首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hu W  Hossain M  Lux R  Wang J  Yang Z  Li Y  Shi W 《PloS one》2011,6(1):e16102
Social motility (S motility), the coordinated movement of large cell groups on agar surfaces, of Myxococcus xanthus requires type IV pili (TFP) and exopolysaccharides (EPS). Previous models proposed that this behavior, which only occurred within cell groups, requires cycles of TFP extension and retraction triggered by the close interaction of TFP with EPS. However, the curious observation that M. xanthus can perform TFP-dependent motility at a single-cell level when placed onto polystyrene surfaces in a highly viscous medium containing 1% methylcellulose indicated that "S motility" is not limited to group movements. In an apparent further challenge of the previous findings for S motility, mutants defective in EPS production were found to perform TFP-dependent motility on polystyrene surface in methylcellulose-containing medium. By exploring the interactions between pilin and surface materials, we found that the binding of TFP onto polystyrene surfaces eliminated the requirement for EPS in EPS(-) cells and thus enabled TFP-dependent motility on a single cell level. However, the presence of a general anchoring surface in a viscous environment could not substitute for the role of cell surface EPS in group movement. Furthermore, EPS was found to serve as a self-produced anchoring substrate that can be shed onto surfaces to enable cells to conduct TFP-dependent motility regardless of surface properties. These results suggested that in certain environments, such as in methylcellulose solution, the cells could bypass the need for EPS to anchor their TPF and conduct single-cell S motility to promote exploratory movement of colonies over new specific surfaces.  相似文献   

2.
Myxococcus xanthus is a gliding bacterium that contains two motility systems: S-motility, powered by polar type IV pili, and A-motility, powered by uncharacterized motors and adhesion complexes. The localization and coordination of the two motility engines is essential for directed motility as cells move forward and reverse. During cell reversals, the polarity and localization of motility proteins are rapidly inverted, rendering this system a fascinating example of dynamic protein localization.  相似文献   

3.
Studies on gliding motility in Myxococcus xanthus   总被引:11,自引:0,他引:11  
  相似文献   

4.
A great deal of progress has been made in the studies of fruiting body development and social gliding in Myxocococcus xanthus in the past few years. This includes identification of the bone fide C-signal and a receptor for type IV pili, and development of a model for the mechanism of adventurous gliding motility. It is anticipated that the next few years will see even more progress as the complete genome sequence is available and genomic and proteomic tools are applied to the study of M. xanthus social behaviors.  相似文献   

5.
M. xanthus has a complex multicellular lifestyle including swarming, predation and development. These behaviors depend on the ability of the cells to achieve directed motility across solid surfaces. M. xanthus cells have evolved two motility systems including Type-IV pili that act as grappling hooks and a controversial engine involving mucus secretion and fixed focal adhesion sites. The necessity for cells to coordinate the motility systems and to respond rapidly to environmental cues is reflected by a complex genetic network involving at least three complete sets of chemosensory systems and eukaryotic-like signaling proteins. In this review, we discuss recent advances suggesting that motor synchronization results from spatial oscillations of motility proteins. We further propose that these dynamics are modulated by the action of multiple upstream complementary signaling systems. M. xanthus is thus an exciting emerging model system to study the intricate processes of directed cell migration.  相似文献   

6.
The complex life cycle of Myxococcus xanthus includes predation, swarming, fruiting-body formation and sporulation. The genome of M. xanthus is large and comprises an estimated 7,400 open reading frames, of which approximately 605 code for regulatory genes. These include eight clusters of chemotaxis-like genes that define eight chemosensory pathways, most of which have dedicated functions. Although many of these chemosensory pathways have a role in controlling motility, at least two of these pathways control gene expression during development.  相似文献   

