首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Maltose and maltotriose are the major sugars in brewer's wort. Brewer's yeasts contain multiple genes for maltose transporters. It is not known which of these express functional transporters. We correlated maltose transport kinetics with the genotypes of some ale and lager yeasts. Maltose transport by two ale strains was strongly inhibited by other alpha-glucosides, suggesting the use of broad substrate specificity transporters, such as Agt1p. Maltose transport by three lager strains was weakly inhibited by other alpha-glucosides, suggesting the use of narrow substrate specificity transporters. Hybridization studies showed that all five strains contained complete MAL1, MAL2, MAL3, and MAL4 loci, except for one ale strain, which lacked a MAL2 locus. All five strains also contained both AGT1 (coding a broad specificity alpha-glucoside transporter) and MAL11 alleles. MPH genes (maltose permease homologues) were present in the lager but not in the ale strains. During growth on maltose, the lager strains expressed AGT1 at low levels and MALx1 genes at high levels, whereas the ale strains expressed AGT1 at high levels and MALx1 genes at low levels. MPHx expression was negligible in all strains. The AGT1 sequences from the ale strains encoded full-length (616 amino acid) polypeptides, but those from both sequenced lager strains encoded truncated (394 amino acid) polypeptides that are unlikely to be functional transporters. Thus, despite the apparently similar genotypes of these ale and lager strains revealed by hybridization, maltose is predominantly carried by AGT1-encoded transporters in the ale strains and by MALx1-encoded transporters in the lager strains.  相似文献   

2.
Maltose and maltotriose are the two most abundant fermentable sugars in brewer’s wort, and the rate of uptake of these sugars by brewer’s yeast can have a major impact on fermentation performance. In spite of this, no information is currently available on the genetics of maltose and maltotriose uptake in brewing strains of yeast. In this work, we studied 30 brewing strains of yeast (5 ale strains and 25 lager strains) with the aim of examining the alleles of maltose and maltotriose transporter genes contained by them. To do this, we hybridized gene probes to chromosome blots. Studies performed with laboratory strains have shown that maltose utilization is conferred by any one of five unlinked but highly homologous MAL loci (MAL1 to MAL4 and MAL6). Gene 1 at each locus encodes a maltose transporter. All of the strains of brewer’s yeast examined except two were found to contain MAL11 and MAL31 sequences, and only one of these strains lacked MAL41. MAL21 was not present in the five ale strains and 12 of the lager strains. MAL61 was not found in any of the yeast strains. In three of the lager strains, there was evidence that MAL transporter gene sequences occurred on chromosomes other than those known to carry MAL loci. Sequences corresponding to the AGT1 gene, which encodes a transporter of several α-glucosides, including maltose and maltotriose, were detected in all but one of the yeast strains. Homologues of AGT1 were identified in three of the lager strains, and two of these homologues were mapped, one to chromosome II and the other to chromosome XI. AGT1 appears to be a member of a family of closely related genes, which may have arisen in brewer’s yeast in response to selective pressure.  相似文献   

