首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dear Editor, We report a case of HBV reactivation in an anti-HBs positive,anti-HBc positive non-Hodgkin's lymphoma patient.Hepatitis B virus (HBV) reactivation is a well-recognized complication of patients undergoing chemotherapy or immunosuppressive therapy for lymphomas.The presence of antibodies to the hepatitis B surface antigen (anti-HBs) has been identified to be a factor preventing HBV reactivation in patients with occult HBV infection receiving chemotherapy.In this paper,we present a non-Hodgkin Lymphoma patient who,before immunosuppressive therapy,displayed positive anti-HBs and positive antibodies to hepatitis B core antigens (anti-HBc),as markers of resolved HBV infection,and developed hepatitis B surface antigen (HBsAg) and high viraemia with an HBV escape mutant after rituximabbased administration.The sequencing data revealed HBV genotype D with two known escape mutations,P120S.  相似文献   

2.
The potential of neural stem and progenitor cell (NSPC) transplantation in neurodegenerative disease raises a concern about immunosuppressive agents and opportunistic neurotropic pathogens that may interfere with engraftment. Cytomegalovirus (CMV) is an important opportunistic pathogen infecting the central nervous system, where it may remain latent for life, following transplacental transmission. Cyclosporine (Cs), an immunosuppressive drug used in organ transplantation, where its use is associated with CMV reactivation, suppressed murine CMV (MCMV) infection in cultured NSPCs but not in fibroblasts. This activity of Cs appears to be mediated via cyclophilin (CyP) rather than via calcineurin. First, the calcineurin-specific inhibitor FK506 failed to suppress replication. Second, the CyP-specific inhibitor NIM811 strongly suppressed replication in NSPC. NSPCs maintained in the presence of NIM811 retained viral genomes for several weeks without detectable viral gene expression or obvious deleterious effects. The withdrawal of NIM811 reactivated viral replication, suggesting that the inhibitory mechanism was reversible. Finally, inhibition of endogenous CyP A (CyPA) by small interfering RNA also inhibited replication in NSPCs. These results show that MCMV replication depends upon cellular CyPA pathways in NSPCs (in a specific cell type-dependent fashion), that CyPA plays an important role in viral infection in this cell type, and that inhibition of viral replication via CyP leads to persistence of the viral genome without cell damage. Further, the calcineurin-signaling pathway conferring immunosuppression in T cells does not influence viral replication in a detectable fashion.  相似文献   

3.
Hydrodynamic injection (HI) with a replication competent hepatitis B virus (HBV) genome may lead to transient or prolonged HBV replication in mice. However, the prolonged HBV persistence after HI depends on the specific backbone of the vector carrying HBV genome and the genetic background of the mouse strain. We asked whether a genetically closely related hepadnavirus, woodchuck hepatitis virus (WHV), may maintain the gene expression and replication in the mouse liver after HI. Interestingly, we found that HI of pBS-WHV1.3 containing a 1.3 fold overlength WHV genome in BALB/c mouse led to the long presence of WHV DNA and WHV proteins expression in the mouse liver. Thus, we asked whether WHV genome carrying foreign DNA sequences could maintain the long term gene expression and persistence. For this purpose, the coding region of HBV surface antigen (HBsAg) was inserted into the WHV genome to replace the corresponding region. Three recombinant WHV-HBV genomes were constructed with the replacement with HBsAg a-determinant, major HBsAg, and middle HBsAg. Serum HBsAg, viral DNA, hepatic WHV protein expression, and viral replication intermediates were detected in mice after HI with recombinant genomes. Similarly, the recombinant genomes could persist for a prolonged period of time up to 45 weeks in mice. WHV and recombinant WHV-HBV genomes did not trigger effective antibody and T-cell responses to viral proteins. The ability of recombinant WHV constructs to persist in mice is an interesting aspect for the future investigation and may be explored for in vivo gene transfer.  相似文献   

