首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 263 毫秒
1.
The cutaneous sensory neurons of the ophthalmic lobe of the trigeminal ganglion are derived from two embryonic cell populations, the neural crest and the paired ophthalmic trigeminal (opV) placodes. Pax3 is the earliest known marker of opV placode ectoderm in the chick. Pax3 is also expressed transiently by neural crest cells as they emigrate from the neural tube, and it is reexpressed in neural crest cells as they condense to form dorsal root ganglia and certain cranial ganglia, including the trigeminal ganglion. Here, we examined whether Pax3+ opV placode-derived cells behave like Pax3+ neural crest cells when they are grafted into the trunk. Pax3+ quail opV ectoderm cells associate with host neural crest migratory streams and form Pax3+ neurons that populate the dorsal root and sympathetic ganglia and several ectopic sites, including the ventral root. Pax3 expression is subsequently downregulated, and at E8, all opV ectoderm-derived neurons in all locations are large in diameter, and virtually all express TrkB. At least some of these neurons project to the lateral region of the dorsal horn, and peripheral quail neurites are seen in the dermis, suggesting that they are cutaneous sensory neurons. Hence, although they are able to incorporate into neural crest-derived ganglia in the trunk, Pax3+ opV ectoderm cells are committed to forming cutaneous sensory neurons, their normal fate in the trigeminal ganglion. In contrast, Pax3 is not expressed in neural crest-derived neurons in the dorsal root and trigeminal ganglia at any stage, suggesting either that Pax3 is expressed in glial cells or that it is completely downregulated before neuronal differentiation. Since Pax3 is maintained in opV placode-derived neurons for some considerable time after neuronal differentiation, these data suggest that Pax3 may play different roles in opV placode cells and neural crest cells.  相似文献   

2.
The nodose ganglion is the distal cranial ganglion of the vagus nerve which provides sensory innervation to the heart and other viscera. In this study, removal of the neuronal precursors which normally populate the right nodose ganglion was accomplished by ablating the right nodese placode in stage 9 chick embryos. Subsequent histological evaluation showed that in 54% of lesioned embryos surviving to day 6, the right ganglion was absent. Most embryos surviving to day 12, however, had identifiable right ganglia. In day 12 embryos, the right ganglion which developed was abnormal, with ganglion volume and ganglion cell diameter reduced by 50% and 20%, respectively, compared to control ganglia. To investigate the source of the neuron population in the regenerated ganglion, we combined nodose placode ablation with bilateral replacement of chick with quail cardiac neural crest (from mid-otic placode to somite 3). These cells normally provide only non-neuronal cells to the nodose ganglion, but produce neurons in other regions. At day 9, quail-derived neurons were identified in the right nodose ganglia of these chimeras, indicating that cardiac neural crest cells can generate neurons in the ganglion when placode-derived neurons are absent or reduced in number. On the other hand, we found that sympathetic neural crest (from somites 10 to 20) does not support ganglion development, suggesting that only neural crest cells normally present in the ganglion participate in reconstituting its neuronal population. Our previous work has shown that right nodose placode ablation produces abnormal cardiac function, which mimics a life-threatening human heart condition known as long QT syndrome. The present results suggest that the presence of neural crest-derived neurons in the developing right nodose ganglion may contribute to the functional abnormality in long QT syndrome.This work was supported by grant PO1 HL 36059  相似文献   

