首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Japanese hop (Humulus japonicus Siebold & Zucc.) was karyotyped by chromosome measurements, fluorescence in situ hybridization with rDNA and telomeric probes, and C-banding/DAPI. The karyotype of this species consists of sex chromosomes (XX in female and XY1Y2 in male plants) and 14 autosomes difficult to distinguish by morphology. The chromosome complement also shows a rather monotonous terminal distribution of telomeric repeats, with the exception of a pair of autosomes possessing an additional cluster of telomeric sequences located within the shorter arm. Using C-banding/DAPI staining and 5S and 45S rDNA probes we constructed a fluorescent karyotype that can be used to distinguish all autosome pairs of this species except for the 2 largest autosome pairs, lacking rDNA signals and having similar size and DAPI-banding patterns. Sex chromosomes of H. japonicus display a unique banding pattern and different DAPI fluorescence intensity. The X chromosome possesses only one brightly stained AT-rich terminal segment, the Y1 has 2 such segments, and the Y2 is completely devoid of DAPI signal. After C-banding/DAPI, both Y chromosomes can be easily distinguished from the rest of the chromosome complement by the increased fluorescence of their arms. We discuss the utility of these methods for studying karyotype and sex chromosome evolution in hops.  相似文献   

2.
In spite of various cytogenetic works on suborder Heteroptera, the chromosome organization, function and its evolution in this group is far from being fully understood. Cytologically, the family Rhyparochromidae constitutes a heterogeneous group differing in chromosome numbers. This family possesses XY sex mechanism in the majority of the species with few exceptions. In the present work, multiple banding techniques viz., C-banding, base-specific fluorochromes (DAPI/CMA3) and silver nitrate staining have been used to cytologically characterize the chromosomes of the seed plant pest Elasmolomus (Aphanus) sordidus Fabricius, 1787 having 2n=12=8A+2m+XY. One pair of the autosomes was large while three others were of almost equal size. At diplotene, C-banding technique revealed, that three autosomal bivalents show terminal constitutive heterochromatic bands while one medium sized bivalent was euchromatic. Microchromosomes (m-chromosomes) were positively heteropycnotic. After DAPI and CMA3 staining, all the autosomal bivalents showed equal fluorescence, except CMA3 positive signals, observed at both telomeric heterochromatic regions of one medium sized autosomal bivalent. Silver nitrate staining further revealed that this chromosome pair carries Nucleolar Organizer Regions (NORs) at the location of CMA3 positive signals. The X chromosome showed a thick C-band, positive to both DAPI /CMA3 while Y, otherwise C-negative, was weakly positive to DAPI and negative to CMA3, m-chromosomes were DAPI bright and CMA3 dull.  相似文献   

3.
Chromosoma Focus     
Bruce D. McKee 《Chromosoma》1996,105(3):135-141
  相似文献   

4.
Summary Tandemly organized simple repetitive sequences are widespread in all eukaryotes. The organization of the simple tetrameric (GACA)n sequences at chromosomal loci has been investigated using in situ hybridization with chemically pure oligonucleotide probes. Both biotin- and digoxigenin-attached (GACA)4 probes reveal specific hybridization signals over the short arms of all acrocentric autosomes in man. In the other examined primates the NOR-bearing autosomes could be detected by in situ hybridization with (GACA)4, and a major concentration of the GACA simple repeats could be observed on the Y chromosome in the gibbon and mouse; the hybridization site in the gibbon Y chromosome coincides particularly with the silver-stainable NOR. In the past, accumulations of (GACA)n sequences were demonstrated mainly on vertebrate sex chromosomes. Therefore, the organization of GACA simple sequences is discussed in the context of their evolutionary potential accumulation and the possible linkage with the primate rDNA loci.  相似文献   