7.
Social (S)-motility in Myxococcus xanthus is a flagellum-independent gliding motility system that allows bacteria to move in groups on solid surfaces. S-motility has been shown to require type IV pili (TFP), exopolysaccharide (EPS; a component of fibrils) and lipopolysaccharide (LPS). Previously, information concerning EPS biogenesis in M. xanthus was lacking. In this study, we screened 5000 randomly mutagenized colonies for defects in S-motility and EPS and identified two genetic regions essential for EPS biogenesis: the EPS synthesis (eps) region and the EPS-associated (eas) region. Mutants with insertions in the eps and eas regions were defective in S-motility and fruiting body formation. These mutants failed to bind the dye calcofluor white, indicating that they lacked EPS; however, they retained normal TFP and LPS. Analysis of the eps locus showed several open reading frames (ORFs) that encode homologues to glycosyltransferases, glucanases and EPS transporters as well as regulatory proteins; the eas locus contains two ORFs: one exhibits homology to hypothetical proteins with a conserved domain of unknown function and the other displays no apparent homology to other proteins in the database. Further genetic mutagenesis analysis indicates that the whole eps region is involved in the biosynthesis of fibrils and fibril EPS. The operon at the proximal end of the eps region was analysed by generating in-frame deletion mutations. These mutants showed varying degrees of defects in the bacterium's ability to produce EPS or perform EPS-related functions, confirming the involvement of these genes in M. xanthus EPS biogenesis.  相似文献   

8.
9.
The rod‐shaped bacterium Myxococcus xanthus moves on surfaces along its long cell axis and reverses its moving direction regularly. Current models propose that the asymmetric localization of a Ras‐like GTPase, MglA, to leading cell poles determines the moving direction of cells. However, cells are still motile in the mutants where MglA localizes symmetrically, suggesting the existence of additional regulators that control moving direction. In this study, we identified PlpA, a P ilZ‐l ike p rotein that regulates the direction of motility. PlpA and MglA localize into opposite asymmetric patterns. Deletion of the plpA gene abolishes the asymmetry of MglA localization, increases the frequency of cellular reversals and leads to severe defects in cell motility. By tracking the movements of single motor particles, we demonstrated that PlpA and MglA co‐regulated the direction of gliding motility through direct interactions with the gliding motor. PlpA inhibits the reversal of individual gliding motors while MglA promotes motor reversal. By counteracting MglA near lagging cell poles, PlpA reinforces the polarity axis of MglA and thus stabilizes the direction of motility.  相似文献   

10.
Myxococcus xanthus has two nearly independent genetic systems, A and S, which appear to mediate adventurous (single-cell) movement and social (group) movement, respectively. In addition to a notable reduction in group movement, social motility mutants exhibit decreased biofilm formation, cell cohesion, dye binding, fibril production, and fruiting body formation. The stk-1907 allele, containing transposon Tn5 insertion omega DK1907, was introduced into wild-type cells and many social motility mutants. This allele, which was epistatic to most social motility mutations, caused wild-type and most mutant cells to exhibit increased group movement, cell cohesion, dye binding, and production of cell surface fibrils. The presence of the stk-1907 allele in dsp mutants, which almost completely lack cell surface fibrils, did not result in these phenotypic changes; therefore, stk-1907 is hypostatic to dsp mutations. Those mutants which exhibited increased group movement and cell cohesion with the stk-1907 allele also had increased fruiting body formation, but no significant changes in spore production were observed. These results suggest that fibrils may mediate cell cohesion, dye binding, and group movement. Additionally, the results suggest that the dsp locus contains genes involved in subunit synthesis, transport, and/or assembly of fibrils. The wild-type and mutant alleles of stk were cloned and studied in merodiploids. The mutant allele is recessive, suggesting that Tn5 omega DK1907 caused a null mutation in a gene which acts as a negative regulator of fibril synthesis. The stk-1907 allele appears to cause utilization of the A motility system for group movement, possibly because of increased fibril production.  相似文献   

11.
12.
13.
Five transposon Tn5 mutants of the procaryote Myxococcus xanthus had been shown previously to be defective in lipopolysaccharide biosynthesis (J. M. Fink,-M. Kalos, and J. F. Zissler, J. Bacteriol. 171:2033-2041, 1989). These mutants were studied for possible defects in gliding motility and multicellular development. Wild-type M. xanthus cells glide both as single cells and as groups of cells. We found that the Tn5 lipopolysaccharide O-antigen mutants were defective in single-cell motility but were unaltered in group motility. These mutant strains were slow to develop but eventually gave rise to normal, spore-filled fruiting bodies. We also had shown previously that 56 (ethyl methanesulfonate-induced and spontaneous) phage-resistant mutants were defective in lipopolysaccharide biosynthesis. We found that many of these lipopolysaccharide O-antigen mutants were defective in single-cell motility but were unaltered in group motility. These mutants also gave rise to normal, spore-filled fruiting bodies. We also studied several phage-resistant mutants which were lacking a side-chain carbohydrate on the lipopolysaccharide core. These mutants possessed both single-cell motility and group motility but were altered in the magnitude of gliding. These mutants were blocked early in development and could not form multicellular fruiting bodies. Several of the mutations in the developmentally aberrant strains were mapped to a single locus by using a collection of genetically linked transposons as genetic markers.  相似文献   