3.
The location and distribution of neural crest-derived Schwann cells during development of the peripheral nerves of chick forelimbs were examined using chick-quail chimeras. Neural crest cells were labeled by transplantation of the dorsal part of the neural tube from a quail donor to a chick host at levels of the neural tube destined to give rise to brachial innervation. The ventral roots, spinal nerves, and peripheral nerves innervating the chick forelimb were examined for the presence of quail-derived neural crest cells at several stages of embryonic development. These quail cells are likely to be Schwann cells or their precursors. Quail-derived Schwann cells were present in ventral roots and spinal nerves, and were distributed along previously described neural crest migratory pathways or along the peripheral nerve fibers at all stages of development examined. During early stages of wing innervation, quail-derived Schwann cells were not evenly distributed, but were concentrated in the ventral root and at the brachial plexus. The density of neural crest-derived Schwann cells decreased distal to the plexus, and no Schwann cells were ever seen in advance of the growing nerve front. When the characteristic peripheral nerve branching pattern was first formed, Schwann cells were clustered where muscle nerves diverged from common nerve trunks. In still older embryos, neural crest-derived Schwann cells were evenly distributed along the length of the peripheral nerves from the ventral root to the distal nerve terminations within the musculature of the forelimb. These observations indicate that Schwann cells accompany axons into the developing limb, but they do not appear to lead or direct axons to their targets. The transient clustering of neural crest-derived Schwann cells in the ventral root and at places where axon trajectories diverge from one another may reflect a response to some environmental feature within these regions.  相似文献   

4.
Neural crest cells arising from different rostrocaudal axial levels form different sets of derivatives as diverse as ganglia, cartilage and cornea. These variations may be due to intrinsic properties of the cell populations, different environmental factors encountered during migration or some combination thereof. We test the relative roles of intrinsic versus extrinsic factors by challenging the developmental potential of cardiac and trunk neural crest cells via transplantation into an ectopic midbrain environment. We then assess long-term survival and differentiation into diverse derivatives, including cornea, trigeminal ganglion and branchial arch cartilage. Despite their ability to migrate to the periocular region, neither cardiac nor trunk neural crest contribute appropriately to the cornea, with cardiac crest cells often forming ectopic masses on the corneal surface. Similarly, the potential of trunk and cardiac neural crest to form somatosensory neurons in the trigeminal ganglion was significantly reduced compared with control midbrain grafts. Cardiac neural crest exhibited a reduced capacity to form cartilage, contributing only nominally to Meckle's cartilage, whereas trunk neural crest formed no cartilage after transplantation, even when grafted directly into the first branchial arch. These results suggest that neural crest cells along the rostrocaudal axis display a graded loss in developmental potential to form somatosensory neurons and cartilage even after transplantation to a permissive environment. Hox gene expression was transiently maintained in the cardiac neural tube and neural crest at 12 hours post-transplantation to the midbrain, but was subsequently downregulated. This suggests that long-term differences in Hox gene expression cannot account for rostrocaudal differences in developmental potential of neural crest populations in this case.  相似文献   

5.
Trigeminal sensory innervation of the cornea is critical for protection and synthesis of neuropeptides required for normal vision. Little is known about axon guidance during mammalian corneal innervation. In contrast to the chick where a pericorneal nerve ring forms via Npn/Sema signaling, mouse corneal axons project directly into the presumptive cornea without initial formation of an analogous nerve ring. Here we show that during development of the mouse cornea, Npn1 is strongly expressed by the trigeminal ganglion whereas Npn2 is expressed at low levels. At the same time Sema3A and Sema3F are expressed in distinct patterns in the ocular tissues. Npn1(sema-/-) mutant corneas become precociously and aberrantly innervated by nerve bundles that project further into the corneal stroma. In contrast, stromal innervation was not affected in Npn2(-/-) mutants. The corneal epithelium was prematurely innervated in both Npn1(sema-/-) and Npn2(-/-) mutants. These defects were exacerbated in Npn1(sema-/-);Npn2(-/-) double mutants, which in addition showed ectopic innervation of the region between the optic cup and lens vesicle. Collectively, our data show that Sema3A/Npn1 and Sema3F/Npn2 signaling play distinct roles and both are required for proper innervation of the mouse cornea.  相似文献   