3.
The use of more concentrated, so-called high-gravity and very-high-gravity (VHG) brewer''s worts for the manufacture of beer has economic and environmental advantages. However, many current strains of brewer''s yeasts ferment VHG worts slowly and incompletely, leaving undesirably large amounts of maltose and especially maltotriose in the final beers. α-Glucosides are transported into Saccharomyces yeasts by several transporters, including Agt1, which is a good carrier of both maltose and maltotriose. The AGT1 genes of brewer''s ale yeast strains encode functional transporters, but the AGT1 genes of the lager strains studied contain a premature stop codon and do not encode functional transporters. In the present work, one or more copies of the AGT1 gene of a lager strain were repaired with DNA sequence from an ale strain and put under the control of a constitutive promoter. Compared to the untransformed strain, the transformants with repaired AGT1 had higher maltose transport activity, especially after growth on glucose (which represses endogenous α-glucoside transporter genes) and higher ratios of maltotriose transport activity to maltose transport activity. They fermented VHG (24° Plato) wort faster and more completely, producing beers containing more ethanol and less residual maltose and maltotriose. The growth and sedimentation behaviors of the transformants were similar to those of the untransformed strain, as were the profiles of yeast-derived volatile aroma compounds in the beers.The main fermentable sugars in brewer''s wort are maltose (ca. 60% of the total), maltotriose (ca. 25%), and glucose (ca. 15%). In traditional brewery fermentations, worts of about 11° Plato (°P) are used, corresponding to a total fermentable sugar concentration of about 80 g · liter−1. Many modern breweries ferment high-gravity worts (15 to 17°P), and there are efforts to raise the concentration to 25°P, corresponding to a total sugar concentration of about 200 g · liter−1. Industrial use of such very-high-gravity (VHG) worts is attractive because it offers increased production capacity from the same-size brew house and fermentation facilities, decreased energy consumption, and decreased labor, cleaning, and effluent costs (34, 35).Whereas glucose, which is used first, is transported into yeast cells by facilitated diffusion, the α-glucosides maltose and maltotriose are carried by proton symporters (2, 26, 39). Maltose transport seems to have a high level of control over the fermentation rate. Thus, during the early and middle stages of fermentation of brewer''s wort by a lager yeast, the specific rate of maltose consumption was the same as the specific zero-trans maltose uptake rate measured off line with each day''s yeast in each day''s wort spiked with [14C]maltose (27). Furthermore, introducing a constitutive MAL61 (maltose transporter) gene into a brewer''s yeast on a multicopy plasmid accelerated the fermentation of high-gravity worts (17). Maltotriose is the last sugar to be used in brewing fermentations, and significant amounts of residual maltotriose sometimes remain in beer, causing economic losses (lower yield of ethanol on wort carbohydrate) and possibly undesirable organoleptic effects. The problem of residual sugars in beer is more serious when high-gravity and VHG worts are used. Some, but not all, maltose transporters can also carry maltotriose. The MALx1 genes (x = 1 to 4 and 6) encode transporters that carry maltose efficiently but are generally believed to have little or no activity toward maltotriose (1, 3, 13, 30), although substantial activity toward maltotriose was reported by Day et al. (4). Some yeast strains contain a gene 57% identical to MAL11 that is usually known as AGT1 but is recorded in the Saccharomyces Genome Database (SGDB) as MAL11. The Agt1 transporter has relatively high activity toward maltotriose, as well as maltose (13), and similar Km values (4 to 5 mM) for these two substrates (4). Alves et al. (1) found that the specific deletion of AGT1 from several Saccharomyces cerevisiae strains also containing at least one MALx1 gene (MAL21, MAL31, and/or MAL41) abolished their ability to transport maltotriose but did not decrease their maltose transport activity. These results supported the belief that the Mal21, Mal31, and Mal41 transporters cannot carry maltotriose, though it remains possible that there are differences between Malx1 transporters from different strains. The same group has also shown (33) that overexpression of AGT1 on a multicopy plasmid in an industrial yeast strain with a very limited ability to ferment maltotriose provided the strain with increased maltotriose uptake activity and the ability to ferment maltotriose efficiently. In 2005, a novel kind of α-glucoside transporter was independently found by two groups (6, 30) in some industrial strains of brewer''s, baker''s, and distiller''s yeasts. These transporters are coded by MTT1 (also called MTY1) genes, which are 90 and 54% identical to the MAL31 and AGT1 genes, respectively. The Mtt1 transporters have high activity toward maltotriose and are the only known α-glucoside transporters with lower Km values for maltotriose than for maltose (30).Before the discovery of the MTT1 genes, Vidgren et al. (36) sequenced AGT1 genes from two apparently unrelated lager strains and two apparently unrelated ale strains of brewer''s yeast. Surprisingly, at that time (because other maltotriose transporters were not known), the AGT1 genes from the lager strains contained an insertion of one nucleotide, resulting in a premature stop codon, and encoded a truncated, nonfunctional 394-amino-acid polypeptide, whereas those from the ale strains encoded full-length 616-amino-acid transporters. This premature stop codon was later shown (37) to be present in AGT1 genes from all eight of the lager strains tested but was not in any of the four ale strains tested, whereas MTT1 genes were present in all of the lager strains tested but in none of the ale strains tested.In the present work, we have tested whether lager fermentations can be accelerated and residual maltotriose levels decreased by repairing the defective AGT1 genes of lager strains with appropriate DNA sequences from ale strains. Furthermore, the MALx1 and AGT1 genes are repressed by glucose and induced by α-glucosides (9, 16, 19, 25), so that replacing the native AGT1 promoter with a constitutive S. cerevisiae promoter might also increase α-glucoside transport activity and accelerate wort fermentations. The objectives of the present work were to confirm that α-glucoside transport has a high level of control over the rate and extent of wort fermentation and to create a genetically modified lager yeast strain that has improved fermentation performance but contains only Saccharomyces DNA.  相似文献   