5.
Dioecy is relatively rare in plants and sex determination systems vary among such species. A good example of a plant with heteromorphic sex chromosomes is hop (Humulus lupulus). The genotypes carrying XX or XY chromosomes correspond to female and male plants, respectively. Until now no clear cytogenetic markers for the sex chromosomes of hop have been established. Here, for the first time the sex chromosomes of hop are clearly identified and characterized. The high copy sequence of hop (HSR1) has been cloned and localized on chromosomes by fluorescence in situ hybridization. The HSR1 repeat has shown subtelomeric location on autosomes with the same intensity of the signal. The signal has been present in the subtelomeric region of the long arm and in the near-centromeric region but absent in the telomeric region of the short arm of the X chromosome. At the same time the signal has been found in the telomeric region only of the long arm of the Y chromosome. This finding indicates that the sex chromosomes of hop have evolved from a pair of autosomes via ancient translocation or inversion. The observation of the meiotic configuration of the sex bivalents shows the location of a pseudoautosomal region on the long arms of X and Y chromosomes.  相似文献   

6.
Many but not all rainbow trout strains have morphologically distinguishable sex chromosomes. In these strains, the short arm of the X has multiple copies of 5S rDNA and a bright DAPI band near the centromere, both of which are missing from the Y chromosome, which has a very small short arm. We examined the presence of these markers using fluorescence in situ hybridization (FISH) in four different YY clonal lines derived from different strains and compared the results with sexed fish of the Donaldson strain with the normal X/Y heteromorphism. The Y chromosome in two of the YY clonal lines (Arlee and Swanson) is indistinguishable from the X chromosome and it is positive for 5S rDNA and the DAPI bright band. On the other hand, both 5S rDNA sequences and the DAPI band were not found on the Y chromosome in Hot Creek and Clearwater which have the normal Y. Thus the presence of these two cytogenetic markers may account for the size difference between the short arm of the X and Y chromosome found in most rainbow trout strains. In fishes the expression of one type of 5S rRNA is restricted to oocytes and previous work suggests that although XX males are fairly common, XY females are rare, implying a selective disadvantage for XY females. A hypothesis is presented to explain why this sex chromosome heteromorphism is not closely linked to the SEX locus, which is found on the long arm of the Y chromosome in rainbow trout.  相似文献   

7.
The field mouse,Apodemus argenteus Temminck, has 46 chromosomes. The autosomes comprise 20 pairs of acrocentrics and 2 pairs of metacentrics. The X chromosome is represented by an outstandingly large submetacentric element, while the Y is an acrocentric corresponding in size to the 5th or 6th pair of autosomes. All of the autosomes and gonosomes can be unequivocally identified by their characteristic Q-band or G-band patterns. The constitutive heterochromatin, as revealed by C-banding, is localized at the centromeric regions of all autosomes, the short arm and the proximal 1/3 of the long arm of the X chromosome, and the entire Y chromosome. The C-band-positive segments which constitute 33.5% of the genome exhibit dark fluorescence after Q-banding, late DNA replication, faint or positive staining reaction to G-banding, fast reassociation of DNA revealed by AO staining, and allocyclic behavior of the sex-bivalent in male meiosis. An exception to the above is the distal segment of the Y which is positive to both C- and Q-banding. The giant X chromosome occupies 13.1% of the genome, leaving 5.6% of euchromatic segments, the latter value being equivalent to that of the original type X.  相似文献   

8.
In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae). The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome) or both sex chromosomes (X and Y chromosomes). This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes) and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.  相似文献   

9.
Polypteridae (Cladistia) is a family of archaic fishes, confined to African freshwaters. On account of their primitiveness in anatomical and morphological characters and mosaic relationships among lower Osteichthyans fishes, they constitute an important subject for the study of evolution in vertebrates. Very little is known about the karyological structure of these species. In this article, a cytogenetic analysis on twenty specimens of Polypterus senegalus (Cuvier, 1829) was performed using both classical and molecular techniques. Karyotype (2n = 36; FN = 72), chromosome location of telomeric sequences (TTAGGG) n , (GATA)7 repeats and ribosomal 5S and 18S rRNA genes were examined by using Ag-NOR, classical C-banding, CMA3 staining and FISH. Staining with Ag-NOR showed the presence of two GC rich NORs on the p arm of the chromosome pair no. 1. CMA3 marked all centromerical and some (no. 1 and no. 14) telomeric regions. FISH with 5S rDNA marked the subtelomeric region of the q arm of the chromosome pair no. 14. FISH with 18S rDNA marked the telomeric region of the p arm of the chromosome pair no. 1, previously marked by Ag-NOR. (GATA)7 repeats marked the subtelomeric regions of all chromosome pairs, with the exclusion of the no. 1, 3 and 14. Hybridization with telomeric probes (TTAGGG) n showed bright signals at the end of all chromosomes. After cloning, the 5SrDNA alignment revealed an organization of sequences made up of two different classes of tandem arrays (5S type I and 5S type II) of different lengths.  相似文献   