6.
The chick ciliary ganglion is a neural crest-derived parasympathetic ganglion that innervates the eye. Here, we examine its axial level of origin and developmental relationship to other ganglia and nerves of the head. Using small, focal injections of DiI, we show that neural crest cells arising from both the caudal half of the midbrain and the rostral hindbrain contribute to the ciliary as well as the trigeminal ganglion. Precursors to both ganglia have overlapping migration patterns, moving first ventrolaterally and then rostrally toward the optic vesicle. At the level of the midbrain/forebrain junction, precursors to the ciliary ganglion separate from the main migratory stream, turn ventromedially, and condense in the vicinity of the rostral aorta and Rathke's pouch. Ciliary neuroblasts first exit the cell cycle at early E2, prior to and during ganglionic condensation, and neurogenesis continues through E5.5. By E3, markers of neuronal differentiation begin to appear in this population. By labeling the ectoderm with DiI, we discovered a new placode, caudal to the eye and possibly contiguous to the trigeminal placode, that contributes a few early differentiating neurons to the ciliary ganglion, oculomotor nerve, and connecting branches to the ophthalmic nerve. These results suggest for the first time a dual neural crest and placodal contribution to the ciliary ganglion and associated nerves.  相似文献   

7.
The plasticity of neural crest cells for the expression of adrenergic and cholinergic transmitter phenotypes has been well studied. The object of this study was to determine if cells of a sensory ganglion are capable of neuropeptide transmitter plasticity. We studied whether cells of the trigeminal ganglion, which do not express the neuropeptide vasoactive intestinal peptide (VIP) in vivo, would express this peptide when grown with a tissue the gut, that contains large numbers of VIP neurons. Embryonic aneural chick rectum was explanted with the embryonic quail trigeminal ganglion on the chorioallantoic membrane of chick hosts for 7-8 days. The explants were fixed, sectioned, and stained for VIP immunoreactivity (IR), for neurofilament protein immunoreactivity, and for the quail nucleolar marker. In sections of the explants we observed two populations of quail neurons: small (10-13 microns) VIP-IR cells and large (25-32 microns) cells lacking VIP-IR and resembling native trigeminal neurons. Trigeminal ganglia explanted with embryonic heart or trigeminal ganglia explanted alone lacked small VIP-IR cells but contained large VIP-negative neurons. These results show that cells of the trigeminal ganglion grown with the gut can express a neuropeptide they do not express in the absence of the gut or in vivo. Thus the embryonic trigeminal ganglion contains cells that are plastic with respect to neuropeptide expression.  相似文献   

8.
The method of embryonic tissue transplantation was used to confirm the dual origin of avian cranial sensory ganglia, to map precise locations of the anlagen of these sensory neurons, and to identify placodal and neural crest-derived neurons within ganglia. Segments of neural crest or strips of presumptive placodal ectoderm were excised from chick embryos and replaced with homologous tissues from quail embryos, whose cells contain a heterochromatin marker. Placode-derived neurons associated with cranial nerves V, VII, IX, and X are located distal to crest-derived neurons. The generally larger, embryonic placodal neurons are found in the distal portions of both lobes of the trigeminal ganglion, and in the geniculate, petrosal and nodose ganglia. Crest-derived neurons are found in the proximal trigeminal ganglion and in the combined proximal ganglion of cranial nerves IX and X. Neurons in the vestibular and acoustic ganglia of cranial nerve VIII derive from placodal ectoderm with the exception of a few neural crest-derived neurons localized to regions within the vestibular ganglion. Schwann sheath cells and satellite cells associated with all these ganglia originate from neural crest. The ganglionic anlagen are arranged in cranial to caudal sequence from the level of the mesencephalon through the third somite. Presumptive placodal ectoderm for the VIIIth, the Vth, and the VIIth, IXth, and Xth ganglia are located in a medial to lateral fashion during early stages of development reflecting, respectively, the dorsolateral, intermediate, and epibranchial positions of these neurogenic placodes.  相似文献   

