首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein folding and clearance networks sense and respond to misfolded and aggregation-prone proteins by activatingcytoprotective cell stress responses that safeguard the proteome against damage, maintain the health of the cell, andenhance lifespan. Surprisingly, cellular proteostasis undergoes a sudden and widespread failure early in Caenorhabditiselegans adulthood, with marked consequences on proteostasis functions later in life. These changes in the regulation ofquality control systems, such as chaperones, the ubiquitin proteasome system and cellular stress responses, are controlledcell-nonautonomously by the proliferation of germline stem cells. Here, we review recent studies examining changes inproteostasis upon transition to adulthood and how proteostasis is modulated by reproduction onset, focusing on C. elegans.Based on these and our own findings, we propose that the regulation of quality control systems is actively remodeledat the point of transition between development and adulthood to influence the subsequent course of aging.  相似文献   

2.
3.
Avian myeloblastosis virus cannot initiate its reproduction in the presence of amethopterin or fluorodeoxyuridine. This inhibition is reversed by thymidine. Addition of either inhibitor after virus production has started does not inhibit further virus synthesis. In presence of either inhibitor, deoxyribonucleic acid synthesis is inhibited by over 90%, but ribonucleic acid synthesis is not affected. Cells resume their normal growth rate 24 hr after removal of either inhibitor.  相似文献   

4.
5.
Paramyosin of Caenorhabditis elegans   总被引:11,自引:0,他引:11  
Paramyosin has been isolated from the nematode, Caenorhabditis elegans. Its identity has been established by a variety of criteria, including purification, molecular weight, immunological cross reactivity with known paramyosin and formation of characteristic paracrystals. The presence of paramyosin in both pharyngeal and body-wall musculature was shown by a technique that allows analysis by sodium dodecyl sulphate gels of the protein in a single worm. The possibility of defining the role of paramyosin in the structure and function of the invertebrate muscle through the isolation of mutants in this protein is discussed.  相似文献   

6.
MOTIVATION: Caenorhabditis elegans, a roundworm found in soil, is a widely studied model organism with about 1000 cells in the adult. Producing high-resolution fluorescence images of C.elegans to reveal biological insights is becoming routine, motivating the development of advanced computational tools for analyzing the resulting image stacks. For example, worm bodies usually curve significantly in images. Thus one must 'straighten' the worms if they are to be compared under a canonical coordinate system. RESULTS: We develop a worm straightening algorithm (WSA) that restacks cutting planes orthogonal to a 'backbone' that models the anterior-posterior axis of the worm. We formulate the backbone as a parametric cubic spline defined by a series of control points. We develop two methods for automatically determining the locations of the control points. Our experimental methods show that our approaches effectively straighten both 2D and 3D worm images.  相似文献   

7.
8.
One of the looming mysteries in signal transduction today is the question of how mechanical signals, such as pressure or mechanical force delivered to a cell, are interpreted to direct biological responses. All living organisms, and probably all cells, have the ability to sense and respond to mechanical stimuli. At the single-cell level, mechanical signaling underlies cell-volume control and specialized responses such as the prevention of poly-spermy in fertilization. At the level of the whole organism, mechanotransduction underlies processes as diverse as stretch-activated reflexes in vascular epithelium and smooth muscle; gravitaxis and turgor control in plants; tissue development and morphogenesis; and the senses of touch, hearing, and balance. Intense genetic, molecular, and elecrophysiological studies in organisms ranging from nematodes to mammals have highlighted members of the recently discovered DEG/ENaC family of ion channels as strong candidates for the elusive metazoan mechanotransducer. Here, we discuss the evidence that links DEG/ENaC ion channels to mechanotransduction and review the function of Caenorhabiditis elegans members of this family called degenerins and their role in mediating mechanosensitive behaviors in the worm.  相似文献   

9.
10.
Extensive in silico search of the genome of Caenorhabditis elegans revealed the presence of 33 genes coding for globins that are all transcribed. These globins are very diverse in gene and protein structure and are localized in a variety of cells, mostly neurons. The large number of C. elegans globin genes is assumed to be the result of multiple evolutionary duplication and radiation events. Processes of subfunctionalization and diversification probably led to their cell-specific expression patterns and fixation into the genome. To date, four globins (GLB-1, GLB-5, GLB-6, and GLB-26) have been partially characterized physicochemically, and the crystallographic structure of two of them (GLB-1 and GLB-6) was solved. In this article, a three-dimensional model was designed for the other two globins (GLB-5 and GLB-26), and overlays of the globins were constructed to highlight the structural diversity among them. It is clear that although they all share the globin fold, small variations in the three-dimensional structure have major implications on their ligand-binding properties and possibly their function. We also review here all the information available so far on the globin family of C. elegans and suggest potential functions.  相似文献   

