首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rat suprarenal glands fixed in Palade's 1% OsO4, buffered at pH 7.7 with veronal-acetate, to which 0.1% MgCl2 was added, were embedded in Vestopal-W and sectioned at 0.2-1 µ. The sections were attached to slides by floating on water, without adhesive, and drying at 60-80° C, placed in acetone for 1 min and then treated with the following staining procedure: Place the preparation in a filtered solution of oil red O, 1 gm; 70% alcohol, 50 ml; and acetone, C.P., 50 ml; for 0.5-1 hr. Rinse in absolute ethyl alcohol; drain; counterstain with 0.5% aqueous thionin for 5 min; rinse in distilled water; drain; stain in 0.2% azure B in phosphate buffer at pH 9, for 5 min. Dry and apply a drop of immersion oil directly on the section. The preparations are temporary. Ciaccio-positive lipids, rendered insoluble by OsO, fixation, stained red to ochre.  相似文献   

2.
A series of experiments with protargol staining of nerve fibers in mammalian adrenal glands has yielded the following procedure: Fix-1-2 days in a mixture of formamide (Eastman Kodak Company) 10 cc, chloral hydrate 5 g., and 50% ethyl alcohol 90 cc. Wash, dehydrate and embed in paraffin. Cut sections about 15 and mount on slides. Remove the paraffin and run down to distilled water. Mordant 1-2 days in a 1% aqueous solution of thallous (or lead) nitrate at 56-60°C. Wash thru several changes of distilled water and impregnate in 1% aqueous protargol (Winthrop Chemical Company) at 37-40°C. for 1 to 2 days. Rinse quickly in distilled water and differentiate 7-15 seconds in a 0.1% aqueous solution of oxalic acid. Rinse thru several changes of distilled water for a total time of 0.5 to 1.0 rain. Reduce 3-5 rain, in Bodian's reducer: hydroquinone 1 g., sodium sulfite 5 g., distilled water 100 cc. Wash in running water 3-5 min. and tone 5-10 min. in a 0.2% gold chloride solution. Wash 0.5 min. or more and reduce in a 2% oxalic acid solution to which has been added strong formalin, 1 cc. per 100. (Caution. This last reduction is critical and over-reduction can spoil an otherwise good stain; 15-30 seconds usually suffices, and the sections should show only the beginning of darkening to a purplish or gray color.) Wash, fix in hypo, wash, dehydrate and cover.  相似文献   

3.
Tissues were fixed at 20° C for 1 hr in 1% OsO4, buffered at pH 7.4 with veronal-acetate (Palade's fixative), soaked 5 min in the same buffer without OsO4, then dehydrated in buffer-acetone mixtures of 30, 50, 75 and 90% acetone content, and finally in anhydrous acetone. Infiltration was accomplished through Vestopal-W-acetone mixtures of 1:3, 1:1, 3:1 to undiluted Vestopal. After polymerisation at 60° C for 24 hr, 1-2 μ sections were cut, dried on slides without adhesive, and stained by any of the following methods. (1) Mayer's acid hemalum: Flood the slides with the staining solution and allow to stand at 20°C for 2-3 hr while the water of the solution evaporates; wash in distilled water, 2 min; differentiate in 1% HCl; rinse 1-2 sec in 10% NH,OH. (2) Iron-trioxyhematein (of Hansen): Apply the staining solution as in method 1; wash 3-5 min in 5% acetic acid; restain for 1-12 hr by flooding with a mixture consisting of staining solution, 2 parts, and 1 part of a 1:1 mixture of 2% acetic acid and 2% H2SO4 (observe under microscope for staining intensity); wash 2 min in distilled water and 1 hr in tap water. (3) Iron-hematoxylin (Heidenhain): Mordant 6 hr in 2.5% iron-alum solution; wash 1 min in distilled water; stain in 1% or 0.5% ripened hematoxylin for 3-12 br; differentiate 8 min in 2.5%, and 15 min in 1% iron-alum solution; wash 1 hr in tap water. (4) Aceto-carmine (Schneider): Stain 12-24 hr; wash 0.5-1.0 min in distilled water. (5) Picrofuchsin: Stain 24-48 hr in 1% acid fuchsin dissolved in saturated aqueous picric acid; differentiate for only 1-2 sec in 96% ethanol. (6) Modified Giemsa: Mix 640 ml of a solution of 9.08 gm KH2PO4 in 1000 ml of distilled water and 360 ml of a solution of 11.88 gm Na2HPO4-2H2O in 1000 ml of distilled water. Soak sections in this buffer, 12 hr. Dissolve 1.0 gm of azur I in 125 ml of boiling distilled water; add 0.5 gm of methylene blue; filter and add hot distilled water until a volume of 250 ml is reached (solution “AM”). Dissolve 1.5 gm of eosin, yellowish, in 250 ml of hot distilled water; filter (solution “E”). Mix 1.5 ml of “AM” in 100 ml of buffer with 3 ml of “E” in 100 ml of buffer. Stain 12-24 hr. Differentiate 3 sec in 25 ml methyl benzoate in 75 ml dioxane; 3 sec in 35 ml methyl benzoate in 65 ml acetone; 3 sec in 30 ml acetone in 70 ml methyl benzoate; and 3 sec in 5 ml acetone in 95 ml methyl benzoate. Dehydrated sections may be covered in a neutral synthetic resin (Caedax was used).  相似文献   