9.
The cornea, the most densely innervated tissue on the surface of the body, becomes innervated in a series of highly coordinated developmental events. During cornea development, chick trigeminal nerve growth cones reach the cornea margin at embryonic day (E)5, where they are initially repelled for days from E5 to E8, instead encircling the corneal periphery in a nerve ring prior to entering on E9. The molecular events coordinating growth cone guidance during cornea development are poorly understood. Here we evaluated a potential role for the Robo-Slit nerve guidance family. We found that Slits 1, 2 and 3 expression in the cornea and lens persisted during all stages of cornea innervation examined. Robo1 expression was developmentally regulated in trigeminal cell bodies, expressed robustly during nerve ring formation (E5-8), then later declining concurrent with projection of growth cones into the cornea. In this study we provide in vivo and in vitro evidence that Robo-Slit signaling guides trigeminal nerves during cornea innervation. Transient, localized inhibition of Robo-Slit signaling, by means of beads loaded with inhibitory Robo-Fc protein implanted into the developing eyefield in vivo, led to disorganized nerve ring formation and premature cornea innervation. Additionally, when trigeminal explants (source of neurons) were oriented adjacent to lens vesicles or corneas (source of repellant molecules) in organotypic tissue culture both lens and cornea tissues strongly repelled E7 trigeminal neurites, except in the presence of inhibitory Robo-Fc protein. In contrast, E10 trigeminal neurites were not as strongly repelled by cornea, and presence of Robo-Slit inhibitory protein had no effect. In full, these findings suggest that nerve repulsion from the lens and cornea during nerve ring formation is mediated by Robo-Slit signaling. Later, a shift in nerve guidance behavior occurs, in part due to molecular changes in trigeminal neurons, including Robo1 downregulation, thus allowing nerves to find the Slit-expressing cornea permissive for growth cones.  相似文献   

10.
Much of the peripheral nervous system of the head is derived from ectodermal thickenings, called placodes, that delaminate or invaginate to form cranial ganglia and sense organs. The trigeminal ganglion, which arises lateral to the midbrain, forms via interactions between the neural tube and adjacent ectoderm. This induction triggers expression of Pax3, ingression of placode cells and their differentiation into neurons. However, the molecular nature of the underlying signals remains unknown. Here, we investigate the role of PDGF signaling in ophthalmic trigeminal placode induction. By in situ hybridization, PDGF receptor beta is expressed in the cranial ectoderm at the time of trigeminal placode formation, with the ligand PDGFD expressed in the midbrain neural folds. Blocking PDGF signaling in vitro results in a dose-dependent abrogation of Pax3 expression in recombinants of quail ectoderm with chick neural tube that recapitulate placode induction. In ovo microinjection of PDGF inhibitor causes a similar loss of Pax3 as well as the later placodal marker, CD151, and failure of neuronal differentiation. Conversely, microinjection of exogenous PDGFD increases the number of Pax3+ cells in the trigeminal placode and neurons in the condensing ganglia. Our results provide the first evidence for a signaling pathway involved in ophthalmic (opV) trigeminal placode induction.  相似文献   

11.
Summary The innervation of the cornea of newborn (two day old) and adult rats was investigated using glyoxylic-acid-induced fluorescence (GIF) for catecholamines and subsequent acetylcholinesterase reaction.Fluorescent nerves were observed around the limbal vessels and in the pericorneal nerve plexus, from which they branched towards the central parts of the cornea. The fluorescent corneal nerves were either nonvaricose or had varicosities at intervals of 10 micra. When the animals had been pretreated with nialamide, noradrenaline and propranolol, some fluorescent branching nerve terminals with numerous varicosities also appeared. All fluorescent nerves disappeared two days after ipsilateral superior cervical sympathectomy.When the acetylcholinesterase (AChE) reaction was performed subsequently to the GIF reaction the following nerve types could be identified: 1. nerves containing both catecholamine (CA) fluorescence and AChE, 2. nerves containing only AChE.  相似文献   

