首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Inactivation of currents carried by Ba2+ and Ca2+, as well as intramembrane charge movement from L-type Ca2+ channels were studied in guinea pig ventricular myocytes using the whole-cell patch clamp technique. Prolonged (2 s) conditioning depolarization caused substantial reduction of charge movement between -70 and 10 mV (charge 1, or charge from noninactivated channels). In parallel, the charge mobile between -70 and -150 mV (charge 2, or charge from inactivated channels) was increased. The availability of charge 2 depended on the conditioning pulse voltage as the sum of two Boltzmann components. One component had a central voltage of -75 mV and a magnitude of 1.7 nC/microF. It presumably is the charge movement (charge 2) from Na+ channels. The other component, with a central voltage of approximately - 30 mV and a magnitude of 3.5 nC/microF, is the charge 2 of L-type Ca2+ channels. The sum of charge 1 and charge 2 was conserved after different conditioning pulses. The difference between the voltage dependence of the activation of L-type Ca2+ channels (half-activation voltage, V, of approximately -20 mV) and that of charge 2 (V of -100 mV) made it possible to record the ionic currents through Ca2+ channels and charge 2 in the same solution. In an external solution with Ba2+ as sole metal the maximum available charge 2 of L-type Ca2+ channels was 10-15% greater than that in a Ca(2+)-containing solution. External Cd2+ caused 20-30% reduction of charge 2 both from Na+ and L-type Ca2+ channels. Voltage- and Ca(2+)-dependent inactivation phenomena were compared with a double pulse protocol in cells perfused with an internal solution of low calcium buffering capacity. As the conditioning pulse voltage increased, inactivation monitored with the second pulse went through a minimum at about 0 mV, the voltage at which conditioning current had its maximum. Charge 2, recorded in parallel, did not show any increase associated with calcium entry. Two alternative interpretations of these observations are: (a) that Ca(2+)- dependent inactivation does not alter the voltage sensor, and (b) that inactivation affects the voltage sensor, but only in the small fraction of channels that open, and the effect goes undetected. A model of channel gating that assumes the first possibility is shown to account fully for the experimental results. Thus, extracellular divalent cations modulate voltage-dependent inactivation of the Ca2+ channel. Intracellular Ca2+ instead, appears to cause inactivation of the channel without affecting its voltage sensor.  相似文献   

2.
Ca2+-dependent regulation of the ion current through the alpha1Cbeta2aalpha2delta-1 (L-type) calcium channel transiently expressed in HEK 293 cells was investigated using whole cell patch clamp method. Ca2+ or Na+ ions were used as a charge carrier. Intracellular Ca2+ was either buffered by 10 mM EGTA or 200 microM Ca2+ was added into non-buffered intracellular solution. Free intracellular Ca2+ inactivated permanently about 80% of the L-type calcium current. The L-type calcium channel inactivated during a depolarizing pulse with two time constants, tau(fast) and tau(slow). Free intracellular calcium accelerated both time constants. Effect on the tau(slow) was more pronounced. About 80% of the channel inactivation during brief depolarizing pulse could be attributed to a Ca2+-dependent mechanism and 20% to a voltage-dependent mechanism. When Na+ ions were used as a charge carrier, the L-type current still inactivated with two time constants that were 10 times slower and were virtually voltage-independent. Ca2+ ions stabilized the inactivated state of the channel in a concentration-dependent manner.  相似文献   

3.
Peterson BZ  DeMaria CD  Adelman JP  Yue DT 《Neuron》1999,22(3):549-558
Elevated intracellular Ca2+ triggers inactivation of L-type calcium channels, providing negative Ca2+ feedback in many cells. Ca2+ binding to the main alpha1c channel subunit has been widely proposed to initiate such Ca2+ -dependent inactivation. Here, we find that overexpression of mutant, Ca2+ -insensitive calmodulin (CaM) ablates Ca2+ -dependent inactivation in a "dominant-negative" manner. This result demonstrates that CaM is the actual Ca2+ sensor for inactivation and suggests that CaM is constitutively tethered to the channel complex. Inactivation is likely to occur via Ca2+ -dependent interaction of tethered CaM with an IQ-like motif on the carboxyl tail of alpha1c. CaM also binds to analogous IQ regions of N-, P/Q-, and R-type calcium channels, suggesting that CaM-mediated effects may be widespread in the calcium channel family.  相似文献   