4.
Incomplete and/or sluggish maltotriose fermentation causes both quality and economic problems in the ale-brewing industry. Although it has been proposed previously that the sugar uptake must be responsible for these undesirable phenotypes, there have been conflicting reports on whether all the known α-glucoside transporters in Saccharomyces cerevisiae (MALx1, AGT1, and MPH2 and MPH3 transporters) allow efficient maltotriose utilization by yeast cells. We characterized the kinetics of yeast cell growth, sugar consumption, and ethanol production during maltose or maltotriose utilization by several S. cerevisiae yeast strains (both MAL constitutive and MAL inducible) and by their isogenic counterparts with specific deletions of the AGT1 gene. Our results clearly showed that yeast strains carrying functional permeases encoded by the MAL21, MAL31, and/or MAL41 gene in their plasma membranes were unable to utilize maltotriose. While both high- and low-affinity transport activities were responsible for maltose uptake from the medium, in the case of maltotriose, the only low-affinity (Km, 36 ± 2 mM) transport activity was mediated by the AGT1 permease. In conclusion, the AGT1 transporter is required for efficient maltotriose fermentation by S. cerevisiae yeasts, highlighting the importance of this permease for breeding and/or selection programs aimed at improving sluggish maltotriose fermentations.  相似文献   

5.
Molecular genetic analysis is used to characterize the AGT1 gene encoding an α-glucoside transporter. AGT1 is found in many Saccharomyces cerevisiae laboratory strains and maps to a naturally occurring, partially functional allele of the MAL1 locus. Agt1p is a highly hydrophobic, postulated integral membrane protein. It is 57% identical to Mal61p, the maltose permease encoded at MAL6 , and is also a member of the 12 transmembrane domain superfamily of sugar transporters. Like Mal61p, Agt1p is a high-affinity, maltose/proton symporter, but Mal61p is capable of transporting only maltose and turanose, while Agt1p transports these two α-glucosides as well as several others including isomaltose, α-methylglucoside, maltotriose, palatinose, trehalose and melezitose. AGT1 expression is maltose inducible and induction is mediated by the Mal-activator. The sequence of the upstream region of AGT1 is identical to that of the maltose-inducible MAL61 gene over a 469 bp region containing the UASMAL but the 315 bp sequence immediately upstream of AGT1 shows no significant homology to the sequence immediately upstream of MAL61 . The evolutionary origin of the MAL1 allele to which AGT1 maps and the relationship of AGT1 to other α-glucoside fermentation genes is discussed.  相似文献   

