首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The structure ofE. coli-derived rat intestinal fatty acid-binding protein has recently been refined to 1.2 Å without bound fatty acid and to 2.0 Å and 1.75 Å with bound hexadecanoate (palmitate) and 9Z-octadecenoate (oleate), respectively. The structure ofE. coli-derived human muscle fatty acid-binding protein has also been solved to 2.1 Å with a C16 bacterial fatty acid. Both proteins contain 10 anti-parallel -strands in a+1, +1, +1... motif. The strands are arranged in two -pleated sheets that are orthogonally oriented. In each case, the fatty acid is enclosed by the -sheets and is bound to the proteins by feeble forces. These feeble forces consist of (i) a hydrogen bonding network between the fatty acid's carboxylate group, ordered solvent, and side chains of polar/ionizable amino acid residues; (ii) van der Waals contacts between the methylene chain of the fatty acid and the side chain atoms of hydrophobic and aromatic residues; (iii) van der Waals interactions between the methyl and the component methenyls of the phenyl side chain of a Phe which serves as an adjustable terminal sensor situated over a surface opening or portal connecting interior and exterior solvent; and (iv) van der Waals contacts between methylenes of the alkyl chain and oxygens of ordered waters that have been located inside the binding cavity. These waters are positioned over one face of the ligand and are held in place by hydrogen bonding with one another and with the side chains of protein's polar and ionizable residues. Binding of the fatty acid ligand is associated with minimal adjustments of the positions of main chain or side chain atoms. However, acquisition of ligand is associated with removal of ordered interior solvent suggesting that the free energy of dehydration of the binding site may be as important for the energy of the binding reaction as the free energy of stabilization of the fatty acid: protein complex.  相似文献   

2.
Rat intestinal fatty acid-binding protein (I-FABP) is an abundant, 15,124-Da polypeptide found in the cytosol of small intestinal epithelial cells (enterocytes). It is homologous to rat liver fatty acid-binding protein (L-FABP), a 14,273-Da cytosolic protein which is found in enterocytes as well as hepatocytes. It is unclear why the small intestinal epithelium contains two abundant fatty acid-binding proteins. A systematic comparative analysis of the ligand binding characteristics of the two FABPs has not been reported. To undertake such a study we expressed the coding region of a full length I-FABP cDNA in Escherichia coli and purified large quantities of the protein. We also purified rat L-FABP from a similar, previously described expression system (Lowe, J. B., Strauss, A. W., and Gordon, J. I. (1984) J. Biol. Chem. 259, 12696-12704). Analysis of fatty acids associated with each of the homogeneous E. coli-derived FABPs suggested that the two proteins differed in their ligand binding specificity and capacity. All of the fatty acids associated with I-FABP were saturated while 30% of the E. coli fatty acids bound to L-FABP were unsaturated (16:1, 18:1, 18:2). We directly analyzed the ability of I- and L-FABP to bind fatty acids of different chain length and degree of saturation using a hydroxyalkoxypropyl dextran-based assay. Scatchard analysis revealed that each mole of L-FABP can bind up to 2 mol of long chain fatty acid while each mole of I-FABP can bind only 1 mole of fatty acid. L-FABP exhibited a relatively higher affinity for unsaturated fatty acids (oleate, arachidonate) than for saturated fatty acid (palmitate). By contrast, we were not able to detect a significant difference in the affinity of I-FABP for palmitate, oleate, and arachidonate. Neither protein exhibited any appreciable affinity for fatty acids whose chain length was less than C16. The observed differences in ligand affinities and capacities suggest that these proteins may have distinct roles in metabolism and/or compartmentalization of fatty acids within enterocytes.  相似文献   