11.
Whole genome sequencing of the free-living nematode Caenorhabditis elegans is a prominent achievement in genomics and uncovers the existence of enormous known and unknown gene products. Characterization and linking of all gene products are the next challenging theme of biology. Genome-wide researches are already progressing on C. elegans and the fruits of these efforts are accessible through the internet. To link the sequence-function relationship, proteomic research has been applied to provide comprehensive information of the worm proteins. In addition to 2-dimensional gel electrophoresis for visualization of the proteome, recent advances in liquid chromatography (LC)-based technologies have allowed the large-scale analysis of proteins and are at cutting-edge of high-throughput analysis of focused proteome.  相似文献   

12.
Light microscopy of the mitotic chromosomes of Caenorhabditis elegans suggests that non-localized kinetochores are present, since the chromosomes appear as stiff rods 1 to 2 m in length and lack any visible constriction. The holokinetic structure was confirmed by reconstructions of electron micrographs of dividing nuclei in serially sectioned embryos. In prophase the kinetochore appears as an amorphous projection approximately 0.18–0.2 m in diameter in cross section and in longitudinal section it appears to be continuous along the chromatin. At prometaphase and metaphase the kinetochore is a convex plaque covering the poleward face of the chromosome and extending the length of the chromosome. In longitudinal section the kinetochore is a trilaminar structure with electron dense inner and outer layers of 0.02 m, and an electron lucent middle layer of 0.03 m. The inner layer is adjacent to a more electron dense region of chromatin. The kinetochore was also seen as a band extending the length of the chromosome in whole mount preparations of chromosomes stained with ethanolic phosphotungstic acid. Most gamma ray induced chromosome fragments segregate normally in embryonic mitoses, but some fragments display aberrant behavior. Similar behavior was seen in embryos carrying a genetically characterized free duplication. It is suggested that mitotic segregation of small fragments may be inefficient because the probability of attachment of microtubules to the kinetochore is proportional to kinetochore length.  相似文献   

13.
14.
The soil nematode, Caenorhabditis elegans, occupies a central place in the short history of microRNA (miRNA) research. The converse is also true: miRNAs have emerged as key regulatory components in the life cycle of the worm, as well as numerous other organisms. Since the landmark discovery in 1993 of the first miRNA gene, lin-4, several other miRNAs have been characterized in detail in C. elegans and shown to participate in diverse biological processes. Moreover, the worm has provided, by virtue of its ease of genetic manipulation and amenability to high-throughput methods, an ideal platform for elucidating many general and conserved aspects of miRNA biology, namely mechanisms of biogenesis, target recognition, gene silencing, and regulation thereof. In this review, we summarize both the contribution of miRNAs to C. elegans physiology and development, as well as the contribution of C. elegans research to our understanding of general features of miRNA biology.  相似文献   

15.
Yolk proteins of Caenorhabditis elegans   总被引:8,自引:0,他引:8  
A group of proteins judged on several criteria to be yolk proteins have been isolated from a homogenate of the nematode Caenorhabditis elegans. Comparison of partial proteolysis fragments indicates that the two bands of a 170,000-dalton doublet (yp170) are closely related; bands observed at 115,000 daltons (yp115) and 88,000 daltons (yp88) appear to be structurally distinct. All three yolk protein species are glycoproteins, as judged by binding of the lectin concanavalin A. The yp170 doublet has been purified by gel filtration in the presence of sodium dodecyl sulfate. An antiserum obtained by immunization with the purified yp170 doublet does not bind either of the two smaller proteins. Staining of C. elegans eggs by indirect immunofluorescence with the anti-yp170 serum indicates a dispersed cytoplasmic location for the antigen throughout embryogenesis, with apparent segregation to the intestine immediately prior to hatching.  相似文献   

16.
We have characterized the organization of the genes coding for 18 S, 5·8 S and 26 S ribosomal RNAs in the nematode Caenorhabditis elegans. These ribosomal genes, present in about 55 copies per haploid genome, alternate in a repeating tandem array. The repeating unit is only 7000 base-pairs, containing a non-transcribed spacer of no more than 1000 base-pairs. Most of the repeating units have identical restriction maps, but one repeat contains a deletion of 2900 base-pairs, which eliminates all or part of the 18 S coding region. We have found no difference in the major ribosomal DNA restriction endonuclease cleavage patterns between two interbreeding strains of C. elegans, but found differences between C. elegans and the closely related Caenorhabditis briggsae.  相似文献   

17.
18.
Caffeine-resistant mutants of Caenorhabditis elegans   总被引:2,自引:0,他引:2  
  相似文献   

19.
20.
Wilm T  Demel P  Koop HU  Schnabel H  Schnabel R 《Gene》1999,229(1-2):31-35
A novel method to transform the nematode Caenorhabditis elegans is described. DNA coprecipitated with gold particles is shot at worms by means of a helium beam. Transformed worms are either identified by a dominant visible marker or selected by a conditional lethal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号