首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Plant receptor-like kinase (Rlk) genes form a large family, each encoding a protein with a signal motif, a single transmembrane region, and a cytoplasmic kinase domain. Various gene duplications have contributed to the establishment and expansion of the family. Here, we characterized the formation and evolution of the Rlk gene family in cultivated rice and their possible progenitors. Using wheat Rlk gene sequences, we identified orthologs from the genomes of domesticated rice subspecies Oryza sativa ssp. japonica and ssp. indica and their putative progenitors O. glaberrima and O. rufipogon. The four chromosome 1 orthologous regions ranged from 103 to 281 kb comprising 181 syntenic blocks with 75 to 100% sequence identity. These regions contained 11–19 Triticum aestivum kinases (Taks) and 10–15 Lr10 receptor-like kinases (Lrks) organized in clusters and 3–12 transposable elements (TEs). Dot plot analyses showed that the 4 regions had 21–37 conserved catalytic domains, mainly in protein kinases (PKs) and tyrosine kinases (TyrKs) in coupling state. Over 50% of the sequences of glaberrima/rufipogon and japonica/indica pairs were colinear, while japonica/indica displayed a marked sequence expansion with duplicated genes and TEs. A total of 2312 single nucleotide polymorphisms (SNPs) and insertion-deletions (INDELs) were identified between japonica and indica. Duplication of the Rlk genes in O. glaberrima and O. rufipogon occurred after the grass species radiation and before the divergence of O. rufipogon from O. glaberrima; the orthologous Rlk genes from O. japonica and O. indica duplicated after O. sativa separated from O. rufipogon; paralogs, obtained through extensive duplication, happened after the separation of rice from maize. Tandem duplication was the major factor contributing to the gene copy number variation and genome size expansion.  相似文献   

3.
Glutelin is the most significant seed storage protein and is regarded as an important nutrient quality trait in rice. Research on the genetic basis of the glutelin content distinction in rice will provide more choices for the diets of people with kidney disease and diabetes. The GluA and GluB1 genes play important roles in the process of glutelin synthesis. In this study, 128 Japonica rice accessions with wide geographic distributions were collected to construct the association panel. Among all the 128 accessions, both sequences of the GluA and GluB1 genes were obtained, and nucleotide polymorphisms were detected. A total of 46 SNPs and eight InDels, six SNPs and four InDels were found in the GluA and GluB1 gene sequences, respectively. Eight haplotypes and two haplotypes were classified based on the SNPs in the coding region of the GluA and GluB1 genes, respectively. Moreover, the association of the polymorphic sites in the two genes with glutelin content in the tested population was estimated. The results revealed that five SNPs in the GluA gene, one SNP and one InDel in the GluB1 gene were associated with glutelin content at a significant level (P < 0.01). Corresponding markers were also designed to check the alleles of GluA and GluB1 genes. These results suggested that polymorphisms in the GluA and GluB1 genes in rice could be utilized in molecular marker-assisted selection to improve the nutrient quality of rice breeding programmes.  相似文献   

4.
Plant height is one of the most important agronomic traits of plant architecture, and also affects grain yield in rice. In this study, we obtained a novel dwarf rice mutant of japonica variety Shennong9816, designated Shennong9816d. Compared with wild-type, the Shennong9816d plant height was significantly reduced, and the tiller number significantly increased. Additionally, the mutant yield component, and the number of large and small vascular bundles were significantly decreased compared with wild-type. Genetic analysis indicated that the Shennong9816d dwarf phenotype was controlled by a recessive nuclear gene, while the plant was shown to be sensitive to gibberellic acid. Using a large F2 population derived from a cross between Shennong9816d and the indica rice variety Habataki, the osh15(t) gene was fine mapped between RM20891 and RM20898, within a physical distance of 73.78 kb. Sequencing analysis showed that Shennong9816d carries a 1 bp mutation and a 30 bp insertion in the OSH15 region. These results suggest that osh15(t) is a novel allelic mutant originally derived from japonica variety Shennong9816, which may be useful for introducing the semi-dwarf phenotype to improve plant architecture in rice breeding practice.  相似文献   