3.
Rat intestinal fatty-acid-binding protein (I-FABP) is a small (15,124 Mr) cytoplasmic polypeptide that binds long-chain fatty acids in a non-covalent fashion. I-FABP is a member of a family of intracellular binding proteins that are thought to participate in the uptake, transport and/or metabolic targeting of hydrophobic ligands. The crystal structure of Escherichia coli-derived rat I-FABP with a single molecule of bound palmitate has been refined to 2 A resolution using a combination of least-squares methods, energy refinement and molecular dynamics. The combined methods resulted in a model with a crystallographic R-factor of 17.8% (7775 reflections, sigma greater than 2.0), root-mean-square bond length deviation of 0.009 A and root-mean-square bond angle deviation of 2.85 degrees. I-FABP contains ten antiparallel beta-strands organized into two approximately orthogonal, beta-sheets. The hydrocarbon tail of its single C16:0 ligand is present in a well-ordered, distinctively bent conformation. The carboxylate group of the fatty acid is located in the interior of I-FABP and forms a unique "quintet" of electrostatic interactions involving Arg106; Gln 115, and two solvent molecules. The hydrocarbon tail is bent with a slight left-handed helical twist from the carboxylate group to C-16. The bent methylene chain resides in a "cradle" formed by the side-chains of hydrophobic, mainly aromatic, amino acid residues. The refined molecular model of holo-I-FABP suggests several potential locations for entry and exiting of the fatty acid.  相似文献   

4.
The three-dimensional structure of recombinant human muscle fatty acid-binding protein with a bound fatty acid has been solved and refined with x-ray diffraction data to 2.1 A resolution. The refined model has a crystallographic R factor of 19.5% for data between 9.0 and 2.1 A (7243 unique reflections) and root-mean-square deviations in bond length and bond angle of 0.013 A and 2.7 degrees. The protein contains 10 antiparallel beta-strands and two short alpha-helices which are arranged into two approximately orthogonal beta-sheets. Difference electron density maps and a multiple isomorphous derivative electron density map showed the presence of a single bound molecule of a long chain fatty acid within the interior core of the protein. The hydrocarbon tail of the fatty acid was found to be in a "U-shaped" conformation. Seven ordered water molecules were also identified within the interior of the protein in a pocket on the pseudo-si face of the fatty acid's bent hydrocarbon tail. The methylene tail of the fatty acid forms van der Waals interactions with atoms from 13 residues and three ordered waters. The carboxylate of the fatty acid is located in the interior of the protein where it forms hydrogen bonds with the side chains of Tyr128 and Arg126 and two ordered water molecules. A comparison of the three-dimensional structure of human muscle fatty acid-binding protein and rat intestinal fatty acid-binding protein shows strong similarity. Both proteins bind a single fatty acid within their interior cores, but the bound fatty acids are very different in their conformations and interactions. These findings suggest that the intestinal and muscle fatty acid-binding proteins have evolved distinct binding sites in order to satisfy different requirements within the tissues where they are expressed.  相似文献   

5.
The structural origins of the specificity of the neurophysin hormone-binding site for an aromatic residue in peptide position 2 were explored by analyzing the binding of a series of peptides in the context of the crystal structure of liganded neurophysin. A new modeling method for describing the van der Waals surface of binding sites assisted in the analysis. Particular attention was paid to the unusually large (5 kcal/mol) difference in binding free energy between Phe and Leu in position 2, a value representing more than three times the maximum expected based on hydrophobicity alone, and additionally remarkable since modeling indicated that the Leu side chain was readily accommodated by the binding pocket. Although evidence was obtained of a weak thermodynamic linkage between the binding interactions of the residue 2 side chain and of the peptide alpha-amino group, two factors are considered central. (1) The bound Leu side chain can establish only one-third of the van der Waals contacts available to a Phe side chain. (2) The bound Phe side chain appears to be additionally stabilized relative to Leu by more favorable dipole and induced dipole interactions with nonaromatic polar and sulfur ligands in the binding pocket, as evidenced by examination of its interactions in the pocket, analysis of the detailed energetics of transfer of Phe and Leu side chains from water to other phases, and comparison with thermodynamic and structural data for the binding of residue 1 side chains in this system. While such polar interactions of aromatic rings have been previously observed, the present results suggest their potential for significant thermodynamic contributions to protein structure and ligand recognition.  相似文献   