6.
Maltotriose utilization by Saccharomyces cerevisiae and closely related yeasts is important to industrial processes based on starch hydrolysates, where the trisaccharide is present in significant concentrations and often is not completely consumed. We undertook an integrated study to better understand maltotriose metabolism in a mixture with glucose and maltose. Physiological data obtained for a particularly fast-growing distiller's strain (PYCC 5297) showed that, in contrast to what has been previously reported for other strains, maltotriose is essentially fermented. The respiratory quotient was, however, considerably higher for maltotriose (0.36) than for maltose (0.16) or glucose (0.11). To assess the role of transport in the sequential utilization of maltose and maltotriose, we investigated the presence of genes involved in maltotriose uptake in the type strain of Saccharomyces carlsbergensis (PYCC 4457). To this end, a previously constructed genomic library was used to identify maltotriose transporter genes by functional complementation of a strain devoid of known maltose transporters. One gene, clearly belonging to the MAL transporter family, was repeatedly isolated from the library. Sequence comparison showed that the novel gene (designated MTY1) shares 90% and 54% identity with MAL31 and AGT1, respectively. However, expression of Mty1p restores growth of the S. cerevisiae receptor strain on both maltose and maltotriose, whereas the closely related Mal31p supports growth on maltose only and Agt1p supports growth on a wider range of substrates, including maltose and maltotriose. Interestingly, Mty1p displays higher affinity for maltotriose than for maltose, a new feature among all the α-glucoside transporters described so far.  相似文献   

7.
Improved fermentation of starch and its dextrin products would benefit the brewing and whiskey industries. Most strains ofSaccharomyces ferment glucose and maltose and partially ferment maltotriose, but are unable to utilise the larger dextrin products of starch. This utilisation pattern is partly attributed to the ability of yeast cells to transport the aforementioned mono-, di- and trisaccharides into the cytosol. The maltotriose transporting efficiency varies between differentSaccharomyces strains. In this study, severalSaccharomyces strains, including whiskey strains, were screened for growth on maltotriose. TheAGT1 genes, which encode a maltose transporter that show affinity for maltotriose uptake, were isolated from the strains that grew strongest in media with maltotriose as sole carbon source. The isolatedAGT1 alleles were sequenced and their chromosomal locations determined in the strains from which they were cloned. Nucleotide and deduced amino acid sequences of the isolated genes shared 95% and 98% identity, respectively. The efficiency of maltotriose transport was determined by expressing theAGT1 variants in an identical genetic background. TheK m values obtained for all the permeases were very similar (≈3), but the permease with improved performance for maltotriose transport showed an approximately 30% higherV max value than for the others. The data obtained suggest that the genetic variation among theAGT1-encoded transporters is reason for the variation in maltotriose transport efficiency among differentSaccharomyces strains. This study offers prospects for the development of yeast strains with improved maltose and maltotriose uptake capabilities that, in turn, could increase the overall fermentation efficiencies in the beer and whiskey industries.  相似文献   

8.
J. Wang  R. Needleman 《Genetics》1996,142(1):51-63
Maltose fermenting strains of Saccharomyces cerevisiae have one or more complex loci called MAL. Each locus comprises at least three genes: MALx1 encodes maltose permease, MALx2 encodes maltase, and MALx3 encodes an activator of MALx1 and MALx2 (x denotes one of five MAL loci, with x = 1, 2, 3, 4, or 6). The MAL43(c) allele is constitutive and relatively insensitive to glucose repression. To understand better this unique phenotype of MAL43(c), we have isolated several MAL63(c) constitutive mutants from a MAL6 strain. All constitutive mutants remain glucose repressible, and all have multiple amino acid substitutions in the C-terminal region, now making this region of Mal63(c)p similar to that of Mal43(c)p. These changes have been generated by gene conversion, which transfers DNA from the telomeres of chromosome II and chromosome III or XVI to chromosome VIII (MAL6). The removal of a Mig1p binding site from the MAL63(c) promoter leads to a loss of glucose repression, imitating the phenotype of MAL43(c). Conversely, addition of a Mig1p binding site to the promoter of MAL43(c) converts it to glucose sensitivity. Mig1p modulation of Mal63p and Mal43p expression therefore plays a substantial role in glucose repression of the MAL genes.  相似文献   