4.
The technic recommended is: Fix 6-12 hr. in 10% formalin containing 1% CaCl2. Cut frozen sections without embedding or after gelatin or carbowax. Stain 90 min. at 60°C. in saturated aqueous Nile blue sulfate, 500 ml. plus 50 ml. of 0.5% H2SO4, boiled 2 hr. before use. Rinse in distilled water, and place in acetone heated to 50°C. Remove the acetone from the source of heat and allow the sections to remain 30 min. Differentiate in 5% acetic acid 30 min., rinse in distilled water, and refine the differentiation in 0.5% HCl for 3 min. Wash in several changes of distilled water and mount in glycerol jelly. Results: phospholipids - blue; everything else - unstained. Counterstaining nuclei with safranin is optional, but if done, it preferably precedes the Nile blue and is then differentiated by the acetic acid. The histochemical principles on which the method is based are as follows: (1) The calcium compounds of phospholipids combine with the oxazine form of Nile blue sulfate and survive subsequent treatment; (2) neutral lipids are dissolved out by acetone; (3) proteins and other interfering substances are destained by the acetic acid and hydrochloric acid baths.  相似文献   

5.
The procedure recommended is: Fix “marrow units” (small functional structures of bone marrow) in 10% formol-saline solution for 1-2 hours and dehydrate in 80% alcohol, 95% alcohol and acetone 30 minutes each. Place in fresh 50° and 53°C. paraffin for 30 minutes each. Embed in fresh 53°C. paraffin. Serially section at 5μ thickness and mount with Schleicher's floating solution. Allow to dry for 1 hour in an oven and deparaffinize by passing through xylene I and II, absolute alcohol I and II, and 95% alcohol. Rinse in fresh distilled water and place in dilute Harris' hematoxylin (stock solution 50 ml., distilled water 200 ml.) for 2 to 3 minutes. Rinse well in distilled water and check staining under the microscope. Dip in acid-alcohol 5 times (1 dip to equal about 1 second). Rinse well in weak (0.02%) ammonia water and distilled water. Dip in 2% aqueous phosphotungstic acid about 3 to 5 times (equal to 3-5 seconds). Rinse in fresh distilled water and place in weak ammonia water for 1 minute. Rinse in fresh distilled water I and II. Place in 80% alcohol for 5 minutes and check under the microscope for “blueness” and nuclear differentiation. Place in dilute alcoholic eosin (0.5% alcohol-eosin stock solution 10 parts and 95% alcohol 90 parts) for 1 to 2 minutes. Rinse in 80% alcohol and place for 1 minute in 95% alcohol. Check under the microscope for staining quality. Place in absolute alcohol for 1 minute, alcohol-xylene (equal parts), 10 dips, and xylene I and II. Mount. This hematoxylin-eosin staining schedule brings out minute structural detail of bone marrow tissue heretofore not demonstrable.  相似文献   

6.
Specimens 1 mm3 from rat liver and kidney were fixed for 50 min in cold (0-2° C) 1% OsO4 in veronal-acetate buffer, pH 7.7, and containing 0.1% MgCl2; then dehydrated and embedded in Vestopal-W. Sections were cut in two ranges, 0.1-2 µ and 60-90 mµ thick, and attached to slides by floating on water and drying at 60° C. The thicker ones, for light microscopy, were soaked in acetone 1.5-3 hr; the thinner, for electron microscopy, 20-30 min. Both kinds were stained by Wilder's (1935) method for reticulum. Those for light microscopy were finished by dehydrating, clearing and covering in the customary manner; those for electron microscopy, by coating with 1% parlodion, drying, cutting the film about 2 mm2 around the section, and freeing the section by soaking in water. The section was then mounted on a grid. The structures stained are: nuclei, basement membrane of capillaries, reticulum fibers of the liver and kidney, and in addition, the basement membrane of the kidney tubules. The mitochondria, vesicles, endoplasmic reticulum and cell membranes were not defined.  相似文献   