5.
In addition to the already known cagA gene, novel genetic markers have been associated with Helicobacter pylori (H. pylori) virulence: the dupA and vacAi genes. These genes might play an important role as specific markers to determine the clinical outcome of the disease, especially the vacAi gene, which has been expected to be a good marker of severe pathologies like gastric adenocarcinoma. In the present study, the association of cagA, dupA, and vacAi genes with gastroduodenal pathologies in Chilean patients was studied. One hundred and thirty-two patients positive for H. pylori were divided into two groups—non-severe and severe gastric pathologies—and investigated for the presence of cagA, dupA, and vacAi H. pylori virulence genes by PCR. The cagA gene was detected in 20/132 patients (15.2%), the vacAi1 gene was detected in 54/132 patients (40.9%), the vacAi2 gene was detected in 26/132 patients (19.7%), and the dupA gene was detected in 50/132 (37.9%) patients. Logistic regression model analysis showed that the vacAi1 isoform gene in the infected strains and the severity of the diseases outcome were highly associated, causing severe gastric damage that may lead to gastric cancer (p < 0.0001; OR = 8.75; 95% CI 3.54–21.64). Conversely, cagA (p = 0.3507; OR = 1.62; 95% CI 0.59–4.45) and vacAi2 (p = 0.0114; OR = 3.09; 95% CI 1.26–7.60) genes were not associated with damage, while the dupA gene was associated significantly with non-severe clinical outcome (p = 0.0032; OR = 0.25; 95% CI 0.09–0.65). In addition, dupA gene exerts protection against severe gastric pathologies induced by vacAi1 by delaying the outcome of the disease by approximately 20 years.  相似文献   

6.

Key message

A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4.

Abstract

Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar ‘Zhonghui 8006’ (ZH8006) and a japonica rice ‘Wuyunjing 8’ (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.
  相似文献   

7.
Piriformospora indica, a root endophytic fungus, has been reported to promote growth of many plants under normal condition and allow the plants to survive under stress conditions. However, its impact on an important medicinal plant Aloe vera L. has not been well studied. Therefore, this study was undertaken to investigate the effect of P. indica on salinity stress tolerance of A. vera plant. P. indica inoculated and non-inoculated A. vera plantlets were subjected to four levels of salinity treatment- 0, 100, 200 and 300 mM NaCl. The salinity stress decreased the ability of the fungus to colonize roots of A. vera but the interaction of A. vera with P. indica resulted in an overall increase in plant biomass and greater shoot and root length as well as number of shoots and roots. The photosynthetic pigment (Chl a, Chl b and total Chl) and gel content were significantly higher for the fungus inoculated A. vera plantlets, at respective salinity concentrations. Furthermore, the inoculated plantlets had higher phenol, flavonoid, flavonol, aloin contents and radical scavenging activity at all salinity concentrations. The higher phenolic and flavonoid content may help the plants ameliorate oxidative stress resulting from high salinity.  相似文献   

8.
Three-line japonica hybrids have been developed mainly on Chinsurah Boro II (BT)-type cytoplasmic male sterile (CMS) lines of Oryza sativa L., but the unstable sterility of some BT-type CMS lines, and the threat of genetic vulnerability when using a single cytoplasm source, have inhibited their use in rice cultivation. Previously, the sterility of Honglian (HL)-type japonica CMS lines derived from common red-awned wild rice (Oryza rufipogon) has been proven to be more stable than that of BT-type japonica CMS lines. Here, we genetically characterized HL-type japonica CMS lines and the restorer-of-fertility (Rf) gene for breeding HL-type japonica hybrids. HL-type japonica CMS lines displayed stained abortive pollen grains, unlike HL-type indica CMS lines. The BT-type japonica restorer lines, which contain Rf, had different capabilities to restore HL-LiuqianxinA (HL-LqxA), an HL-type japonica CMS line, and the restorers for the HL-type japonica CMS lines could be selected from the preexisting BT-type japonica restorers in rice production. A genetic analysis showed that the restoration of normal fertility to HL-LqxA was controlled by a major gene and was affected by minor effector genes and/or modifiers. The major Rf in SiR2982, a BT-type japonica restorer, was mapped to a ~100-kb physical region on chromosome 10, and was demonstrated to be Rf5 (Rf1a) by sequencing. Furthermore, Rf5 partially restored fertility and had a dosage effect on HL-type japonica CMS lines. These results will be helpful for the development of HL-type japonica hybrids.  相似文献   