4.
Large-conductance Ca(2+)-activated K(+) channels can be activated by membrane voltage in the absence of Ca(2+) binding, indicating that these channels contain an intrinsic voltage sensor. The properties of this voltage sensor and its relationship to channel activation were examined by studying gating charge movement from mSlo Ca(2+)-activated K(+) channels in the virtual absence of Ca(2+) (<1 nM). Charge movement was measured in response to voltage steps or sinusoidal voltage commands. The charge-voltage relationship (Q-V) is shallower and shifted to more negative voltages than the voltage-dependent open probability (G-V). Both ON and OFF gating currents evoked by brief (0.5-ms) voltage pulses appear to decay rapidly (tau(ON) = 60 microseconds at +200 mV, tau(OFF) = 16 microseconds at -80 mV). However, Q(OFF) increases slowly with pulse duration, indicating that a large fraction of ON charge develops with a time course comparable to that of I(K) activation. The slow onset of this gating charge prevents its detection as a component of I(gON), although it represents approximately 40% of the total charge moved at +140 mV. The decay of I(gOFF) is slowed after depolarizations that open mSlo channels. Yet, the majority of open channel charge relaxation is too rapid to be limited by channel closing. These results can be understood in terms of the allosteric voltage-gating scheme developed in the preceding paper (Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. J. Gen. Physiol. 114:277-304). The model contains five open (O) and five closed (C) states arranged in parallel, and the kinetic and steady-state properties of mSlo gating currents exhibit multiple components associated with C-C, O-O, and C-O transitions.  相似文献   

5.
A general mechanism for the physiological regulation of the activity of voltage-dependent Na+, Ca++, K+, and Cl channels by neurotransmitters in a variety of excitable cell types may involve a final common pathway of a cyclic AMP-dependent phosphorylation of the channel protein. The functional correlates of channel phosphorylation are known to involve a change in the probability of opening, and a negative or positive shift in the voltage dependence for activation of the conductance. The voltage dependence for activation appears to be governed by the properties of the charge movement of the voltage-sensing moiety of the channel. This study of the gating charge movement of cardiac Ca++ channels has revealed that isoproterenol or cAMP (via a presumed phosphorylation of the channel) speeds the kinetics of the Ca++ channel gating charge movement. These results suggest that the changes in the kinetics and voltage dependence of the cardiac calcium currents produced by beta-adrenergic stimulation are initiated, in part, by parallel changes in the gating charge movement.  相似文献   

6.
Kim J  Ghosh S  Nunziato DA  Pitt GS 《Neuron》2004,41(5):745-754
Ca(2+)-dependent inactivation (CDI) of L-type voltage-gated Ca(2+) channels limits Ca(2+) entry into neurons, thereby regulating numerous cellular events. Here we present the isolation and purification of the Ca(2+)-sensor complex, consisting of calmodulin (CaM) and part of the channel's pore-forming alpha(1C) subunit, and demonstrate the Ca(2+)-dependent conformational shift that underlies inactivation. Dominant-negative CaM mutants that prevent CDI block the sensor's Ca(2+)-dependent conformational change. We show how Ile1654 in the CaM binding IQ motif of alpha(1C) forms the link between the Ca(2+) sensor and the downstream inactivation machinery, using the alpha(1C) EF hand motif as a signal transducer to activate the putative pore-occluder, the alpha(1C) I-II intracellular linker.  相似文献   

7.
Most voltage-gated potassium (Kv) channels undergo C-type inactivation during sustained depolarization. The voltage dependence and other mechanistic aspects of this process are debated, and difficult to elucidate because of concomitant voltage-dependent activation. Here, we demonstrate that MinK-KCNQ1 (IKs) channels with an S6-domain mutation, F340W in KCNQ1, exhibit constitutive activation but voltage-dependent C-type inactivation. F340W-IKs inactivation was sensitive to extracellular cation concentration and species, and it altered ion selectivity, suggestive of pore constriction. The rate and extent of F340W-IKs inactivation and recovery from inactivation were voltage-dependent with physiologic intracellular ion concentrations, and in the absence or presence of external K+, with an estimated gating charge, zi, of ∼1. Finally, double-mutant channels with a single S4 charge neutralization (R231A,F340W-IKs) exhibited constitutive C-type inactivation. The results suggest that F340W-IKs channels exhibit voltage-dependent C-type inactivation involving S4, without the necessity for voltage-dependent opening, allosteric coupling to voltage-dependent S6 transitions occurring during channel opening, or voltage-dependent changes in ion occupancy. The data also identify F340 as a critical hub for KCNQ1 gating processes and their modulation by MinK, and present a unique system for further mechanistic studies of the role of coupling of C-type inactivation to S4 movement, without contamination from voltage-dependent activation.  相似文献   