12.
Neural crest cells from brachial levels of the neural tube populate the ventral roots, spinal nerves, and peripheral nerves of the chick forelimb where they give rise to Schwann cells. The distribution of neural crest cells in the developing forelimb was examined using homotopic and heterotopic chick-quail chimeras to label neural crest cells from subsets of the brachial spinal segments. Neural crest cells from particular regions of the spinal cord populated ventral roots and spinal nerves adjacent to or immediately posterior to the graft. Crest cells also populated the brachial plexus in accord with their segmental origins. In the forelimb, neural crest cells populated muscle nerves with anterior brachial spinal segments populating nerves to anterior musculature of the forelimb and posterior brachial spinal segments populating nerves to posterior musculature. Similar patterns were seen following both homotopic and heterotopic transplantation. In both types of grafts, the distribution of neural crest cells largely matched the sensory and motor projection pattern from the same spinal segmental level. This suggests that neural crest-derived Schwann cells from a particular spinal segment may use sensory and motor fibers emerging from the same segmental level as substrates to guide their migration into the periphery.  相似文献   

13.
A series of neural crest transplantations has been performed to (1) analyze whether avian premigratory cranial neural crest cells are pluripotential or restricted to specific developmental pathways and (2) examine the ability of trunk neural crest cells to develop in an environment usually occupied by cranial crest cells. Quail embryos, the cells of which have a unique nuclear marker, were used as donors and chick embryos as hosts. Hindbrain crest cells grafted in the place of diencephalic crest cells failed to form neurons in all but one case, in which a small ectopic ganglion was found. In the reciprocal transplants, neural crest cells emigrating from a segment of forebrain crest tissue grafted in the place of metencephalic crest cells produced trigeminal and ciliary ganglia which were completely normal. Thus, crest cells which normally never form ganglionic neurons will do so if placed in a suitable neurogenic environment. These results prove that premigratory avian cranial crest cells are not restricted to specific developmental pathways, but are initially pluripotential. Trunk crest cells grafted in the place of metencephalic crest cells form neuronal ganglia along the proximal trigeminal motor roots but do not form normal trigeminal ganglia. These root ganglia do not display normal peripheral projections, and placode cells, a normal component of the trigeminal ganglion, form ganglia in ectopic locations. Thus, while trunk crest cells respond to the metencephalic environment and form neurons, their response is different from that of cranial crest cells in the same location. Whether this is due to differences in developmental potential or in initial population size is not known.  相似文献   

14.
Normal innervation of embryonic avian cornea is achieved in two distinct phases. During phase I, nerves extend from the ventrotemporal region both dorsally and ventrally around the cornea, but not into it, ultimately encircling the 10th-day cornea. Phase II commences as nerves extend radially from the ring into the corneal stroma and from there into the epithelium. The effect of the glutamine analog, 6-diazo-5-oxo-l-norleucine (DON), on this normal sequence of events has been examined. In ovo administration of 5 μg DON on the 5th day of development inhibits the incorporation of [35S]sulfate in sulfated glycosaminoglycans in both the cornea and control tissues and inhibits the completion of phase I. Phase II of corneal innervation appears to be affected only indirectly and extension of nerves into the cornea does occur. However, the number of nerves entering the DON-treated cornea is dramatically reduced. Administration of DON on the 7th or 9th days of development does not affect corneal innervation, but does demonstrate a clear effect on [35S]sulfate incorporation in sulfated glycosaminoglycans by the cornea and control tissues. These data suggest that nerve ring completion is not a prerequisite for extension of nerves into the cornea and suggest an integral role for glycosaminoglycans in facilitating phase I, but not phase II, of corneal innervation.  相似文献   