9.
We aimed to study MLH1 and MGMT methylation status in Helicobacter pylori-associated chronic gastritis in Egyptian patients with and without gastric cancer. 39 patients were included in our study. They were divided into 2 groups; patients without (group I) and with gastric adenocarcinoma (group II). Patients were subjected to clinical examination, abdominal ultrasound and upper endoscopy for gastric biopsy. Biopsies were subjected to urease test, histological examination, and DNA purification. H. pylori, Braf, Kras, MLH1 and MGMT methylation were assessed by quantitative PCR. DNA sequencing was performed to assess Braf and Kras genes mutation. qPCR of H. pylori was significantly higher in patients with adenocarcinoma (group II) than those without adenocarcinoma (group I); with a p < 0.001 as well as in patients with age above 50 years with a p value = 0.008. By applying logistic regression analysis it was reported that the H. pylori qPCR is a significant predictor to the adenocarcinoma with OR = 1.025 (95 % CI: 1. 002–1.048), with sensitivity of 90 % and specificity of 100 %. Adenocarcinoma patients had a significantly higher mean age and levels of H. Pylori, Braf, K-ras, methylated MGMT and methylated MLH1 than those of gastritis patients. DNA sequence analysis of Braf (codon 12) and Kras (codon 600) had genes mutation in gastric adenocarcinoma versus chronic gastritis. Conclusion: H. pylori may cause epigenetic changes predisposing the patients to cancer stomach. Estimation of H. pylori by qPCR can be a good predictor to adenocarcinoma. Braf and Kras genes mutation were reveled in gastritis and adenocarcinoma patients.  相似文献   

10.
11.
Molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution. Complete chloroplast (cp) genome sequences of Capsicum species have been reported. We herein report the complete chloroplast genome sequence of Capsicum baccatum var. baccatum, a wild Capsicum species. The total length of the chloroplast genome is 157,145 bp with 37.7 % overall GC content. One pair of inverted repeats, 25,910 bp in length, was separated by a small single-copy region (17,974 bp) and large single-copy region (87,351 bp). This region contains 86 protein-coding genes, 30 tRNA genes, 4 rRNA genes, and 11 genes contain one or two introns. Pair-wise alignments of chloroplast genome were performed for genome-wide comparison. Analysis revealed a total of 134 simple sequence repeat (SSR) motifs and 282 insertions or deletions variants in the C. baccatum var. baccatum cp genome. The types and abundances of repeat units in Capsicum species were relatively conserved, and these loci could be used in future studies to investigate and conserve the genetic diversity of the Capsicum species.  相似文献   

12.

Key message

A wild rice QTL qGL12.2 for grain length was fine mapped to an 82-kb interval in chromosome 12 containing six candidate genes and none was reported previously.

Abstract

Grain length is an important trait for yield and commercial value in rice. Wild rice seeds have a very slender shape and have many desirable genes that have been lost in cultivated rice during domestication. In this study, we identified a quantitative trait locus, qGL12.2, which controls grain length in wild rice. First, a wild rice chromosome segment substitution line, CSSL41, was selected that has longer glume and grains than does the Oryza sativa indica cultivar, 9311. Next, an F2 population was constructed from a cross between CSSL41 and 9311. Using the next-generation sequencing combined with bulked-segregant analysis and F3 recombinants analysis, qGL12.2 was finally fine mapped to an 82-kb interval in chromosome 12. Six candidate genes were found, and no reported grain length genes were found in this interval. Using scanning electron microscopy, we found that CSSL41 cells are significantly longer than those of 9311, but there is no difference in cell widths. These data suggest that qGL12.2 is a novel gene that controls grain cell length in wild rice. Our study provides a new genetic resource for rice breeding and a starting point for functional characterization of the wild rice GL gene.
  相似文献   