6.
Enterocytes in the small intestinal mucosa contain abundant quantities of two homologous cytosolic proteins known as intestinal and liver fatty acid-binding proteins (I- and L-FABP, respectively). To elucidate structure-function relationships for these proteins, the interactions between 13C-enriched palmitate and oleate and Escherichia coli-expressed rat I- and L-FABP were systematically compared using 13C NMR spectroscopy. NMR spectra of samples containing fatty acids (FA) and I-FABP at different molar ratios (all at pH 7.2 and 37 degrees C) exhibited a single carboxyl resonance corresponding to FA bound to I-FABP (181.4 ppm, peak I) and an additional carboxyl resonance corresponding to unbound FA in a bilayer phase (179.6 ppm). Peak I reached a maximum intensity corresponding to 1 mol of bound FA/mol of I-FABP under all sample conditions examined. NMR spectra for samples containing FA and L-FABP also exhibited a single carboxyl resonance corresponding to FA bound to L-FABP but at a different chemical shift value (182.2 ppm, peak L). Its maximum intensity varied depending on the physical state of the unbound FA (liquid crystalline or crystalline), the FA used (palmitate or oleate), and the sample pH. In the presence of a liquid crystalline (bilayer) phase, up to 1 (oleate) or 2 (palmitate) mol of FA were bound/mol of L-FABP, but in the presence of a crystalline phase (1:1 acid-soap), up to 3 mol of palmitate were bound/mol of L-FABP (all at pH 7.2). Peak I exhibited little or no ionization shift over a wide pH range (pH 3.0-11.0), and its chemical shift was unaffected by the ionization of Lys and His residues. Hence, the carboxylate group of FA bound to I-FABP was solvent inaccessible and most likely involved in an ion-pair electrostatic interaction with the delta-guanidinium moiety of an Arg residue. In contrast, peak L exhibited an ionization shift and an estimated apparent pKa value similar to that obtained for monomeric FA in water, suggesting that the carboxylate groups of FA bound to L-FABP were solvent accessible and located at or near the protein solvent interface. With decreasing pH, FA dissociated from L-FABP but not I-FABP, as monitored by NMR peak intensities. Concurrently, a large decrease in circular dichroism molar ellipticity was observed with L-FABP but not I-FABP. In conclusion, I-FABP and L-FABP are distinct with regards to their FA-binding stoichiometries, binding mechanisms, and sensitivity to pH.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Conserved phenylalanine 35 is one of the hydrophobic patch residues on the surface of cytochrome b5 (cyt b5). This patch is partially exposed on the surface of cyt b5 while its buried face is in direct van der Waals' contact with heme b. Residues Phe35 and Phe/Tyr74 also form an aromatic channel with His39, which is one of the axial ligands of heme b. By site-directed mutagenesis we have produced three mutants of cyt b5: Phe35-->Tyr, Phe35-->Leu, and Phe35-->His. We found that of these three mutants, the Phe35-->Tyr mutant displays abnormal properties. The redox potential of the Phe35-->Tyr mutant is 66 mV more negative than that of the wild-type cyt b5 and the oxidized Phe35-->Tyr mutant is more stable towards thermal and chemical denaturation than wild-type cyt b5. In this study we studied the most interesting mutant, Phe35-->Tyr, by X-ray crystallography, thermal denaturation, CD and kinetic studies of heme dissociation to explore the origin of its unusual behaviors. Analysis of crystal structure of the Phe35-->Tyr mutant shows that the overall structure of the mutant is basically the same as that of the wild-type protein. However, the introduction of a hydroxyl group in the heme pocket, and the increased van der Waals' and electrostatic interactions between the side chain of Tyr35 and the heme probably result in enhancement of stability of the Phe35-->Tyr mutant. The kinetic difference of the heme trapped by the heme pocket also supports this conclusion. The detailed conformational changes of the proteins in response to heat have been studied by CD for the first time, revealing the existence of the folding intermediate.  相似文献   

8.
The fatty acid-binding protein from rat intestine (I-FABP) has been covalently modified with the fluorescent compound Acrylodan. Acrylodan was found to label Lys27, one of the few amino acid residues found by x-ray diffraction studies to change orientation upon fatty acid (FA) binding to I-FABP. Binding of FA to this Acrylodan-modified I-FABP (ADIFAB) induces a large shift in fluorescence emission wavelength from 432 to 505 nm. As a consequence, the ratio of emission intensities provides a direct measure of the concentration of FA bound to the protein. Binding of FA is well described by single site equilibrium for FA concentrations below the critical micelle concentration. ADIFAB dissociation constants (Kd) determined at 37 degrees C and at concentrations below the critical micelle concentration for oleate, palmitate, linoleate, arachidonate, and linolenate were, respectively, 0.28, 0.33, 0.97, 1.6, and 2.5 microM. The variation of these Kd values with FA molecular species is highly correlated with the solubility of the FA in water, suggesting that all these FA bind with a similar conformation in the I-FABP binding site. The ADIFAB response together with the measured equilibrium constants allows a direct determination of the concentration of long chain free fatty acid (FFA) in the concentration range, depending upon the FA molecular species, between 1 nM and > 20 microM. As an example of its use as a probe to measure FFA levels, ADIFAB is used here to monitor the time course for FFA release from IgE receptor- and ionomycin-activated rat basophilic leukemia (RBL) cells.  相似文献   