8.
The voltage- and Ca2+-dependent gating mechanism of large-conductance Ca2+-activated K+ (BK) channels from cultured rat skeletal muscle was studied using single-channel analysis. Channel open probability (Po) increased with depolarization, as determined by limiting slope measurements (11 mV per e-fold change in Po; effective gating charge, q(eff), of 2.3 +/- 0.6 e(o)). Estimates of q(eff) were little changed for intracellular Ca2+ (Ca2+(i)) ranging from 0.0003 to 1,024 microM. Increasing Ca2+(i) from 0.03 to 1,024 microM shifted the voltage for half maximal activation (V(1/2)) 175 mV in the hyperpolarizing direction. V(1/2) was independent of Ca2+(i) for Ca2+(i) < or = 0.03 microM, indicating that the channel can be activated in the absence of Ca2+(i). Open and closed dwell-time distributions for data obtained at different Ca2+(i) and voltage, but at the same Po, were different, indicating that the major action of voltage is not through concentrating Ca2+ at the binding sites. The voltage dependence of Po arose from a decrease in the mean closing rate with depolarization (q(eff) = -0.5 e(o)) and an increase in the mean opening rate (q(eff) = 1.8 e(o)), consistent with voltage-dependent steps in both the activation and deactivation pathways. A 50-state two-tiered model with separate voltage- and Ca2+-dependent steps was consistent with the major features of the voltage and Ca2+ dependence of the single-channel kinetics over wide ranges of Ca2+(i) (approximately 0 through 1,024 microM), voltage (+80 to -80 mV), and Po (10(-4) to 0.96). In the model, the voltage dependence of the gating arises mainly from voltage-dependent transitions between closed (C-C) and open (O-O) states, with less voltage dependence for transitions between open and closed states (C-O), and with no voltage dependence for Ca2+-binding and unbinding. The two-tiered model can serve as a working hypothesis for the Ca2+- and voltage-dependent gating of the BK channel.  相似文献   

9.
Large conductance Ca2+-activated K+ (BK) channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv) channels characterized by having six (S1-S6) transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0) transmembrane domain that leads to an external NH2-terminus. The BK channel is activated by internal Ca2+, and using chimeric channels and mutagenesis, three distinct Ca2+-dependent regulatory mechanisms with different divalent cation selectivity have been identified in its large COOH-terminus. Two of these putative Ca2+-binding domains activate the BK channel when cytoplasmic Ca2+ reaches micromolar concentrations, and a low Ca2+ affinity mechanism may be involved in the physiological regulation by Mg2+. The presence in the BK channel of multiple Ca2+-binding sites explains the huge Ca2+ concentration range (0.1 microM-100 microM) in which the divalent cation influences channel gating. BK channels are also voltage-dependent, and all the experimental evidence points toward the S4 domain as the domain in charge of sensing the voltage. Calcium can open BK channels when all the voltage sensors are in their resting configuration, and voltage is able to activate channels in the complete absence of Ca2+. Therefore, Ca2+ and voltage act independently to enhance channel opening, and this behavior can be explained using a two-tiered allosteric gating mechanism.  相似文献   

10.
In voltage-dependent ion channels, the gating of the channels is determined by the movement of the voltage sensor. This movement reflects the rearrangement of the protein in response to a voltage stimulus, and it can be thought of as a net displacement of elementary charges (e0) through the membrane (z: effective number of elementary charges). In this paper, we measured z in Shaker IR (inactivation removed) K+ channels, neuronal alpha 1E and alpha 1A, and cardiac alpha 1C Ca2+ channels using two methods: (a) limiting slope analysis of the conductance-voltage relationship and (b) variance analysis, to evaluate the number of active channels in a patch, combined with the measurement of charge movement in the same patch. We found that in Shaker IR K+ channels the two methods agreed with a z congruent to 13. This suggests that all the channels that gate can open and that all the measured charge is coupled to pore opening in a strictly sequential kinetic model. For all Ca2+ channels the limiting slope method gave consistent results regardless of the presence or type of beta subunit tested (z = 8.6). However, as seen with alpha 1E, the variance analysis gave different results depending on the beta subunit used. alpha 1E and alpha 1E beta 1a gave higher z values (z = 14.77 and z = 15.13 respectively) than alpha 1E beta 2a (z = 9.50, which is similar to the limiting slope results). Both the beta 1a and beta 2a subunits, coexpressed with alpha 1E Ca2+ channels facilitated channel opening by shifting the activation curve to more negative potentials, but only the beta 2a subunit increased the maximum open probability. The higher z using variance analysis in alpha 1E and alpha 1E beta 1a can be explained by a set of charges not coupled to pore opening. This set of charges moves in transitions leading to nulls thus not contributing to the ionic current fluctuations but eliciting gating currents. Coexpression of the beta 2a subunit would minimize the fraction of nulls leading to the correct estimation of the number of channels and z.  相似文献   