9.
Aims: We performed an analysis of maltotriose utilization by 52 Saccharomyces yeast strains able to ferment maltose efficiently and correlated the observed phenotypes with differences in the copy number of genes possibly involved in maltotriose utilization by yeast cells. Methods and Results: The analysis of maltose and maltotriose utilization by laboratory and industrial strains of the species Saccharomyces cerevisiae and Saccharomyces pastorianus (a natural S. cerevisiae/Saccharomyces bayanus hybrid) was carried out using microscale liquid cultivation, as well as in aerobic batch cultures. All strains utilize maltose efficiently as a carbon source, but three different phenotypes were observed for maltotriose utilization: efficient growth, slow/delayed growth and no growth. Through microarray karyotyping and pulsed‐field gel electrophoresis blots, we analysed the copy number and localization of several maltose‐related genes in selected S. cerevisiae strains. While most strains lacked the MPH2 and MPH3 transporter genes, almost all strains analysed had the AGT1 gene and increased copy number of MALx1 permeases. Conclusions: Our results showed that S. pastorianus yeast strains utilized maltotriose more efficiently than S. cerevisiae strains and highlighted the importance of the AGT1 gene for efficient maltotriose utilization by S. cerevisiae yeasts. Significance and Impact of the Study: Our results revealed new maltotriose utilization phenotypes, contributing to a better understanding of the metabolism of this carbon source for improved fermentation by Saccharomyces yeasts.  相似文献   

10.
Strains of baker's yeast conventionally used by the baking industry in Japan were tested for the ability to sporulate and produce viable haploid spores. Three isolates which possessed the properties of baker's yeasts were obtained from single spores. Each strain was a haploid, and one of these strains, YOY34, was characterized. YOY34 fermented maltose and sucrose, but did not utilize galactose, unlike its parental strain. Genetic analysis showed that YOY34 carried two MAL genes, one functional and one cryptic; two SUC genes; and one defective gal gene. The genotype of YOY34 was identified as MATα MAL1 MAL3g SUC2 SUC4 gall. The MAL1 gene from this haploid was constitutively expressed, was dominant over other wild-type MAL tester genes, and gave a weak sucrose fermentation. YOY34 was suitable for both bakery products, like conventional baker's yeasts, and for genetic analysis, like laboratory strains.  相似文献   

11.
Maltotriose utilization by Saccharomyces cerevisiae and closely related yeasts is important to industrial processes based on starch hydrolysates, where the trisaccharide is present in significant concentrations and often is not completely consumed. We undertook an integrated study to better understand maltotriose metabolism in a mixture with glucose and maltose. Physiological data obtained for a particularly fast-growing distiller's strain (PYCC 5297) showed that, in contrast to what has been previously reported for other strains, maltotriose is essentially fermented. The respiratory quotient was, however, considerably higher for maltotriose (0.36) than for maltose (0.16) or glucose (0.11). To assess the role of transport in the sequential utilization of maltose and maltotriose, we investigated the presence of genes involved in maltotriose uptake in the type strain of Saccharomyces carlsbergensis (PYCC 4457). To this end, a previously constructed genomic library was used to identify maltotriose transporter genes by functional complementation of a strain devoid of known maltose transporters. One gene, clearly belonging to the MAL transporter family, was repeatedly isolated from the library. Sequence comparison showed that the novel gene (designated MTY1) shares 90% and 54% identity with MAL31 and AGT1, respectively. However, expression of Mty1p restores growth of the S. cerevisiae receptor strain on both maltose and maltotriose, whereas the closely related Mal31p supports growth on maltose only and Agt1p supports growth on a wider range of substrates, including maltose and maltotriose. Interestingly, Mty1p displays higher affinity for maltotriose than for maltose, a new feature among all the alpha-glucoside transporters described so far.  相似文献   