13.
Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these genes may be involved in the enhanced drought and salt tolerance of transgenic rice. Thus, this work paves the way for improvement in tolerance of crops by genetic engineering breeding.  相似文献   

14.
The whitebacked planthopper (WBPH), Sogatella furcifera Horvath, is one of the most destructive pests in rice (Oryza sativa L.) production. Host-plant resistance has been considered as an efficient and eco-friendly strategy to reduce yield losses caused by WBPH. In this study, we found that an indica rice cultivar IR54751-2-44-15-24-2 (IR54751) displayed high resistance to WBPH at both seedling and tillering stages. The resistance of IR54751 was mainly contributed by antixenosis and tolerance rather than antibiosis. An F2 population derived from a cross between IR54751 and a susceptible japonica cultivar 02428 was constructed to detect the quantitative trait loci (QTLs) conferring the resistance to WBPH. In total, four QTLs including qWBPH3.1, qWBPH3.2, qWBPH11, and qWBPH12 were identified and distributed on three different chromosomes. The four QTLs had LOD scores of 3.8, 8.2, 5.8, and 3.9, accounting for 8.2, 21.5, 13.9, and 10.4% of the phenotypic variation, respectively. Except for qWBPH3.1, the resistance alleles of the other three QTLs were all from IR54751. Further, a secondary population harboring only single qWBPH11 locus was developed from the F2 population by marker-assisted selection. Finally, qWBPH11 was delimited in a 450-kb region between markers DJ53973 and SNP56. The identification of WBPH resistance QTLs and the fine mapping of qWBPH11 will be helpful for cloning resistance genes and breeding resistant rice cultivars.  相似文献   

15.
The red palm mite, Raoiella indica (Acari: Tenuipalpidae), is an important pest of palms (Arecaceae) and other species within the Zingiberaceae, Musaceae and Strelitziaceae families. Raoiella indica was discovered in the USA (Palm Beach and Broward counties, Florida) late in 2007, and it subsequently spread to other Florida counties. The predatory mite Amblyseius largoensis (Acari: Phytoseiidae) has been found associated with R. indica in Florida. In order to verify whether A. largoensis can develop and reproduce when feeding exclusively on R. indica, the biology of this predator was evaluated on various food sources, including R. indica. Five diets [R. indica, Tetranychus gloveri¸ Aonidiella orientalis, Nipaecocus nipae, oak (Quercus virginiana) pollen] and a no-food control were tested to determine the predators’ development, survivorship, oviposition rate, sex ratio and longevity at 26.5 ± 1°C, 70 ± 5% RH and a 12:12 L:D photophase. Amblyseius largoensis was able to complete its life cycle and reproduce when fed exclusively on R. indica. The development of immature stages of A. largoensis was faster and fecundity and survivorship were higher when fed on R. indica or T. gloveri compared to the other food sources. The intrinsic rate of natural increase of A. largoensis was significantly higher when fed on R. indica than on other diets. These results suggest that, despite earlier assessments, A. largoensis can play a role in controlling R. indica.  相似文献   

16.
Controlling the brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), is a difficult task in rice (Oryza sativa L.) production. We focused on vitellogenins (Vg), which are the major yolk protein precursors of vitellins and play an important role in the reproduction of oviparous species, including insects. We studied the accumulation of Vg mRNA and protein in a virulent BPH strain, Nagasaki-03, and a nonvirulent strain, Hatano-66, after rearing them on four rice lines. The rice lines used were two single resistance gene introgression lines, Norin-PL3 (Bph1 carrier) and Norin-PL4 (bph2 carrier), a pyramided line in which both genes were combined, and a susceptible japonica recurrent parent Tsukushibare. RT-PCR and quantitative RT-PCR analyses showed that the Vg mRNA level decreased greatly in Hatano-66 on the resistant lines. In contrast, the level of reduction on the resistant lines was much less in Nagasaki-03. Immunoblot analysis showed that Nagasaki-03 retained comparable levels of 175 kDa Vg protein on both the susceptible and resistant lines, whereas in Hatano-66, no Vg protein was detected on the resistant lines. Our results showed that BPH resistance genes caused differential reduction in the accumulation of Vg mRNA and protein, leading to the retardation of BPH reproduction on the resistant host rice plants.  相似文献   