7.
Extensive experimentation with protargol staining of neurons in celloidin and frozen sections of organs has resulted in the following technic: Fix tissue in 10% aqueous formalin. Cut celloidin sections IS to 25 μ, frozen sections 25 to 40 μ. Place sections for 24 hours in 50% alcohol to which 1% by volume of NH4OH has been added. Transfer the sections directly into a 1% aqueous solution of protargol, containing 0.2 to 0.3 g. of electrolytic copper foil which has been coated with a 0.5% solution of celloidin, and allow to stand for 6 to 8 hours at 37° C. Caution: In this and the succeeding step the sections must not be allowed to come in contact with the copper. From aqueous protargol, place the sections for 24 to 48 hours at 37° C. directly into a pyridinated solution of alcoholic protargol (1.0% aqueous solution protargol, 50 ml.; 95% alcohol, 50 ml.; pyridine, 0.5 to 2.0 ml.), containing 0.2 to 0.3 g. of coated copper. Rinse briefly in 50% alcohol and reduce 10 min. in an alkaline hydroquinone reducer (H3BO3, 1.4 g.; Na2SO3, anhydrous, 2.0 g.; hydroquinone, 0.3 g.; distilled water, 85 cc; acetone, 15 ml.). Wash thoroly in water and tone for 10 min. in 0.2% aqueous gold chloride, acidified with acetic acid. Wash in distilled water and reduce for 1 to 3 min. in 2% aqueous oxalic acid. Quickly rinse in distilled water and treat the sections 3 to 5 min. with 5% aqueous Na2S2O3+5H2O. Wash in water and stain overnight in Einarson's gallocyanin. Wash thoroly in water and place in 5% aqueous phosphotungstic acid for 30 min. From phosphotungstic acid transfer directly to a dilution (stock solution, 20 ml.; distilled water, 30 ml.) of the following stock staining solution: anilin blue, 0.01 g.; fast green FCF, 0.5 g.; orange G, 2.0 g.; distilled water, 92.0 ml.; glacial acetic acid, 8 ml.) and stain for 1 hour. Differentiate with 70% and 95% alcohol; pass the sections thru butyl alcohol and cedar oil; mount.  相似文献   

8.
Further work on conditions affecting the reduction of paraffin sections impregnated with protargol showed that the optimum pH for sulfite-amidol mixtures was between 6.5 and 7.5. A staining method which requires about two hours to complete consists of the following steps: (1) One hour impregnation at 60° C. in 10% AgNO3. (2) Wash in distilled water 3 changes of 30 sec. each. (3) Put into protargol (Winthrop Chem. Co., New York, N. Y.) 0.2% aq. for another hour at room temperature. (4) Rinse 2 sec. (5) Reduce one to two min. in amidol 0.2 g., Na2SO3 8 g., NaHSO3 I g., and water 100 cc. (6) Wash thoroly. (7) Tone with 0.1% gold chloride. (8) Wash. (9) Reduce with a 0.5% aq. soln. of amidol (no sulfite). (10) Wash, dehydrate and cover. The method stains neurofibrillae and unmyelinated fibers and has worked well on most tissues of vertebrates. The stain follows acid alcoholic fixation.  相似文献   

9.
A paraffin section method is described with a yellow-brown-black color range comparable to that of Ranson's pyridine silver block stain. After impregnation with activated protargol and reduction with a fine grain photographic developer, silver nitrate impregnation and reduction are repeated as often as necessary. The procedure is as follows:

Place hydrated sections of tissue fixed in chloral hydrate (25 g. in 100 ml. of 50% alcohol) in 1% aqueous protargol (Winthrop Chemical Co.) containing 5-6 g. metallic copper for 12-24 hours. After rinsing in 2 changes of distilled water, reduce 5 to 10 minutes in: Elon (Eastman Kodak Co.) 0.2 g., Na2SO3, dessicated, 10 g., hydroquinone 0.5 g., sodium borate powder 0.1 g., distilled water 100 ml. Wash thoroly in 4 or 5 changes of distilled water and place in 1% aqueous AgNO3 for 10-20 minutes at 28°-50° C. Rinse in 2 or 3 changes of distilled water and reduce in the elon-hydroquinone solution. After thoroly washing in 4 or 5 changes of distilled water, examine under microscope.