14.
An insertion in the rasA gene entirely blocked developmental aggregation and sporulation in Myxococcus xanthus while also reducing swarm expansion on a 0.3% agar surface. Data presented here demonstrate that rasA is required for extracellular fibril formation and social gliding motility.  相似文献   

15.
Myxococous xanthus cells can glide both as individual cells, dependent on A dventurous motility (A motility), and as groups of cells, dependent upon S ocial motility (S motility), Tn5-lac mutagenesis was used to generate 16 new A- and nine new S- mutations. In contrast with previous results, we find that subsets of A- mutants are defective in fruiting body morphogenesis and/or myxospore differentiation. All S- mutants are defective in fruiting body morphogenesis, consistent with previous results. Whereas some S- mutants produce a wild-type complement of spores, others are defective in the differentiation of myxospores. Therefore, a subset of the A genes and all of the S genes are critical for fruiting body morphogenesis. Subsets of both A and S genes are essential for sporulation. Three S::Tn5–lac insertions result in surprising phenotypes. Colonies of two S- mutants glide on ‘swim’ (0.35% agar) plates to form fractal patterns. These S- mutants are the first examples of a bacterium in which mutations result in fractal patterns of colonial spreading. An otherwise wild-type strain with one S- insertion resembles the frz- sglA1- mutants upon development, suggesting that this S- gene defines a new chemotaxis component in M. xanthus.  相似文献   

16.
The biofilm‐forming bacterium Myxococcus xanthus moves on surfaces as structured swarms utilizing type IV pili‐dependent social (S) motility. In contrast to isolated cells that reverse their moving direction frequently, individual cells within swarms rarely reverse. The regulatory mechanisms that inhibit cellular reversal and promote the formation of swarms are not well understood. Here we show that exopolysaccharides (EPS), the major extracellular components of M. xanthus swarms, inhibit cellular reversal in a concentration‐dependent manner. Thus, individual wild‐type cells reverse less frequently in swarms due to high local EPS concentrations. In contrast, cells defective in EPS production hyper‐reverse their moving direction and show severe defects in S‐motility. Surprisingly, S‐motility and wild‐type reversal frequency are restored in double mutants that are defective in both EPS production and the Frz chemosensory system, indicating that EPS regulates cellular reversal in parallel to the Frz pathway. Here we clarify that besides functioning as the structural scaffold in biofilms, EPS is a self‐produced signal that coordinates the group motion of the social bacterium M. xanthus.  相似文献   

17.
Myxococcus xanthus Social (S) motility occurs at high cell densities and is powered by the extension and retraction of Type IV pili which bind ligands normally found in matrix exopolysaccharides (EPS). Previous studies showed that FrzS, a protein required for S-motility, is organized in polar clusters that show pole-to-pole translocation as cells reverse their direction of movement. Since the leading cell pole is the site of both the major FrzS cluster and type IV pilus extension/retraction, it was suggested that FrzS might regulate S-motility by activating pili at the leading cell pole. Here, we show that FrzS regulates EPS production, rather than type IV pilus function. We found that the frzS phenotype is distinct from that of Type IV pilus mutants such as pilA and pilT, but indistinguishable from EPS mutants, such as epsZ. Indeed, frzS mutants can be rescued by the addition of purified EPS, 1% methylcellulose, or co-culturing with wildtype cells. Our data also indicate that the cell density requirement in S-motility is likely a function of the ability of cells to construct functional multicellular clusters surrounding an EPS core.  相似文献   

18.
A major challenge in microbial evolutionary ecology is to understand how fitness-related traits vary in natural populations of microorganisms at defined spatial scales and subsequently to identify the forces that maintain such variation. The Gram-negative soil bacterium Myxococcus xanthus is a model system for the study of gliding motility, which is driven by two complementary motility systems in this species and is central to its social lifestyle. We tested whether the ecological context of a centimetre-scale M. xanthus population allows the coexistence of diverse motility-related phenotypes. Swarming rates among 26 clones isolated at the centimetre scale were found to vary greatly in multiple laboratory environments. This variation appears to be motility-specific, as it is not explained by a correlated variation in intrinsic growth rate. In contrast to the common reference strain DK1622, most isolates swarmed faster on hard agar than on soft agar, highlighting the difficulty of inferring species characteristics from laboratory reference strains. These isolates also varied greatly in swarm morphology and in the effect of nutrient limitation on swarming rate. Our results show that diverse swarming phenotypes can coexist in a small-scale bacterial population.  相似文献   