9.
Li H  Frieden C 《Biochemistry》2005,44(7):2369-2377
(19)F-Nuclear magnetic resonance (NMR) studies have been carried out after incorporation of 4-(19)F-phenylalanine into the intestinal fatty acid binding protein (IFABP), a protein composed of two beta-sheets containing a large hydrophobic cavity into which ligands bind. NMR spectra have been obtained with both the ligand-free and ligand-bound (oleate) forms. There are 29 residues involved in van der Waals or hydrophobic interactions or both to form a U-shaped ligand binding pocket (Sacchettni J. C., Scapin G., Gopaul D., and Gordon J. I. (1992) J. Biol. Chem. 267, 23534-23545). The protein contains eight phenylalanines, and all are included in those residues that line the pocket. Peak assignments were made using site-specific incorporation of 4-(19)F-phenylalanine. Fluorine is a highly sensitive probe to monitor the conformation and dynamics of the side chains in native state. We find that chemical exchange in the binding pocket exists in the native apo- and holo-state. Of the eight phenylalanine residues, Phe2, Phe47, Phe62, Phe68, and Phe93 are arranged on one side of the binding pocket, and all exist in two conformations with Phe2, Phe47, and Phe62 showing exchange cross-peaks with minor conformation in (19)F-(19)F nuclear Overhauser effect (NOESY) spectra. The line widths of Phe68 and Phe93 are broader than those of other phenylalanine residues and can be deconvoluted into two peaks. Phe47, Phe62, Phe68, Phe93, and Trp82 have been proposed to be involved in the early stage of collapse (Ropson, I. J., and Frieden, C. (1992) Proc. Natl. Acad. Sci U.S.A. 89, 7222-7226), but a temperature study suggests that Phe47 behaves differently than other residues and may be more involved in a later stage of folding, for example, side chain stabilization. In the holo-form, Phe17 shows an extra exchange cross-peak in addition to those exchange cross-peaks observed in apo-form. Holo-IFABP exhibits broader line width than the apo-form, suggesting more flexibility of the binding cavity upon ligand binding.  相似文献   

10.
Van der Waals locks: loop-n-lock structure of globular proteins   总被引:1,自引:0,他引:1  
In a globular protein the polypeptide chain returns to itself many times, making numerous chain-to-chain contacts. The stability of these contacts is maintained primarily by van der Waals interactions. In this work we isolated and analysed van der Waals contacts that stabilise spatial structures of nine major folds. We suggest a specific way to identify the tightest contacts of prime importance for the stability of a given crystallized protein and introduce the notion of the van der Waals lock. The loops closed by the van der Waals interactions provide a basically novel view of protein globule organization: the loop-n-lock structure. This opens a new perspective in understanding protein folding as well: the consecutive looping of the polypeptide chain and the locking of the loop ends by tight van der Waals interactions.  相似文献   