If too pale, treat again in silver nitrate for 10-20 minutes, rinse, reduce 5-10 minutes and wash thoroly until nerve fibers show distinct microscopic differentiation, then dehydrate, clear and mount.  相似文献   

10.
For staining in toto, planarians are fixed in a mixture of 10 ml of commercial formalin, 45 ml of 95% ethanol and 2 ml of glacial acetic acid. After treatment with 70% ethanol 3-10 days, they are washed in distilled water and immersed in 10% CuSO4. 5H2O for 3 hr at 50° C, transferred without washing to 1% AgNO3 for 1.0-1.5 hr at 50° C; and then developed in: 10 ml of 1% pyrogallol, 100 ml of 56% ethanol and 1 ml of 0.2% nitric acid. Gold toning, 5% Na2S2O3 and dehydration follow as usual. For staining sections, material is fixed in the same fixative, embedded in paraffin and sectioned at 10 μ. After bringing sections to water, they are immersed in 20% CuSO4. 5H2O for 48 hr at 37° C; then rinsed briefly in distilled water and placed in 7% AgNO3 for 24 hr at 37° C. They are washed briefly in distilled water and reduced in: hydroquincne, 1 gm; Na2SO3, 5 gm and distilled water 100 ml. Gold toning, followed by 5% Na2S2O3 and dehydration completes the process. Any counterstaining may follow.  相似文献   

11.
Fresh, undecalcified bone sections can be reproducibly and reliably stained by any of the following procedures: (A) Basic fuchsin, 1% in 30% alcohol, 48 hr, 22°C. (B) AgNO3, 0.033 M, 48 hr, 22°C; washing 48 hr in a large volume of distilled water; exposure to light to develop the color. (C) Metallic sulfides (Co++, Pb++, Hg++, Cu++): the nitrate of the metal, 0.033 M, 48 hr, 22°C; then Na2S, 0.033 M, 48 hr, 22° C. (D) Alizarin Red S, 0.1% solution in distilled water, 48 hr, 22°C; differentiated 48 hr at 22°C in weakly alkaline water, pH about 8. (E) KMnO4: boiling 8-10 min in a 0.1 N, solution. With the exception of D the surface stain must be ground off the section for microscopic examination of its interior. Stain concentration, time and temperature can be altered to suit specific needs.  相似文献   

12.
For the demonstration of the sex chromatin body in human tissues, fixation in 95% alcohol or modified Davidson's solution (95% alcohol, 30; formalin, 20; glacial acetic acid, 10; distilled water, 30) was best. The staining procedure chosen for most materials is the following: Mounted preparations are coated with celloidin, hydrated, hydrolyzed 20 min in 52V HCl at 20-25°C, rinsed thoroughly in several changes of distilled water and transferred to a buffered thionin solution. This consists of 3 parts: (1) A saturated solution of thionin in 50% alcohol (filtered); (2) Michaelis buffer: sodium acetate (3 H2O), 9.714 gm; sodium barbiturate, 14.714 gm; CO2-free distilled water, 500 ml; and (3) 0.1N HCl. To make the staining solution, mix 28.0 ml of the buffer solution with 32.0 ml of 0.1N HCl and bring the total volume to 100.0 ml with the thionin solution. Its pH should be 5.7 × 0.2, and care should be exercised that no acid is carried over from the hydrolyzing solution, since this would progressively lower the pH. The staining time varies from 15 to 60 min, depending on the specimen, but the shortest time consistent with adequate staining gives the clearest preparations. Slides are rinsed in distilled water and 50% alcohol and allowed to remain in 70% alcohol until the heavy clouds of stain cease to appear. Differentiation is completed in 80% and 95% alcohol, followed by dehydration in absolute alcohol, clearing in xylene and applying a cover glass with a synthetic resin (G. T. Gurr's DePeX was used). The sex chromatin is deep blue-violet and sharply contrasted against the lightly colored particulate chromatin of the nucleus. Cytoplasm remains unstained but fibrin and related structures show metachromasia. Chromosomes are well demonstrated if present. The method works on all types of tissues, is simpler and quicker than the Feulgen method, and often yields superior results.  相似文献   