17.
18.
Increasing the rice productivity from the current 10 to 12 tons/ha to meet the demand of estimated 8.8 billion people in 2035 is posing a major challenge. Wild relatives of rice contain some novel genes which can help in improving rice yield. Spikelet per panicle (SPP) is a valuable trait for determining yield potential in rice. In this study, a major QTL for increasing SPP has been identified, mapped, and transferred from African wild rice O. longistaminata to O. sativa (L.). The QTL was mapped on the long arm of chromosome 2 in a 167.1 kb region flanked by SSR markers RM13743 and RM13750, which are 1.0 cM apart, and is designated as qSPP2.2. The QTL explained up to 30% of phenotypic variance in different generations/seasons and showed positive additive effect of allele contributed by O. longistaminata. In addition, O. longistaminata allele in qSPP2.2 contributed to increase in grains per panicle, but decrease in the tillers per plant. The 167.1 kb region contains 23 predicted genes. Based on the functional annotation, three genes, LOC_Os02g44860, LOC_Os02g44990, and LOC_Os02g45010, were selected as putative candidates for characterization. Sequence analysis of the three genes revealed functional variations between the parental lines for LOC_Os02g44990 and a variation in 5′UTR for LOC_Os02g45010 which will help further to identify putative candidate gene(s). This is the first yield component QTL to be identified, mapped, and transferred from O. longistaminata.  相似文献   

19.
The Minichromosome maintenance protein [MCM (2-7)] complex is associated with helicase activity for replication fork formation during DNA replication. We identified and characterized each 12 putative MCM genes from Brassica oleracea and Brassica rapa. MCM genes were classified into nine groups according to their evolutionary relationships. A high number of syntenic regions were present on chromosomes C03 and A03 in B. oleracea and B. rapa, respectively, compared to the other chromosomes. Expression analysis showed that most of the MCM(2-7) helicase-subunit genes and their coregulating MCM genes were upregulated during hydroxyurea (HU) induced stress in B. oleracea. In B. rapa, MCM(2-7) helicase genes BrMCM2_2, BrMCM7_1, BrMCM7_2 and their co-regulating genes were upregulated during replication stress. During cold stress, BoMCM6 in B. oleracea and BrMCM5 in B. rapa were remarkably upregulated. During salt stress, BoMCM6_2, BoMCM7_1, BoMCM8, BoMCM9, and BoMCM10 were markedly upregulated in B. oleracea. Hence, our study identified the candidate MCM family genes those possess abiotic stress-responsive behavior and DNA replication stress tolerance. As the first genome-wide analysis of MCM genes in B. oleracea and B. rapa, this work provides a foundation to develop stress responsive plants. Further functional and molecular studies on MCM genes will be helpful to enhance stress tolerance in plants.  相似文献   

20.
Wild rice genotypes are rich in genetic diversity. This has potential to improve agronomic rice by allele mining for superior traits. Late embryogenesis abundant (LEA) proteins are often associated with desiccation tolerance and stress signalling. In the present study, a group 3 LEA gene, Wsi18 from the wild rice Oryza nivara was expressed under its own inducible promoter element in stress susceptible cultivated indica rice (cv. IR20). The resulting transgenic plants cultivated in a greenhouse showed enhanced tolerance to soil water deficit. Transgenic plants had higher grain yield, plant survival rate, and shoot relative water content compared to wild type (WT) IR20. Cell membrane stability index, proline and soluble sugar content were also greater in transgenic than WT plants under water stress. These results demonstrate the potential for improving SWS tolerance in agronomically important rice cultivar by incorporating Wsi18 gene from a wild rice O. nivara.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号