11.
A prokaryotic expression vector containing the rec A promoter and a translational enhancer element from the gene 10 leader of bacteriophage T7 was used to direct efficient synthesis of rat intestinal fatty acid binding protein (I-FABP) in E. coli. Expression of I-FABP in E. coli has no apparent, deleterious effects on the organism. High levels of expression of I-FABP mRNA in supE+ strains of E. coli, such as JM101, is associated with suppression of termination at its UGA stop codon. This can be eliminated by using a sup-Estrain as MG1655 and by site-directed mutagenesis of the cDNA to create an in frame UAA stop codon. E. coli-derived rat I-FABP lacks its initiator Met residues. It has been crystallized with and without bound palmitate. High resolution x-ray crystallographic studies of the 131 residue apo- and holo-proteins have revealed the following. I-FABP contains 10 anti-parallel -strands organized into two orthogonally situated -sheets. The overall conformation of the protein resembles that of a clam — hence the term -clam. The bound ligand is located in the interior of the protein. Its carboxylate group forms part of a unique five member hydrogen bonding network consisting of two ordered solvent molecules as well as the side chains of Arg106 and Gln115. The hydrocarbon chain of the bound C16:0 fatty acid has a distinctive bent conformation with a slight left-handed helical twist. This conformation is maintained by interactions with the side chains of a number of hydrophobic and aromatic amino acids. Apo-I-FABP has a similar overall conformation to holo-I-FABP indicating that the -clam structure is stable even without bound ligand. The space occupied by bound ligand in the core of the holo-protein is occupied by additional ordered solvent molecules in the apo-protein. Differences in the side chain orientations pf several residues located over a potential opening to the cores of the apo- and holo-proteins suggest that solvent may play an important role in the binding mechanism. Comparison of the C coordinates of apo- and holo-I-FABP with those of other proteins indicates it is a member of a superfamily that currently includes (i) 10 mammalian intracellular lipid binding proteins, (ii) the photoactive yellow protein from the purple photoautotrophic bacterium Ectothiorhodospira halophila and (iii) a group of extracellular lipid binding proteins from a diverse number of phyla that have a common barrel consisting of 8 anti-parallel -strands stacked in two nearly orthogonal sheets. In summary, E. coli-derived I-FABP not only represents a useful model for assessing the atomic details of fatty acid-protein interactions and the mechanisms which regulate acquisition and release of this type of ligand, but also structure/function relationships in other superfamily members.Abbreviations I-FABP Intestinal Fatty Acid Binding Protein - r.m.s root mean square  相似文献   

12.
The three-dimensional structure of the maltose- or maltodextrin-binding protein (Mr = 40,622) with bound maltose has been obtained by crystallographic analysis at 2.8-A resolution. The structure, which has been partially refined at 2.3 A, is ellipsoidal with overall dimensions of 30 x 40 x 65 A and divided into two distinct globular domains by a deep groove. Although each domain is built from two peptide segments from the amino- and carboxyl-terminal halves, both domains exhibit similar supersecondary structure, consisting of a central beta-pleated sheet flanked on both sides with two or three parallel alpha-helices. The groove, which has a depth of 18 A and a base of about 9 x 18 A, contains the maltodextrin-binding site. We have previously observed the same general features in the well-refined structures of six other periplasmic receptors with specificities for L-arabinose, D-galactose/D-glucose, sulfate, phosphate, leucine/isoleucine/valine, and leucine. The bound maltose is buried in the groove and almost completely inaccessible to the bulk solvent. The groove is heavily populated by polar and aromatic groups many of which are involved in extensive hydrogen-bonding and van der Waals interactions with the maltose. All the disaccharide hydroxyl groups, which form a peripheral polar surface approximately in the plane of the sugar rings, are tied in a total of 11 direct hydrogen bonds with six charged side chains, one Trp side chain, and one peptide backbone NH, and five indirect hydrogen bonds via water molecules. The maltose is wedged between four aromatic side chains. The resulting stacking of these aromatic residues on the faces of the glucosyl units provides a majority of the van der Waals contacts in the complex. The nonreducing glucosyl unit of the maltose is involved in approximately twice as many hydrogen bonds and van der Waals contacts as the glucosyl unit at the reducing end. The binding protein-maltose complex shows the best example of the extensive use of polar and aromatic residues in binding oligosaccharides. The tertiary structure of the maltodextrin-binding protein, along with the results of genetic studies by a number of investigators, has also enabled us for the first time to map the different regions on the surface of the protein involved in the interactions with the membrane-bound protein components necessary for transport of and chemotaxis toward maltodextrins. These sites permit distinction of the "open cleft" (without bound sugar) and closed (with bound sugar) conformations of the binding protein by the chemotactic signal transducer with which the maltodextrin-binding protein interacts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The molecular mechanism of drug action has been studied by X-ray diffraction analysis of human carbonic anhydrase I complexed with two different sulphonamides. The acetazolamide and amino benzene sulphonamide are found to bind to the catalytically essential zinc ion thereby inhibiting the function of the enzyme. The inhibitor molecules are stabilized in the active site of the protein by van der Waals interaction with a number of protein side chain groups.  相似文献   