12.
13.
14.
Summary We have physically and functionally identified three genes at the MAL6 locus of Saccharomyces carlsbergensis. Using multicopy yeast plasmid vectors, we have subcloned various segments of the entire MAL6 locus. The functional characterization of the MAL6 subcloned regions was determined by (1) analyzing biochemically the levels of MAL-encoded proteins (maltase [-D-glucosidase, E.C. 3.2.1.20] and maltose transport protein) in cells transformed with various MAL6 subclones, and (2) testing the ability of the subclones to complement the maltose fermentation defects of well characterized Mal mutants in the highly homologous MAL1 locus. The physical homology between MAL6 and MAL1 is in part demonstrated by the gene disruption of MAL1 using subcloned MAL6 DNA sequences. The results demonstrate that the MAL6 locus is a complex of at least three genes: MAL6R, MAL6T and MAL6S. These genes specify, respectively, a regulatory function, a maltose transport activity (presumably the maltose permease) and the structural gene for maltase. The functional organization of the MAL6 locus is thus identical to that which we had previously determined by mutational analysis for the MAL1 locus.  相似文献   

15.
G I Naumov  E V Bashkirova 《Genetika》1984,20(9):1472-1479
In offsprings of N.C.Y.C. 74, maltose regulatory constitutive MAL6C2 mutation controls alpha-methylglucoside (alpha-mgl) fermentation in the presence of MALx. MAL6C2 MALx system described by ten Berge et al, is analogous in function (polymeric interaction) to, at least, one MGLa gene from the system of complementary alpha-mgl genes MGLa MGLb MGLc identified by ten Berge. Suppressor malx mutation inhibits both the maltose and alpha-mgl activity of MAL6C2 allele. A brief review on participation of maltose genes in alpha-mgl fermentation is presented.  相似文献   

16.
Saccharomyces yeasts ferment several alpha-glucosides including maltose, maltotriose, turanose, alpha-methylglucoside, and melezitose. In the utilization of these sugars transport is the rate-limiting step. Several groups of investigators have described the characteristics of the maltose permease (D. E. Kroon and V. V. Koningsberger, Biochim. Biophys. Acta 204:590-609, 1970; R. Serrano, Eur. J. Biochem. 80:97-102, 1977). However, Saccharomyces contains multiple alpha-glucoside transport systems, and these studies have never been performed on a genetically defined strain shown to have only a single permease gene. In this study we isolated maltose-negative mutants in a MAL6 strain and, using a high-resolution mapping technique, we showed that one class of these mutants, the group A mutants, mapped to the MAL61 gene (a member of the MAL6 gene complex). An insertion into the N-terminal-coding region of MAL61 resulted in the constitutive production of MAL61 mRNA and rendered the maltose permease similarly constitutive. Transformation by high-copy-number plasmids containing the MAL61 gene also led to an increase in the maltose permease. A deletion-disruption of MAL61 completely abolished maltose transport activity. Taken together, these results prove that this strain has only a single maltose permease and that this permease is the product of the MAL61 gene. This permease is able to transport maltose and turanose but cannot transport maltotriose, alpha-methylglucoside, or melezitose. The construction of strains with only a single permease will allow us to identify other maltose-inducible transport systems by simple genetic tests and should lead to the identification and characterization of the multiple genes and gene products involved in alpha-glucoside transport in Saccharomyces yeasts.  相似文献   