10.
A case with an apparently balanced reciprocal translocation between the long arm of the Y chromosome and the short arm of chromosome 1 t(Y;1)(q11.2;p34.3) is described. The translocation was found in a phenotypically normal male ascertained by infertility and presenting for intra-cytoplasmatic sperm injection treatment. Histological examination of testicular biopsies revealed spermatogenic failure. Chromosome painting with probes for chromosome 1 and for the euchromatic part of the Y chromsome confirmed the translocation of euchromatic Y chromosomal material onto the short arm of chromosome 1 and of a substantial part of the short arm of chromosome 1 onto the Y chromosome. Among the Y/autosome translocations, the rearrangements involving long arm euchromatin of the Y chromosome are relatively rare and mostly associated with infertility. Microdeletion screening at the azoospermia locus revealed no deletions, suggesting another mechanism causing infertility in this translocation carrier.  相似文献   

11.
Silene latifolia is a key plant model in the study of sex determination and sex chromosome evolution. Current studies have been based on genetic mapping of the sequences linked to sex chromosomes with analysis of their characters and relative positions on the X and Y chromosomes. Until recently, very few DNA sequences have been physically mapped to the sex chromosomes of S. latifolia. We have carried out multicolor fluorescent in situ hybridization (FISH) analysis of S. latifolia chromosomes based on the presence and intensity of FISH signals on individual chromosomes. We have generated new markers by constructing and screening a sample bacterial artificial chromosome (BAC) library for appropriate FISH probes. Five newly isolated BAC clones yielded discrete signals on the chromosomes: two were specific for one autosome pair and three hybridized preferentially to the sex chromosomes. We present the FISH hybridization patterns of these five BAC inserts together with previously described repetitive sequences (X-43.1, 25S rDNA and 5S rDNA) and use them to analyze the S. latifolia karyotype. The autosomes of S. latifolia are difficult to distinguish based on their relative arm lengths. Using one BAC insert and the three repetitive sequences, we have constructed a standard FISH karyotype that can be used to distinguish all autosome pairs. We also analyze the hybridization patterns of these sequences on the sex chromosomes and discuss the utility of the karyotype mapping strategy presented to study sex chromosome evolution and Y chromosome degeneration.Communicated by J.S. Heslop-Harrison  相似文献   

12.
Rice (Oryza sativa ssp. japonica cv. Nipponbare) harbors a ribosomal RNA gene (rDNA) cluster in the nucleolar-organizing region at the telomeric end of the short arm of chromosome 9. We isolated and sequenced two genomic clones carrying rice rDNA fragments from this region. The rice rDNA repeat units could be classified into three types based on length, which ranged from 7,928 to 8,934 bp. This variation was due to polymorphism in the number of 254-bp subrepeats in the intergenic spacer (IGS). Polymerase chain reaction (PCR) analysis suggested that the rDNA units in rice vary widely in length and that the copy number of the subrepeats in the IGS ranges from 1 to 12 in the rice genome. PCR and Southern blot analyses showed that most rDNA units have three intact and one truncated copies of the subrepeats in the IGS, and distal (telomere-side) rDNA units have more subrepeats than do proximal (centromere-side) ones. Both genomic clones we studied contained rDNA-flanking DNA sequences of either telomeric repeats (5′-TTTAGGG-3′) or a chromosome-specific region, suggesting that they were derived from the distal or proximal end, respectively, of the rDNA cluster. A similarity search indicated that retrotransposons appeared more frequently in a 500-kb portion of the proximal rDNA-flanking region than in other subtelomeric regions or sequenced regions of the genome. This study reveals the repetitive nature of the telomeric end of the short arm of chromosome 9, which consists of telomeric repeats, an rDNA array, and a retrotransposon-rich chromosomal region.Sequence accession numbers in DDBJ assigned for OSJNOa063K24 and OSJNBb0013K10 are AP009051 and AP008245, respectively.  相似文献   