14.
Matta CF  Bader RF 《Proteins》2003,52(3):360-399
This article presents a study of the molecular charge distributions of the genetically encoded amino acids (AA), one that builds on the previous determination of their equilibrium geometries and the demonstrated transferability of their common geometrical parameters. The properties of the charge distributions are characterized and given quantitative expression in terms of the bond and atomic properties determined within the quantum theory of atoms-in-molecules (QTAIM) that defines atoms and bonds in terms of the observable charge density. The properties so defined are demonstrated to be remarkably transferable, a reflection of the underlying transferability of the charge distributions of the main chain and other groups common to the AA. The use of the atomic properties in obtaining an understanding of the biological functions of the AA, whether free or bound in a polypeptide, is demonstrated by the excellent statistical correlations they yield with experimental physicochemical properties. A property of the AA side chains of particular importance is the charge separation index (CSI), a quantity previously defined as the sum of the magnitudes of the atomic charges and which measures the degree of separation of positive and negative charges in the side chain of interest. The CSI values provide a correlation with the measured free energies of transfer of capped side chain analogues, from the vapor phase to aqueous solution, yielding a linear regression equation with r2 = 0.94. The atomic volume is defined by the van der Waals isodensity surface and it, together with the CSI, which accounts for the electrostriction of the solvent, yield a linear regression (r2 = 0.98) with the measured partial molar volumes of the AAs. The changes in free energies of transfer from octanol to water upon interchanging 153 pairs of AAs and from cyclohexane to water upon interchanging 190 pairs of AAs, were modeled using only three calculated parameters (representing electrostatic and volume contributions) yielding linear regressions with r2 values of 0.78 and 0.89, respectively. These results are a prelude to the single-site mutation-induced changes in the stabilities of two typical proteins: ubiquitin and staphylococcal nuclease. Strong quadratic correlations (r2 approximately 0.9) were obtained between DeltaCSI upon mutation and each of the two terms DeltaDeltaH and TDeltaDeltaS taken from recent and accurate differential scanning calorimetry experiments on ubiquitin. When the two terms are summed to yield DeltaDeltaG, the quadratic terms nearly cancel, and the result is a simple linear fit between DeltaDeltaG and DeltaCSI with r2 = 0.88. As another example, the change in the stability of staphylococcal nuclease upon mutation has been fitted linearly (r2 = 0.83) to the sum of a DeltaCSI term and a term representing the change in the van der Waals volume of the side chains upon mutation. The suggested correlation of the polarity of the side chain with the second letter of the AA triplet genetic codon is given concrete expression in a classification of the side chains in terms of their CSI values and their group dipole moments. For example, all amino acids with a pyrimidine base as their second letter in mRNA possess side-chain CSI < or = 2.8 (with the exception of Cys), whereas all those with CSI > 2.8 possess an purine base. The article concludes with two proposals for measuring and predicting molecular complementarity: van der Waals complementarity expressed in terms of the van der Waals isodensity surface and Lewis complementarity expressed in terms of the local charge concentrations and depletions defined by the topology of the Laplacian of the electron density. A display of the experimentally accessible Laplacian distribution for a folded protein would offer a clear picture of the operation of the "stereochemical code" proposed as the determinant in the folding process.  相似文献   

15.
Gibberellins, a class of plant hormones, consist of more than 120 members. Only a few of them are recognized by a receptor that remains unknown. The haptenic mouse monoclonal antibody, 4-B8(8)/E9, was generated against gibberellin A(4) (GA(4)) to recognize biologically active GA selectivity, and we attempted to confirm the binding properties between the antibody and GA(4). We carried out an X-ray crystallographic analysis of the 4-B8(8)/E9 Fab fragment complexed with GA(4) at a 2.8 A resolution by using the molecular replacement method. The crystal structure of the Fab fragment showed the typical immunoglobulin fold of the beta-barrel structure which is the common motif of all antibodies. A small hapten-combining site was made up of three heavy chain CDR loops. On the other hand, CDRs of the light chain did not interact directly with GA(4). The C/D rings of the GA(4) molecule were in van der Waals contact mainly with the aromatic side chain of Tyr100AH and Phe100BH of CDR-H3. The 3 beta-hydroxyl and 6 beta-carboxyl groups were, respectively, hydrogen-bonded to the main chain of Ala33H and to the Thr53H heavy chain.  相似文献   