15.
Corneal sensory and sympathetic nerves exert opposing actions on corneal mitogenesis and wound healing. The mechanisms by which these nerves exert their actions are unknown; however, the release of axonally transported neuropeptides has been postulated. In the present study, we investigated changes in innervation densities of calcitonin gene-related peptide (CGRP-) and tyrosine hydroxylase (TH-)immunoreactive (IR) nerves of the rat cornea following neonatal capsaicin administration, and the relationships between these changes and the development of neuroparalytic keratitis. Newborn rats were injected with capsaicin on each of the first 3 days of life. Forty-eight hours after the last injection, corneal CGRP immunostaining had totally disappeared from the cornea, whereas TH immunostaining was relatively unaffected. Over the next several weeks, a dramatic reinnervation of the cornea took place. By 6–8 weeks both the CGRP-and TH-IR corneal innervation density in the capsaicin-treated animals exceeded that of age-matched control or normal animals; that is, the corneas had become “hyper-reinnervated”. The pattern of innervation that returned was grossly abnormal and was characterized by the presence of a bizarre subepithelial plexus of fine stromal sprouts; an abundance of myelinated axons; and complex, atypical, epithelial leash morphologies. Retrograde transport of wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) from the central cornea in control and capsaicin-treated adult animals labeled an average of 143 and 47 trigeminal ganglion cells, respectively (with mean diameters of 25.7 × 0.49 μm and 34.3 × 0.72 μm), suggesting a 67% decrease in corneal afferent neurons in the capsaicin-treated animals. Transection of the ophthalmomaxillary nerve in adult capsaicin-treated animals completely eliminated corneal CGRP-IR staining, and extirpation of the superior cervical ganglion resulted in the loss of 70–80% of corneal TH-IR nerves, thus demonstrating the sensory and predominantly sympathetic origins, respectively, of these fiber populations. Chronic keratitis and neovascularization developed in the capsaicin-treated animals by approximately 3 weeks of age, achieved a maximum intensity between 4 and 6 weeks, and showed some gradual improvement thereafter. However, the keratitis never completely disappeared, even after 13 months. In conclusion, these data show that corneal sensory (CGRP-IR) and sympathetic (TH-IR) nerve fibers undergo extensive sprouting following partial corneal sensory denervation with the neurotoxin capsaicin. However, the resultant “hyper-reinnervation” is morphologically abnormal and, for reasons unknown, functionally incapable of preventing or totally reversing the keratitis.  相似文献   

16.
The ontogeny of the neurons exhibiting substance P-like immunoreactivity (SPLI) was examined in the spinal and cranial sensory ganglia of chick and quail embryos. It was shown that in dorsal root ganglia (DRG) virtually all neuronal somas occupying the mediodorsal (MD) region of the ganglia are SPLI-positive while the larger neurons of the lateroventral (LV) area are SPLI-negative. In the cranial nerve ganglia, both types of neurons coexist in the trigeminal ganglion but with a different distribution: small neurons with SPLI are proximal while large neurons without SPLI occupy the maxillomandibular and ophthalmic lobes. The distal ganglia of nerves VII and IX (i.e., geniculate, petrosal) do not show cell bodies with SPLI in the two species considered. A few of them only (about 12%) are found in the nodose (distal ganglion of nerve X). The proximal ganglia of nerves IX and X (i.e., superior-jugular complex) are composed of small neurons which virtually all exhibit SPLI. Chimaeric cranial sensory ganglia were constructed by grafting the quail hind-brain primordium into chick embryos. Revelation of SPLI was combined with acridine orange staining on the same sections in order to ascertain the placodal (chick host) or neural crest (quail donor) origin of the SP-positive neurons in each type of ganglion. We found that all the neurons showing SPLI are derived from the neural crest in the trigeminal and in the superior and jugular ganglia. In the geniculate, petrosal, and nodose all the neurons are derived from the placodal ectoderm. The small number of SPLI-positive cells of the nodose ganglia are not an exception to this rule. Therefore, generally speaking, the sensory neurons of the cranial ganglia that express the SP phenotype are derived from the crest, with the exception of some neurons present in the nodose of both quail and chick embryos and which are of placodal origin. The vast majority of placode-derived neurons do not have amounts of SP that can be detected under the conditions of the present study.  相似文献   