13.
The tissue is fixed in 10% neutral saline formalin for 1 day to 3 wk depending on the size of the block, dehydrated and embedded in paraffin. The sections are stained at 57° C for 2 hr, then at 22° C for 30 min, in a 0.0125% solution of Luxol fast blue in 95% alcohol acidified by 0.1% acetic acid. They are differentiated in a solution consisting of: Li2CO3, 5.0 gm; LiOH-H2O, 0.01 gm; and distilled water, 1 liter at 0-1° C, followed by 70% alcohol, and then treated with 0.2% NaHSO3. They are soaked 1 min in an acetic acid-sodium acetate buffer 0.1 N, pH 5.6, then stained with 0.03% buffered aqueous neutral red. Sections are washed in distilled water, 1 sec, then treated with the following solution: CuSO4·5H2O, 0.5 gm; CrK(SO4)2·12H2O, 0.5 gm; 10% acetic acid, 3 ml; and distilled water, 250 ml. Dehydration, clearing and covering complete the process. Myelin sheaths are stained bright blue; meninges and the adventitia of blood vessels are blue; red blood cells are green. Nissl material is stained brilliant red; axon hillocks, axis cylinders, ependyma, nuclei and some cytoplasm of neuroglia, media and endothelium of blood vessels are pink.  相似文献   

14.
TO determine the amount of K2Cr2O7 required to produce optimal Giemsa type staining, six 1 g amounts (corrected for dye content) of zinc methylene blue were oxidized with graded quantities of K2Cr2O7 to produce 4, 8, 12, 16, 20 and 24% conversion of methylene blue to azure B. These were heated with a blank control 15 minutes at 100 C in 60-65 ml 0.4 N HCI. cooled, and adjusted to 50 ml to give 20 mg original dye/ml. Aliquots were then diluted to 1% and stains were made by the “Wet Giemsa” technic (Lillie and Donaldson 1979) using 6 ml 1% polychrome methylene blue, 4 ml 1% cosin (corrected for dye content), 2 ml 0.1 M pH 6.3 phosphate buffer, 5 ml acetone, and 23 ml distilled water. The main is added last and methanol fixed blood films are stained immediately for 20-40 min.

For methylene blue supplied by MCB 12-H-29, optimal stains were obtained with preparations containing 20 and 24% conversion of methylene blue to azure B. With methylene blue supplied by Aldrich (080787), 16% conversion of methylene blue to azure B was optimal. Eosinates prepared from a low azure B/methylene blue preparation selected in this way give good stains when used as a Wright stain in 0.3% methanol solution. However, when the 600 mg eosinate solution in glycerol methanol is supplemented with 160 mg of the same azure B/methylene blue chloride the mixture fails to perform well. The HCI precipitation of the chloride apparently produces the zinc methylene blue chloride salt which is poorly soluble in alcohol. It appears necessary to have a zinc-free azure B/methylene blue chloride to supplement the probably zinc-free eosinate used in the Giemsa mixture.  相似文献   

15.
The mechanism of the oxidation of methylene blue varies with the conditions. The formation of trimethyl thionin (azure B) and of asymmetrical dimethyl thionolin (azure A) is followed under alkaline conditions by that of dimethyl thionin (methylene violet) and under acid conditions by that of monomethyl thionin (named by authors azure C).

Simple and practical methods are given for the preparation of azure A and azure C. The latter product, which has not been obtained from methylene blue hitherto, has valuable staining properties as a nuclear and bacterial stain in tissue and may also be employed satisfactorily as a substitute for azure A in the MacNeal tetrachrome formula as a blood stain or substitute for the Giemsa stain.

Azure B has no particular merit in staining.

Azure C proves to be a very valuable stain. A procedure is given for its use with eosin Y and orange II as counterstains, by which it is possible to demonstrate bacteria in tissue and at the same time the cytological elements of the tissue.  相似文献   