4.
5.
乙型肝炎病毒(hepatitis B virus,HBV)共价闭合环状DNA(covalently closed circular DNA,cccDNA)是病毒慢性感染的分子基础。本课题组前期研究通过Cre/loxP介导的位点特异性DNA重组策略,在细胞核内由前体质粒诱导重组cccDNA(rcccDNAloxP)产生,首次建立了HBV cccDNA的体外培养细胞和小鼠实验模型。本研究基于大肠埃希菌ZYCY10P3S2T PhiC31重组酶诱导表达系统,建立了一种体外诱导HBV rcccDNA(rcccDNAattR)微环产生和纯化的策略。纯化的rcccDNAattR微环具有超螺旋结构,细胞培养实验证实其能支持功能性的HBV复制和抗原表达。与普通的线性HBV复制子编码质粒相比,rcccDNAattR尾静脉高压注射小鼠模型能诱导显著延长的病毒抗原血症。因此,本研究在原核表达系统和实验小鼠水平提供了一种更为简化的HBV cccDNA实验模型系统,并再次显示rcccDNA具有显著的稳定性,能作为一种基本策略在小鼠模型中诱导病毒持续感染。  相似文献   

6.
Mutations in the core protein (HBc) of hepatitis B virus (HBV) are associated with aggressive hepatitis and advanced liver diseases in chronic hepatitis B (CHB). In this study, we identified the L60V variation in HBc that generates a new HLA-A2-restricted CD8+ T cell epitope by screening an overlapping 9-mer peptide pool covering HBc and its variants. The nonameric epitope V60 was determined by structural and immunogenic analysis. The HBc L60V variation is correlated with hepatic necroinflammation and higher viral levels, and it may be associated with a poor prognosis in CHB patients. Immunization with the defined HBV epitope V60 peptide elicited specific cytotoxic T lymphocyte (CTL)-induced liver injury in HLA-A2+ HBV transgenic mice. In addition, in vitro and in vivo experiments both demonstrated that the HBc L60V variation facilitates viral capsid assembly and increases HBV replication. These data suggest that the HBc L60V variation can impact both HBV replication and HBV-specific T cell responses. Therefore, our work provides further dissection of the impact of the HBc L60V variation, which orchestrates HBV replication, viral persistence, and immunopathogenesis during chronic viral infection.  相似文献   

7.
Tzeng HT  Tsai HF  Liao HJ  Lin YJ  Chen L  Chen PJ  Hsu PN 《PloS one》2012,7(6):e39179
Persistent hepatitis B viral (HBV) infection results in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Recent studies in animal models of viral infection indicate that the interaction between the inhibitory receptor, programmed death (PD)-1, on lymphocytes and its ligand (PD-L1) play a critical role in T-cell exhaustion by inducing T-cell inactivation. High PD-1 expression levels by peripheral T-lymphocytes and the possibility of improving T-cell function by blocking PD-1-mediated signaling confirm the importance of this inhibitory pathway in inducing T-cell exhaustion. We studied T-cell exhaustion and the effects of PD-1 and PD-L1 blockade on intrahepatic infiltrating T-cells in our recently developed mouse model of HBV persistence. In this mouse animal model, we demonstrated that there were increased intrahepatic PD-1-expressing CD8+ and CD4+ T cells in mice with HBV persistence, but PD-1 upregulation was resolved in mice which had cleared HBV. The Intrahepatic CD8+ T-cells expressed higher levels of PD-1 and lower levels of CD127 in mice with HBV persistence. Blockade of PD-1/PD-L1 interactions increased HBcAg-specific interferon (IFN)-γ production in intrahepatic T lymphocytes. Furthermore, blocking the interaction of PD-1 with PD-L1 by an anti-PD-1 monoclonal antibody (mAb) reversed the exhausted phenotype in intrahepatic T lymphocytes and viral persistence to clearance of HBV in vivo. Our results indicated that PD-1 blockage reverses immune dysfunction and viral persistence of HBV infection in a mouse animal model, suggesting that the anti-PD-1 mAb might be a good therapeutic candidate for chronic HBV infection.  相似文献   

8.
IL-10, T cell exhaustion and viral persistence   总被引:7,自引:0,他引:7  
Viral infections can have one of two outcomes: control of viral replication and acute infection or viral persistence and chronic infection. It is clear that both pathogen and host characteristics influence the acute versus chronic outcome of viral infection. The early events in the host immune response that favor immunosuppression and viral persistence, however, have remained poorly understood. Using the well-characterized mouse model of acute versus chronic lymphocytic choriomeningitis virus (LCMV) infection, two groups have recently identified the interleukin-10 (IL-10)/IL-10R pathway as a key regulator of acute versus chronic infection. Blockade of IL-10R converted a chronic LCMV infection into a rapidly controlled acute viral infection and prevented the functional exhaustion of memory T cells. These insights into the role of IL-10 in the establishment of chronic infection could lead to new therapeutic opportunities during human infections with pathogens such as HIV, hepatitis C virus (HCV) and hepatitis B virus (HBV).  相似文献   