16.
H L Scott 《Biochemistry》1986,25(20):6122-6126
The Monte Carlo method has been utilized to calculate lipid chain order parameters in model monomolecular layers (half-bilayers) containing several different model polypeptides. The systems all consist of a periodic array of identical cells, each containing 35 hydrocarbon chains and 1 "perturbant" (a small model polypeptide or protein). The lipid chains are each 10 CH2 subunits long, have one end constrained to lie in the bilayer plane, and interact via van der Waals forces between all subunits. The chains also interact with the perturbant via van der Waals forces. With standard Monte Carlo procedures order parameter profiles are calculated for chains that are close to the perturbant and for the nonneighboring chains. In order to examine a wide range of possibilities, several different model polypeptides are considered: (i) a rigid smooth cylinder, (ii) a cylinder with identical side chains at alpha-helical positions, (iii) a cylinder with nonidentical side chains at alpha-helical positions, and (iv) a cylinder identical with (ii) but which only extends about halfway through the monolayer. Although results differ for the different systems studied, in all cases only slight conformational differences between the bulk chains and the chains that are nearest the perturbants are found, and it is not possible to characterize the boundary chains as "more ordered" or "less ordered" than the nonboundary chains.  相似文献   

17.
The structure of aldehyde reductase (ALR1) in ternary complex with the coenzyme NADPH and 3,5-dichlorosalicylic acid (DCL), a potent inhibitor of human 20α-hydroxysteroid dehydrogenase (AKR1C1), was determined at a resolution of 2.41 Å. The inhibitor formed a network of hydrogen bonds with the active site residues Trp22, Tyr50, His113, Trp114 and Arg312. Molecular modelling calculations together with inhibitory activity measurements indicated that DCL was a less potent inhibitor of ALR1 (256-fold) when compared to AKR1C1. In AKR1C1, the inhibitor formed a 10-fold stronger binding interaction with the catalytic residue (Tyr55), non-conserved hydrogen bonding interaction with His222, and additional van der Waals contacts with the non-conserved C-terminal residues Leu306, Leu308 and Phe311 that contribute to the inhibitor’s selectivity advantage for AKR1C1 over ALR1.  相似文献   

18.
The synthesis and binding affinities of 32 X3Gly4 dual-substitution analogues of the natural opioid heptapeptides deltorphin I and II are reported. A multiple regression QSAR analysis was performed using those results along with literature data for the X3Asp4 and Phe3X4 side chain analogues. Fitting to a three-term potential well model with hydrophobic and van der Waals attraction terms and a steric repulsion term indicates that the δ and μ receptor sites for binding the residue three side chain are similar, and that the binding interaction is primarily van der Waals and secondarily hydrophobic. Further analysis indicates that both sites are more constrained with respect to side chain length than width or thickness, and the μ site appears to be somewhat larger. A binding model consistent with these findings pictures the native third residues Phe ring laying on a step notched out of the receptor surface, pointing toward the back (riser) of the step, and sandwiched between the receptor and ligand. However, the binding sites for the residue four side chains are quite different on δ and μ receptors. Binding to the δ site appears to involve both electrostatic attraction (probably to a partial positive charge) and van der Waals attraction, but not necessarily hydrogen bonding, and more constraint with respect to side chain length than width or thickness. In contrast, there is no evidence for any kind of binding attraction between the side chain of residue four and the μ site, which acts more as steric repulsion site, as though the space that is a pocket on the δ receptor is filled in on the μ receptor. A regression model based only on steric repulsion by van der Waals bulk and/or the effective bulk of a hydration layer accounts for over 80% of the residue four related variation in μ affinity.

Abstract

Thirty-two new X3Gly4 analogues of deltrophin I/II opioid peptides are described. A QSAR study of the X3Gly4, X3Asp4, and Phe3X4 analogue series using a potential well model reveals the roles of hydrophobic, van der Waals, electrostatic, hydrogen bonding and steric interactions in δ and μ receptor binding of X3 and X4 side chains.  相似文献   


19.
Lee J  Lee K  Shin S 《Biophysical journal》2000,78(4):1665-1671
We have investigated the response of a protein structure to cavity-creating mutations by molecular dynamics (MD) simulations for the wild-type and the five mutants of phage T4 lysozyme. Essential dynamics (ED) analysis and the methods for calculating different components of local interaction energies are used to examine the structural and energetic characteristics associated with the mutations. In agreement with the x-ray results, it is found that the structural changes due to the replacements of a bulky side chain such as Leu or Phe with Ala within the hydrophobic core can be characterized as slight adjustments rather than substantial reorganization of the protein. The relative stability of different mutant structures can be related with the extent of structural readjustments in response to the mutation. The destabilization of the mutant Leu-->Ala proteins relative to the wild-type is closely related with the loss of van der Waals contacts due to the cavity-creating mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号