16.
To see small lymphoid nucleoli clearly in 1-2 μ paraffin sections, the staining of contiguous chromatin masses in the nucleus was suppressed by a hydrolysis-aniline blocking sequence, which produces aldehyde from DNA, and attaches aniline to that aldehyde to make a diphenamine base, thus reducing the acidity of the chromatin and its affinity for basic dyes. Nucleolar RNA remains fully stainable by azure B, because the hydrolysis used does not produce aldehyde groups in it, to allow aniline attachment. Technique: Hydrolyse the 10% formol-saline fixed, deparaffinised 1-2 μ section for 4.5-5.0 min in 10% (v/v) HCl in tetra-hydrofuran at 39-40 C, rinse in water, and treat at room temperature in 10% (v/v) aniline in acetic acid for 10 min. Stain 2-4 hr with freshly prepared 0.1% azure B in a 1:10 dilution of tris buffer at pH 7.0. Rinse, blot off excess water, pass through acetone and xylene to a polystyrene mounting. DNA stains pale green to colourless; nucleolar and cytoplasmic RNA, blue.  相似文献   

17.
A silver nitrate stain for nerve fibers and endings applicable to paraffin sections on the slide utilizes the properties of urea to accelerate the procedure and improve the specificity of the stain. After removal of the paraffin the sections are run through absolute, 95% and 80% alcohol and placed for 60-90 minutes at 50-60°C. in: 1% aqueous silver nitrate, 100 ml.; urea, 20-30 g.; 1g. mercuric cyanide and 1 g. picric acid in 100 ml. of distilled water, 1-3 drops. After the silver bath they are rinsed quickly in 2 changes of distilled water and reduced for 3-5 minutes at 25-30°C. in: water, 100 ml.; sodium sulfite, anhydrous, 10g.; hydroquinone, 1-2g.; urea, 20-30g. They are then washed thoroughly in 4-5 changes of distilled water, passed through graded alcohols into 80% alcohol and examined under the microscope. If nerve fibers are not distinct, the sections are returned to the same urea-silver-nitrate bath for 10-15 minutes, rinsed, reduced, washed and dehydrated as before. This process may be repeated until staining is adequate; then they are dehydrated, cleared, and mounted.

Nerve fibers show a color range from brown to black; nerve cells from yellow to brown; and the background, depending on the type of tissue and its fixation, from yellow to light brown.  相似文献   

18.
Axoplasm is selectively impregnated by the following steps: (1) fixation in 10% formalin or in 10% formalin with added sucrose, 15%, and concentrated NH4OH, 1%, for 1-7 days; (2) frozen sections; (3) extraction of the sections in 95% ethyl alcohol, absolute alcohol, xylene, and 95% ethyl alcohol and absolute alcohol, 1 hr each; (4) distilled water, 3 changes of 10 min each; (5) 20% AgNO3 (aq.) at 25°C, 30 min; (6) distilled water, 3 changes of 1-2 sec each; (7) 6.9% K2CO3, 1 hr; (8) water, 3 changes of about 1 min each; (9) 0.2%AuCl3, 2 min; (10) distilled water; (11) 5% Na2S2O3, 2 min; (12) washing, clearing and mounting. This procedure is proposed as a simplified stain for axoplasm, with other tissue components remaining unstained. The few reagents necessary suit this method for histochemical investigation of the mechanism of silver staining.  相似文献   

19.
The following schedule, which combines an intense blue stain for rubber with sharply contrasting red counterstains, has been found satisfactory for use in an anatomical study of rubber deposition in guayule: Cut fresh or fixed sections about 50 to 100 % thick, transfer to 50% ethanol. Extract with acetone 5 minutes, treat with 1% NaOCl 5 minutes, saponify with 10% KOH in 95% ethanol 15 minutes, rinse 3 times with 50% ethanol, stain in oil blue NA (Calco) with safranin and Congo red 30 minutes at 55° C. Rinse in 50% ethanol 2 (or more) times to remove excess stain and mount in Karo syrup.  相似文献   

20.
A selective stain useful for the study of connective tissues is described. The stain demonstrates elastic and oxytalan fibers as well as fibrils in mucous connective tissues previously undescribed. Reticular fibers are not stained. The stain may be used on sections that have been fresh frozen or fixed in formalin or ethanol. Sections are deparaffinized, washed in absolute ethanol, oxidized in peracetic acid 30 min, washed in running water, stained in Taenzer-Unna orcein 15 min, 37°C, differentiated in 70% ethanol, washed in running water, stained in Lillie-Mayer alum hematoxylin 4 min, blued in running water, and counterstained 20 sec in a modified Halmi mixture of 100 ml distilled water, 0.2 gm light green SF, 1.0 gm orange G, 0.5 gm phosphotungstic acid and 1.0 ml glacial acetic acid. Sections are rinsed briefly in 0.2% acetic acid in 95% ethanol, dehydrated and mounted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号