11.
Intramembrane charge movement was recorded in rat and rabbit ventricular cells using the whole-cell voltage clamp technique. Na and K currents were eliminated by using tetraethylammonium as the main cation internally and externally, and Ca channel current was blocked by Cd and La. With steps in the range of -110 to -150 used to define linear capacitance, extra charge moves during steps positive to approximately -70 mV. With holding potentials near -100 mV, the extra charge moving outward on depolarization (ON charge) is roughly equal to the extra charge moving inward on repolarization (OFF charge) after 50-100 ms. Both ON and OFF charge saturate above approximately +20 mV; saturating charge movement is approximately 1,100 fC (approximately 11 nC/muF of linear capacitance). When the holding potential is depolarized to -50 mV, ON charge is reduced by approximately 40%, with little change in OFF charge. The reduction of ON charge by holding potential in this range matches inactivation of Na current measured in the same cells, suggesting that this component might arise from Na channel gating. The ON charge remaining at a holding potential of -50 mV has properties expected of Ca channel gating current: it is greatly reduced by application of 10 muM D600 when accompanied by long depolarizations and it is reduced at more positive holding potentials with a voltage dependence similar to that of Ca channel inactivation. However, the D600-sensitive charge movement is much larger than the Ca channel gating current that would be expected if the movement of channel gating charge were always accompanied by complete opening of the channel.  相似文献   

12.
Soh H  Park CS 《Biophysical journal》2001,80(5):2207-2215
Small conductance Ca2+-activated K+ channels (SK(Ca) channels) are a group of K+-selective ion channels activated by submicromolar concentrations of intracellular Ca2+ independent of membrane voltages. We expressed a cloned SK(Ca) channel, rSK2, in Xenopus oocytes and investigated the effects of intracellular divalent cations on the current-voltage (I-V) relationship of the channels. Both Mg2+ and Ca2+ reduced the rSK2 channel currents in voltage-dependent manners from the intracellular side and thus rectified the I-V relationship at physiological concentration ranges. The apparent affinity of Mg2+ was changed as a function of both transmembrane voltage and intracellular Ca2+ concentration. Extracellular K+ altered the voltage dependence as well as the apparent affinities of Mg2+ binding from intracellular side. Thus, the inwardly rectifying I-V relationship of SK(Ca) channels is likely due to the voltage-dependent blockade of intracellular divalent cations and that the binding site is located within the ion-conducting pathway. Therefore, intracellular Ca2+ modulates the permeation characteristics of SK(Ca) channels by altering the I-V relationship as well as activates the channel by interacting with the gating machinery, calmodulin, and SK(Ca) channels can be considered as Ca2+-activated inward rectifier K+ channels.  相似文献   

13.
Calmodulin, bound to the alpha(1) subunit of the cardiac L-type calcium channel, is required for calcium-dependent inactivation of this channel. Several laboratories have suggested that the site of interaction of calmodulin with the channel is an IQ-like motif in the carboxyl-terminal region of the alpha(1) subunit. Mutations in this IQ motif are linked to L-type Ca(2+) current (I(Ca)) facilitation and inactivation. IQ peptides from L, P/Q, N, and R channels all bind Ca(2+)calmodulin but not Ca(2+)-free calmodulin. Another peptide representing a carboxyl-terminal sequence found only in L-type channels (designated the CB domain) binds Ca(2+)calmodulin and enhances Ca(2+)-dependent I(Ca) facilitation in cardiac myocytes, suggesting the CB domain is functionally important. Calmodulin blocks the binding of an antibody specific for the CB sequence to the skeletal muscle L-type Ca(2+) channel, suggesting that this is a calmodulin binding site on the intact protein. The binding of the IQ and CB peptides to calmodulin appears to be competitive, signifying that the two sequences represent either independent or alternative binding sites for calmodulin rather than both sequences contributing to a single binding site.  相似文献   