13.
This paper describes the effects of 5-azacytidine on the condensation state of rye (Secale cereale L.) chromatin introduced into the wheat genome (Triticum aestivum L. cv. Beaver). The wheat cultivar Beaver carries a translocation between the short arm of rye chromosome 1R (1RS) and the long arm of wheat chromosome 1B (1BL/1RS). 1RS can be detected using genomic in situ hybridisation and carries a ribosomal DNA (rDNA) locus that can be simultaneously detected using multiple labelling strategies. The rDNA locus divides 1RS into a distal region that is gene rich and a proximal region that is gene poor and highly methylated. 1RS also carries a large block of subtelomeric heterochromatin. The drug, which acts to inhibit DNA methylation in plants, has three pronounced effects on interphase nuclei. (1) It induces aberrant condensation of the rye subtelomeric heterochromatin and in many cases induces sister chromatid separation in the subtelomeric heterochromatin of G2 nuclei. (2) Nuclei trisomic for 1RS are observed at low frequency in treated material and are probably a consequence of aberrant sister chromatid separation or condensation. (3) The drug alters normal condensation of 1RS euchromatin. However, contrary to expectation the effect is not simply to induce decondensation. The proximal region of the arm actually condenses at low levels of drug administration while the distal region remains unaltered or increases its decondensation state. Increasing the concentration of 5-azacytidine induces a biphasic response and at the highest concentration used all regions of the arm show signs of decondensation. Thus the influence of the drug on chromatin condensation depends on the genomic structure. Received: 14 July 1997; in revised form: 26 August 1997 / Accepted: 27 August 1997  相似文献   

14.
A chromosome complement formed by 16 autosomes and an Xyp sex chromosome system was found in Epilachna paenulata Germar (Coleoptera: Coccinellidae). All autosomes were metacentric except pair 1 which was submetacentric. The X and the Y chromosomes were also submetacentric but the Y was minute. The whole chromosome set carried large paracentric heterochromatic C-segments representing about 15% of the haploid complement length. Heterochromatic segments associated progressively during early meiotic stages forming a large single chromocenter. After C-banding, chromocenters revealed an inner networklike filamentous structure. Starlike chromosome configurations resulted from the attachment of bivalents to the chromocenters. These associations were followed until early diakinesis. Thin remnant filaments were also observed connecting metaphase I chromosomes. Evidence is presented that, in this species, the Xyp bivalent resulted from an end-to-end association of the long arms of the sex chromosomes. The parachute Xyp bivalent appeared to be composed of three distinct segments: two intensely heterochromatic C-banded corpuscles formed the canopy and a V-shaped euchromatic filament connecting them represented the parachutist component. The triple constitution of the sex bivalent was interpreted as follows: each heterochromatic corpuscle corresponded to the paracentric C-segment of the X and Y chromosomes; the euchromatic filament represented mainly the long arm of the X chromosome terminally associated with the long arm of the Y chromosome. The complete sequence of the formation of the Xyp bivalent starting from nonassociated sex chromosomes in early meiotic stages, and progressing through pairing of heterochromatic segments, coiling of the euchromatic filament, and movement of the heterochromatic corpuscles to opposite poles is described. These findings suggest that in E. paenulata the Xyp sex bivalent formation is different than in other coleopteran species and that constitutive heterochromatic segments play an important role not only in chromosome associations but also in the Xyp formation.  相似文献   