19.
Membrane-bound ATPase was found in membranes of the archaebacterium Methanosarcina barkeri. The ATPase activity required divalent cations, Mg2+ or Mn2+, and maximum activity was obtained at pH 5.2. The activity was specifically stimulated by HSO3- with a shift of optimal pH to 5.8, and N,N'-dicyclohexylcarbodiimide inhibited ATP hydrolysis. The enzyme could be solubilized from membranes by incubation in 1 mM Tris-maleate buffer (pH 6.9) containing 0.5 mM EDTA. The solubilized ATPase was purified by DEAE-Sepharose and Sephacryl S-300 chromatography. The molecular weight of the purified enzyme was estimated to be 420,000 by gel filtration through Sephacryl S-300. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate revealed two classes of subunit, Mr 62,000 (alpha) and 49,000 (beta) associated in the molar ratio 1:1. These results suggest that the ATPase of M. barkeri is similar to the F0F1 type ATPase found in many eubacteria.  相似文献   

20.
Gliding motility is observed in a large variety of phylogenetically unrelated bacteria. Gliding provides a means for microbes to travel in environments with a low water content, such as might be found in biofilms, microbial mats, and soil. Gliding is defined as the movement of a cell on a surface in the direction of the long axis of the cell. Because this definition is operational and not mechanistic, the underlying molecular motor(s) may be quite different in diverse microbes. In fact, studies on the gliding bacterium Myxococcus xanthus suggest that two independent gliding machineries, encoded by two multigene systems, operate in this microorganism. One machinery, which allows individual cells to glide on a surface, independent of whether the cells are moving alone or in groups, requires the function of the genes of the A-motility system. More than 37 A-motility genes are known to be required for this form of movement. Depending on an additional phenotype, these genes are divided into two subclasses, the agl and cgl genes. Videomicroscopic studies on gliding movement, as well as ultrastructural observations of two myxobacteria, suggest that the A-system motor may consist of multiple single motor elements that are arrayed along the entire cell body. Each motor element is proposed to be localized to the periplasmic space and to be anchored to the peptidoglycan layer. The force to glide which may be generated here is coupled to adhesion sites that move freely in the outer membrane. These adhesion sites provide a specific contact with the substratum. Based on single-cell observations, similar models have been proposed to operate in the unrelated gliding bacteria Flavobacterium johnsoniae (formerly Cytophaga johnsonae), Cytophaga strain U67, and Flexibacter polymorphus (a filamentous glider). Although this model has not been verified experimentally, M. xanthus seems to be the ideal organism with which to test it, given the genetic tools available. The second gliding motor in M. xanthus controls cell movement in groups (S-motility system). It is dependent on functional type IV pili and is operative only when cells are in close proximity to each other. Type IV pili are known to be involved in another mode of bacterial surface translocation, called twitching motility. S-motility may well represent a variation of twitching motility in M. xanthus. However, twitching differs from gliding since it involves cell movements that are jerky and abrupt and that lack the organization and smoothness observed in gliding. Components of this motor are encoded by genes of the S-system, which appear to be homologs of genes involved in the biosynthesis, assembly, and function of type IV pili in Pseudomonas aeruginosa and Neisseria gonorrhoeae. How type IV pili generate force in S-motility is currently unknown, but it is to be expected that ongoing physiological, genetic, and biochemical studies in M. xanthus, in conjunction with studies on twitching in P. aeruginosa and N. gonorrhoeae, will provide important insights into this microbial motor. The two motility systems of M. xanthus are affected to different degrees by the MglA protein, which shows similarity to a small GTPase. Bacterial chemotaxis-like sensory transduction systems control gliding motility in M. xanthus. The frz genes appear to regulate gliding movement of individual cells and movement by the S-motility system, suggesting that the two motors found in this bacterium can be regulated to result in coordinated multicellular movements. In contrast, the dif genes affect only S-system-dependent swarming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号