14.
The aim of the present study was to provide a mechanistic insight into how phosphatase activity influences calcium-activated chloride channels in rabbit pulmonary artery myocytes. Calcium-dependent Cl- currents (I(ClCa)) were evoked by pipette solutions containing concentrations between 20 and 1000 nM Ca2+ and the calcium and voltage dependence was determined. Under control conditions with pipette solutions containing ATP and 500 nM Ca2+, I(ClCa) was evoked immediately upon membrane rupture but then exhibited marked rundown to approximately 20% of initial values. In contrast, when phosphorylation was prohibited by using pipette solutions containing adenosine 5'-(beta,gamma-imido)-triphosphate (AMP-PNP) or with ATP omitted, the rundown was severely impaired, and after 20 min dialysis, I(ClCa) was approximately 100% of initial levels. I(ClCa) recorded with AMP-PNP-containing pipette solutions were significantly larger than control currents and had faster kinetics at positive potentials and slower deactivation kinetics at negative potentials. The marked increase in I(ClCa) was due to a negative shift in the voltage dependence of activation and not due to an increase in the apparent binding affinity for Ca2+. Mathematical simulations were carried out based on gating schemes involving voltage-independent binding of three Ca2+, each binding step resulting in channel opening at fixed calcium but progressively greater "on" rates, and voltage-dependent closing steps ("off" rates). Our model reproduced well the Ca2+ and voltage dependence of I(ClCa) as well as its kinetic properties. The impact of global phosphorylation could be well mimicked by alterations in the magnitude, voltage dependence, and state of the gating variable of the channel closure rates. These data reveal that the phosphorylation status of the Ca2+-activated Cl- channel complex influences current generation dramatically through one or more critical voltage-dependent steps.  相似文献   

15.
Large-conductance Ca(2+)-activated K(+) channels (BK(Ca) channels) are regulated by the tissue-specific expression of auxiliary beta subunits. Beta1 is predominantly expressed in smooth muscle, where it greatly enhances the BK(Ca) channel's Ca(2+) sensitivity, an effect that is required for proper regulation of smooth muscle tone. Here, using gating current recordings, macroscopic ionic current recordings, and unitary ionic current recordings at very low open probabilities, we have investigated the mechanism that underlies this effect. Our results may be summarized as follows. The beta1 subunit has little or no effect on the equilibrium constant of the conformational change by which the BK(Ca) channel opens, and it does not affect the gating charge on the channel's voltage sensors, but it does stabilize voltage sensor activation, both when the channel is open and when it is closed, such that voltage sensor activation occurs at more negative voltages with beta1 present. Furthermore, beta1 stabilizes the active voltage sensor more when the channel is closed than when it is open, and this reduces the factor D by which voltage sensor activation promotes opening by approximately 24% (16.8-->12.8). The effects of beta1 on voltage sensing enhance the BK(Ca) channel's Ca(2+) sensitivity by decreasing at most voltages the work that Ca(2+) binding must do to open the channel. In addition, however, in order to fully account for the increase in efficacy and apparent Ca(2+) affinity brought about by beta1 at negative voltages, our studies suggest that beta1 also decreases the true Ca(2+) affinity of the closed channel, increasing its Ca(2+) dissociation constant from approximately 3.7 microM to between 4.7 and 7.1 microM, depending on how many binding sites are affected.  相似文献   

16.
Inactivation of the sodium channel. II. Gating current experiments   总被引:76,自引:38,他引:38       下载免费PDF全文
Gating current (Ig) has been studied in relation to inactivation of Na channels. No component of Ig has the time course of inactivation; apparently little or no charge movement is associated with this step. Inactivation nonetheless affects Ig by immobilizing about two-thirds of gating charge. Immobilization can be followed by measuring ON charge movement during a pulse and comparing it to OFF charge after the pulse. The OFF:ON ratio is near 1 for a pulse so short that no inactivation occurs, and the ratio drops to about one-third with a time course that parallels inactivation. Other correlations between inactivation and immobilization are that: (a) they have the same voltage dependence; (b) charge movement recovers with the time coures of recovery from inactivation. We interpret this to mean that the immobilized charge returns slowly to "off" position with the time course of recovery from inactivation, and that the small current generated is lost in base-line noise. At -150 mV recover is very rapid, and the immobilized charge forms a distinct slow component of current as it returns to off position. After destruction of inactivation by pronase, there is no immobilization of charge. A model is presented in which inactivation gains its voltage dependence by coupling to the activation gate.  相似文献   

