% identical to the bovine and human sequences. The mouse substance P receptor amino acid sequence is 99% identical to the rat sequence. The cloning of the murine substance K and substance P receptor genes should contribute substantially to the generation of in vivo models for the detailed analysis of the functional significance of these receptors.  相似文献   

7.
A cDNA encoding a putative African catfish (Clarias gariepinus) gonadal LH receptor (cfLH-R) has been cloned. Multiple sequence alignment of the deduced amino acid sequence revealed that the cfLH-R had the highest identity with vertebrate LH receptors (>50%). Overall sequence identity between the cfLH-R and the African catfish FSH receptor (cfFSH-R) is 47%. Sequence analysis of part of the cfLH-R gene revealed the presence of an intron typically found in other vertebrate LH-R genes. Abundant cfLH-R mRNA expression was detected in ovary and testis as well as in head-kidney (the adrenal homologue in fish). Other tissues, such as muscle, brain, cerebellum, stomach, heart, and seminal vesicles, also contained detectable cfLH-R mRNA. Transient expression of the cfLH-R in HEK-T 293 cells resulted in significantly increased basal cAMP levels in the absence of gonadotropic hormone. The cAMP levels could be further elevated in response to catfish LH, salmon LH, human LH, human choriogonadotropin, and human FSH. Salmon FSH and human TSH, however, were inactive. We conclude that we have cloned a cDNA encoding the LH-R of the African catfish. This receptor displays constitutive activity but is still responsive to additional ligand-induced activation.  相似文献   

8.
Vasoactive intestinal polypeptide (VIP), a 28 amino acid peptide hormone, plays many physiological roles in the peripheral and central nerve systems. A functional cDNA clone of the VIP receptor was isolated from a rat lung cDNA library by cross-hybridization with the secretin receptor cDNA. VIP bound the cloned VIP receptor expressed in mouse COP cells and stimulated adenylate cyclase through the cloned receptor. The rat VIP receptor consists of 459 amino acids with a calculated Mr of 52,054 and contains seven transmembrane segments. It is structurally related to the secretin, calcitonin, and parathyroid hormone receptors, suggesting that they constitute a new subfamily of the Gs protein-coupled receptors. VIP receptor mRNA was detected in various rat tissues including liver, lung, intestines, and brain. In situ hybridization revealed that VIP receptor mRNA is widely distributed in neuronal cells of the adult rat brain, with a relatively high expression in the cerebral cortex and hippocampus.  相似文献   

9.
10.
11.
This study was undertaken to confirm the presence of CCK receptor subtypes in calf pancreas and establish their cellular localization. Using specific antibodies against CCKA and CCKB receptors, somatostatin, glucagon and insulin, we were able to confirm by Western blot the presence of both CCK receptor protein subtypes in the calf pancreas as a 80-85-kDa CCKA receptor and 40-45-kDa CCKB receptor. By immunofluorescence, the CCKB receptor colocalizes with the islets' somatostatin delta cells, confirming what was previously shown in other species, as well as on ductal cells. We could not reproduce in the calf its colocalization with glucagon alpha cells as observed in human and rat. Any specific localization of CCKA receptors with our multiple antibodies failed. Our observation that the CCKB receptor subtype is specifically localized on pancreatic delta cells as well as on ductal cells lets us support the hypothesis that in this species, CCK could be involved in somatostatin metabolism as well as hydrelatic secretion; its effect on enzyme secretion would be indirect.  相似文献   

12.
13.
14.
15.
16.
Cloning and expression of a rat neuromedin K receptor cDNA   总被引:28,自引:0,他引:28  
Functional cDNA clones for rat neuromedin K receptor were isolated from a rat brain cDNA library by cross-hybridization with the bovine substance K receptor cDNA. Injection of the mRNA synthesized in vitro from the cloned cDNA into Xenopus oocytes elicited electrophysiological responses to tachykinins, with the most potent sensitivity being to neuromedin K. Ligand-binding displacement in membranes of mammalian COS cells transfected with the cDNA indicated the rank order of affinity of the receptor to tachykinins: neuromedin K greater than substance K greater than substance P. The hybridization analysis showed that the neuromedin K receptor mRNA is expressed in both the brain and the peripheral tissues at different levels. The rat neuromedin K receptor consists of 452 amino acid residues and belongs to the family of G protein-coupled receptors, which are though to have seven transmembrane domains. The sequence comparison of the rat neuromedin K, substance P, and substance K receptors revealed that these receptors are highly conserved in the seven transmembrane domains and the cytoplasmic sides of the receptors. They also show some structural characteristics, including the common presence of histidine residues in transmembrane segments V and VI and the difference in the numbers and distributions of serine and threonine residues as possible phosphorylation sites in the cytoplasmic regions. This paper thus presents the first comprehensive analysis of the molecular nature of the multiple peptide receptors that exhibit similar but pharmacologically distinguishable activities.  相似文献   

17.
18.
We (C. Lenz et al. (2000) Biochem. Biophys. Res. Commun. 269, 91-96) and others (N. Birgül et al. (1999) EMBO J. 18, 5892-5900) have recently cloned a Drosophila receptor that was structurally related to the mammalian galanin receptors, but turned out to be a receptor for a Drosophila peptide belonging to the insect allatostatin neuropeptide family. In the present paper, we screened the Berkeley "Drosophila Genome Project" database with "electronic probes" corresponding to the conserved regions of the four rat (delta, kappa, mu, nociceptin/orphanin FQ) opioid receptors. This yielded alignment with a Drosophila genomic database clone that contained a DNA sequence coding for a protein having, again, structural similarities with the rat galanin receptors. Using PCR with primers coding for the presumed exons of this second Drosophila receptor gene, 5'- and 3'-RACE, and Drosophila cDNA as template, we subsequently cloned the cDNA of this receptor. The receptor cDNA codes for a protein that is strongly related to the first Drosophila receptor (60% amino acid sequence identity in the transmembrane region; 47% identity in the overall sequence) and that is, therefore, most likely to be a second Drosophila allatostatin receptor (named DAR-2). The DAR-2 gene has three introns and four exons. Two of these introns coincide with two introns in the first Drosophila receptor (DAR-1) gene, and have the same intron phasing, showing that the two receptor genes are clearly evolutionarily related. The DAR-2 gene is located at the right arm of the third chromosome, position 98 D-E. This is the first report on the existence of two different allatostatin receptors in an animal.  相似文献   

19.
Cloned human dopamine D2 receptor cDNA was isolated from a pituitary cDNA library and found to encode an additional 29 amino acid residues in the predicted intracellular domain between transmembrane regions 5 and 6 relative to a previously described rat brain D2 receptor. Results from polymerase chain reactions as well as in situ hybridization revealed that mRNA encoding both receptor forms is present in pituitary and brain of both rat and man. The larger form was predominant in these tissues and, as shown in the rat, expressed by dopaminergic and dopaminoceptive neurons. Analysis of the human gene showed that the additional peptide sequence is encoded by a separate exon. Hence, the two receptor forms are generated by differential splicing possibly to permit coupling to different G proteins. Both receptors expressed in cultured mammalian cells bind [3H]spiperone with high affinity and inhibit adenylyl cyclase, as expected of the D2 receptor subtype.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号