15.
The subfamily Triatominae, vectors of Chagas disease, comprises 140 species characterized by a highly homogeneous chromosome number. We analyzed the chromosomal distribution and evolution of repeated sequences in Triatominae genomes by Genomic in situ Hybridization using Triatoma delpontei and Triatoma infestans genomic DNAs as probes. Hybridizations were performed on their own chromosomes and on nine species included in six genera from the two main tribes: Triatomini and Rhodniini. Genomic probes clearly generate two different hybridization patterns, dispersed or accumulated in specific regions or chromosomes. The three used probes generate the same hybridization pattern in each species. However, these patterns are species-specific. In closely related species, the probes strongly hybridized in the autosomal heterochromatic regions, resembling C-banding and DAPI patterns. However, in more distant species these co-localizations are not observed. The heterochromatic Y chromosome is constituted by highly repeated sequences, which is conserved among 10 species of Triatomini tribe suggesting be an ancestral character for this group. However, the Y chromosome in Rhodniini tribe is markedly different, supporting the early evolutionary dichotomy between both tribes. In some species, sex chromosomes and autosomes shared repeated sequences, suggesting meiotic chromatin exchanges among these heterologous chromosomes. Our GISH analyses enabled us to acquire not only reliable information about autosomal repeated sequences distribution but also an insight into sex chromosome evolution in Triatominae. Furthermore, the differentiation obtained by GISH might be a valuable marker to establish phylogenetic relationships and to test the controversial origin of the Triatominae subfamily.  相似文献   

16.
Heterochromatin in the European field vole, Microtus agrestis, was studied using a special staining technique and DNA/RNA in situ hybridization. The heterochromatin composed the proximal 1/4 of the short arm and the entire long arm of the X chromosome, practically the entire Y chromosome and the centromeric areas of the autosomes. By using the DNA/RNA in situ hybridization technique, repeated nucleotide sequences are shown to be in the heterochromatin of the sex chromosomes.  相似文献   

17.
Background and AimsDioecious species with well-established sex chromosomes are rare in the plant kingdom. Most sex chromosomes increase in size but no comprehensive analysis of the kind of sequences that drive this expansion has been presented. Here we analyse sex chromosome structure in common sorrel (Rumex acetosa), a dioecious plant with XY1Y2 sex determination, and we provide the first chromosome-specific repeatome analysis for a plant species possessing sex chromosomes.MethodsWe flow-sorted and separately sequenced sex chromosomes and autosomes in R. acetosa using the two-dimensional fluorescence in situ hybridization in suspension (FISHIS) method and Illumina sequencing. We identified and quantified individual repeats using RepeatExplorer, Tandem Repeat Finder and the Tandem Repeats Analysis Program. We employed fluorescence in situ hybridization (FISH) to analyse the chromosomal localization of satellites and transposons.Key ResultsWe identified a number of novel satellites, which have, in a fashion similar to previously known satellites, significantly expanded on the Y chromosome but not as much on the X or on autosomes. Additionally, the size increase of Y chromosomes is caused by non-long terminal repeat (LTR) and LTR retrotransposons, while only the latter contribute to the enlargement of the X chromosome. However, the X chromosome is populated by different LTR retrotransposon lineages than those on Y chromosomes.ConclusionsThe X and Y chromosomes have significantly diverged in terms of repeat composition. The lack of recombination probably contributed to the expansion of diverse satellites and microsatellites and faster fixation of newly inserted transposable elements (TEs) on the Y chromosomes. In addition, the X and Y chromosomes, despite similar total counts of TEs, differ significantly in the representation of individual TE lineages, which indicates that transposons proliferate preferentially in either the paternal or the maternal lineage.  相似文献   

18.
19.
It has been proposed that sequence homology should exist between the short arms of the human sex chromosomes, in the regions pairing at meiosis. Out of 40 clones picked at random from a collection of non-repetitive DNA sequences derived from the human Y chromosome, we have found nine sequences which show very high homology with sequences located on the X chromosome. All nine probes originate from the euchromatic part of the Y chromosome. All the homologous sequences are located within the Xq12-Xq22-24 region. None of them map to the short arm of the X chromosome. We conclude that an important part of the euchromatic region of the Y chromosome is homologous to the middle of the X chromosome long arm, possibly as a result of recent translation event(s).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号