17.
The properties of the gating currents (nonlinear charge movements) of human cardiac L-type Ca2- channels and their relationship to the activation of the Ca2+ channel (ionic) currents were studied using a mammalian expression system. Cloned human cardiac alpha1 + rabbit alpha 2 subunits or human cardiac alpha 1 + rabbit alpha 2 + human beta 3 subunits were transiently expressed in HEK293 cells. The maximum Ca2+ current density increased from -3.9 +/- 0.9 pA/pF for the alpha 1 + alpha 2 subunits to -11.6 +/- 2.2 pA/pF for alpha 1 + alpha 2 + beta 3 subunits. Calcium channel gating currents were recorded after the addition of 5 mM Co2+, using a -P/5 protocol. The maximum nonlinear charge movement (Qmax) increased from 2.5 +/- 0.3 nC/muF for alpha 1 + alpha 2 subunit to 12.1 +/- 0.3 nC/muF for alpha 1 + alpha 2 + beta 3 subunit expression. The QON was equal to the QOFF for both subunit combinations. The QON-Vm data were fit by a sum of two Boltzmann expressions and ranged over more negative potentials, as compared with the voltage dependence for activation of the Ca2+ conductance. We conclude that 1) the beta subunit increases the number of functional alpha 1 subunits expressed in the plasma membrane of these cells and 2) the voltage-dependent activation of the human cardiac L-type calcium channel involves the movements of at least two nonidentical and functionally distinct gating structures.  相似文献   

18.
Positively charged amino acids in S4 segments of voltage-dependent Ca(V)3.1 channel form putative voltage sensor. Previously we have shown that exchange of uppermost positively charged arginine in IVS4 segment for cysteine (mutation R1717C) affected deactivation and inactivation, but not activation of macroscopic current. Now we compared gating currents from both channels. Maximal amplitude of charge movement in R1717C channel decreased but voltage-dependent characteristics of charge movement were not significantly altered. We concluded that mutation of R1717C affects the coupling between S4 activation and pore opening, but not the S4 activation itself.  相似文献   

19.
We determined the gating and permeation properties of single L-type Ca(2+) channels, using hair cells and varying concentrations (5-70 mM) of the charge carriers Ba(2+) and Ca(2+). The channels showed distinct gating modes with high- and low-open probability. The half-activation voltage (V(1/2)) shifted in the hyperpolarizing direction from high to low permeant ion concentrations consistent with charge screening effects. However, the differences in the slope of the voltage shifts (in VM(-1)) between Ca(2+) (0.23) and Ba(2+) (0.13), suggest that channel-ion interaction may also contribute to the gating of the channel. We examined the effect of mixtures of Ba(2+) and Ca(2+) on the activation curve. In 5 mM Ca(2+), the V(1/2) was, -26.4 +/- 2.0 mV compared to Ba(2+), -34.7 +/- 2.9 mV, as the charge carrier. However, addition of 1 mM Ba(2+) in 4 mM Ca(2+), a molar ratio, which yielded an anomalous-mole fraction effect, was sufficient to shift the V(1/2) to -34.7 +/- 1.5 mV. Although Ca(2+)-dependent inactivation of the L-type channels in hair cells can yield the present findings, we provide evidence that the anomalous gating of the channel may stem from the closed interaction between ion permeation and gating.  相似文献   

20.
Ding S  Horn R 《Biophysical journal》2003,84(1):295-305
The cytoplasmic ends of the four S6 transmembrane segments of voltage-gated potassium channels converge in a bundle crossing that acts as the activation gate that opens in response to a depolarization. To explore whether the cytoplasmic extension of the S6 segment (the S6 tail) plays a role in coupling voltage sensor and activation gate movements, we examined the effect of cysteine substitution from residues N482 to T489 on the kinetics and voltage-dependence of S4 charge movement and on the kinetics of deactivation of ionic current. Among these mutants, F484C has the steepest voltage-dependent charge movement, the largest Q-V shift, and the fastest OFF gating currents. Further study of the residue at position 484, using mutagenesis and modification of F484C by cysteine reagents, suggests that aromaticity at this position is essential to maintain normal coupling. We used periodicity analysis to appraise the possibility that the S6 tail has an alpha-helical structure. Although we obtained an alpha-periodicity index of 2.41 for gating current parameters, a new randomization test produced an indecisive conclusion about the secondary structure of this region. Taken together, our results suggest that the tail end of S6 plays an important role in coupling between activation gating and charge movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号