17.
The distribution of the mesencephalic neural crest cells in the mouse embryo was studied by mapping the colonization pattern of WGA-gold labelled cells following specific labelling of the neuroectoderm and grafting of presumptive neural crest cells to orthotopic and heterotopic sites. The result showed that (1) there were concomitant changes in the morphology of the neural crest epithelium during the formation of neural crest cells, in the 4- to 7-somite-stage embryos, (2) the neural crest cells were initially confined to the lateral subectodermal region of the cranial mesenchyme and there was minimal mixing with the paraxial mesoderm underneath the neural plate, (3) labelled cells from the presumptive crest region colonized the lateral cranio-facial mesenchyme, the developing trigeminal ganglion and the pharyngeal arch, (4) the formation of neural crest cells was facilitated by the focal disruption of the basal lamina and the cell-cell interaction specific to the neural crest site and (5) the trigeminal ganglion was colonized not only by neural crest cells but also by cells from the ectodermal placode.  相似文献   

18.
The quail-chick marker system has been used to study the early developmental stages of the ganglia located along cranial nerves VII, IX, and X. The streams of neural crest cells arising from the rhombencephalic-vagal neural crest were followed from the onset of their migration up to the localization of crest cells in the trunk and root ganglia of these nerves. It was shown that two different populations of crest cells are segregated early as a result of morphogenetic movements in the hypobranchial region. The dorsal population gives rise to the root ganglia of nerves IX and X located close to the encephalic vesicles, where the crest cells differentiate both into neurons and into glia. In contrast, the ventral stream of neural crest cells contributes together with cells from epibranchial placodes to the trunk ganglia (geniculate, petrous, and nodose ganglia) of cranial nerves VII, IX, and X. The successive steps of the invasion of the placodal anlage by crest cells can be followed owing to the selective labeling of the neural crest cells. It appears that the latter give rise to the satellite cells of the geniculate, petrous, and nodose ganglia while the large sensory neurons originate from the placodes. The nodose ganglion has been the subject of further studies aimed to investigate whether neuronal potentialities can be elicited in the neural crest-derived cells that it contains. The ability to label selectively either the neurons or the glia by the quail nuclear marker made this investigation possible in the particular case of the nodose ganglion whose neurons and satellite cells have a different embryonic origin. By the technique already described (N. M. Le Douarin, M. A. Teillet, C. Ziller, and J. Smith, 1978, Proc. Nat. Acad. Sci. USA75, 2030–2034) of back-transplantation into the neural crest migration pathway of a younger host, it was shown that the presumptive glial cells of the nodose ganglion are able to remigrate when transplanted into a 2-day chick host and to differentiate into autonomic structures (sympathetic ganglion cells, adrenomedullary cells, and enteric ganglia). It is proposed as a working hypothesis that neuronal potentialities contained in the neural crest cells which invade the placodal primordium of the nodose ganglion are repressed through cell-cell interactions occurring between placodal and crest cells.  相似文献   

19.
Neuropilin (NRP) receptors and their class 3 semaphorin (SEMA3) ligands play well-established roles in axon guidance, with loss of NRP1, NRP2, SEMA3A or SEMA3F causing defasciculation and errors in growth cone guidance of peripherally projecting nerves. Here we report that loss of NRP1 or NRP2 also impairs sensory neuron positioning in the mouse head, and that this defect is a consequence of inappropriate cranial neural crest cell migration. Specifically, neural crest cells move into the normally crest-free territory between the trigeminal and hyoid neural crest streams and recruit sensory neurons from the otic placode; these ectopic neurons then extend axons between the trigeminal and facioacoustic ganglia. Moreover, we found that NRP1 and NRP2 cooperate to guide cranial neural crest cells and position sensory neurons; thus, in the absence of SEMA3/NRP signalling, the segmentation of the cranial nervous system is lost. We conclude that neuropilins play multiple roles in the sensory nervous system by directing cranial neural crest cells, positioning sensory neurons and organising their axonal projections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号