17.
Summary Fermentation of maltose by Saccharomyces strains depends on the presence of any one of five unlinked MAL loci (MAL1, MAL2, MAL3, MAL4 or MAL6). Earlier mutational analyses of MAL2 and MAL6 containing strains have identified a single complementation group at each of these two loci. However complementation analysis between naturally occurring Mal Saccharomyces strains isolated from the wild demonstrated the presence of two complementation groups (designated MALp and MALg) at the MAL1, MAL3 and MAL6 loci. The available evidence suggests that the MALp gene is functionally equivalent to the complementation group identified by mutational analysis at the MAL6 locus and that this gene encodes a protein involved in the regulation of the coordinate induction of both maltase and maltose permease synthesis.In this paper we report the isolation, in a well characterized MAL1 strain, of 47 mutants unable to ferment maltose. All the mutants, with one exception, map at the MAL1 locus. These mal1 mutants, except for one, are recessive to MAL1 and fall into two major complementation groups. Evidence is presented that these two classes of mutants identify both a gene involved in the regulation of maltose fermentation (MAL1R) and a gene involved in maltose transport (MAL1T). We also report here the isolation of a temperature sensitive maltose nonfermenting mutant mapping at the MAL1 locus identifying a third gene (MAL1S) at this locus. The maltase synthesized by this mutant, when assayed in cell-free extracts, is significantly more thermolabile than the wild type enzyme. Our findings demonstrate that MAL1 is a complex locus comprising at least three genes: MAL1R, a gene involved in the coordinate regulation of the synthesis of maltase and maltose transport; MAL1T, a gene encoding a component of the maltose transport system; and MAL1S, a likely candidate for the structural gene for maltase.  相似文献   

18.
Maltose fermentation in Saccharomyces spp. requires the presence of any one of five unlinked genes: MAL1, MAL2, MAL3, MAL4, or MAL6. Although the genes are functionally equivalent, their natures and relationships to each other are not known. At least three proteins are necessary for maltose fermentation: maltase, maltose permease, and a regulatory protein. The MAL genes may code for one or more of these proteins. Recently a DNA fragment containing a maltase structural gene has been cloned from a MAL6 strain, CB11, to produce plasmid pMAL9-26. We have conducted genetic and physical analyses of strain CB11. The genetic analysis has demonstrated the presence of two cryptic MAL genes in CB11, MAL1g and MAL3g (linked to MAL1 and to MAL3, respectively), in addition to the MAL6 locus. The physical analysis, which used a subclone of plasmid pMAL9-26 as a probe, detected three HindIII genomic fragments with homology to the probe. Each fragment was shown to be linked to one of the MAL loci genetically demonstrated to be present in CB11. Our results indicate that the cloned maltase structural gene in plasmid pMAL9-26 is linked to MAL6. Since the MAL6 locus has previously been shown to contain a regulatory gene, the MAL6 locus must be a complex locus containing at least two of the factors needed for maltose fermentation: the structural gene for maltase and the maltase regulatory protein. The absence of other fragments which hybridize to the MAL6-derived probe shows that either MAL2 and MAL4 are not related to MAL6, or the DNA corresponding to these genes is absent from the MAL6 strain CB11.  相似文献   

19.
The genome from the Saccharomyces pastorianus industrial lager brewing strain Weihenstephan 34/70, a natural Saccharomyces cerevisiae/Saccharomyces eubayanus hybrid, indicated the presence of two different maltotriose transporter genes: a new gene in the S. eubayanus subgenome with 81% of homology to the AGT1 permease from S. cerevisiae, and an amplification of the S. eubayanus MTY1 maltotriose permease previously identified in S. pastorianus yeasts. To characterize these S. eubayanus transporter genes, we used a S. cerevisiae strain deleted in the AGT1 permease and introduced the desired permease gene(s) into this locus through homologous recombination. Our results indicate that both the MTY1 and AGT1 genes from the S. eubayanus subgenome encode functional maltotriose transporters that allow fermentation of this sugar by yeast cells, despite their apparent differences in the kinetics of maltotriose‐H+ symport activity. The presence of two maltotriose transporters in the S. eubayanus subgenome not only highlights the importance of sugar transport for efficient maltotriose utilization by industrial yeasts, but these new genes can be used in breeding and/or selection programs aimed at increasing yeast fitness for the efficient fermentation of brewer's wort.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号