9.
In most adult humans, hepatitis B is a self-limiting disease leading to life-long protective immunity, which is the consequence of a robust adaptive immune response occurring weeks after hepatitis B virus (HBV) infection. Notably, HBV-specific T cells can be detected shortly after infection, but the mechanisms underlying this early immune priming and its consequences for subsequent control of viral replication are poorly understood. Using primary human and mouse hepatocytes and mouse models of transgenic and adenoviral HBV expression, we show that HBV-expressing hepatocytes produce endoplasmic reticulum (ER)-associated endogenous antigenic lipids including lysophospholipids that are generated by HBV-induced secretory phospholipases and that lead to activation of natural killer T (NKT) cells. The absence of NKT cells or CD1d or a defect in ER-associated transfer of lipids onto CD1d results in diminished HBV-specific T and B cell responses and delayed viral control in mice. NKT cells may therefore contribute to control of HBV infection through sensing of HBV-induced modified self-lipids.  相似文献   

10.
Contributions of humoral and cellular immunity in controlling neurotropic mouse hepatitis virus persistence within the CNS were determined in B cell-deficient J(H)D and syngeneic H-2(d) B cell+ Ab-deficient mice. Virus clearance followed similar kinetics in all mice, confirming initial control of virus replication by cellular immunity. Nevertheless, virus reemerged within the CNS of all Ab-deficient mice. In contrast to diminished T cell responses in H-2(b) B cell-deficient muMT mice, the absence of B cells or Ab in the H-2(d) mice did not compromise expansion, recruitment into the CNS, or function of virus-specific CD4+ and CD8+ T cells. The lack of B cells and lymphoid architecture thus appears to manifest itself on T cell responses in a genetically biased manner. Increasing viral load did not enhance frequencies or effector function of virus-specific T cells within the CNS, indicating down-regulation of T cell responses. Although an Ab-independent antiviral function of B cells was not evident during acute infection, the presence of B cells altered CNS cellular tropism during viral recrudescence. Reemerging virus localized almost exclusively to oligodendroglia in B cell+ Ab-deficient mice, whereas it also replicated in astrocytes in B cell-deficient mice. Altered tropism coincided with distinct regulation of CNS virus-specific CD4+ T cells. These data conclusively demonstrate that the Ab component of humoral immunity is critical in preventing virus reactivation within CNS glial cells. B cells themselves may also play a subtle role in modulating pathogenesis by influencing tropism.  相似文献   

11.
Persistent hepatitis B viral (HBV) infection results in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). An efficient control of virus infections requires the coordinated actions of both innate and adaptive immune responses. In order to define the role of innate immunity effectors against HBV, viral clearance was studied in a panel of immunodeficient mouse strains by the hydrodynamic injection approach. Our results demonstrate that HBV viral clearance is not changed in IFN-α/β receptor (IFNAR), RIG-I, MDA5, MYD88, NLRP3, ASC, and IL-1R knock-out mice, indicating that these innate immunity effectors are not required for HBV clearance. In contrast, HBV persists in the absence of tumor necrosis factor-alpha (TNF-α) or in mice treated with the soluble TNF receptor blocker, Etanercept. In these mice, there was an increase in PD-1-expressing CD8+ T-cells and an increase of serum HBV DNA, HBV core, and surface antigen expression as well as viral replication within the liver. Furthermore, the induction of TNF-α in clearing HBV is dependent on the HBV core, and TNF blockage eliminated HBV core-induced viral clearance effects. Finally, the intra-hepatic leukocytes (IHLs), but not the hepatocytes, are the cell source responsible for TNF-α production induced by HBcAg. These results provide evidences for TNF-α mediated innate immune mechanisms in HBV clearance and explain the mechanism of HBV reactivation during therapy with TNF blockage agents.  相似文献   

12.
《Cytotherapy》2014,16(6):821-825
Background aimsIn patients with inflammatory bowel disease infected with hepatitis B virus (HBV), immunosuppressive therapy required to suppress active inflammatory bowel disease may promote HBV reactivation.MethodsA 27-year-old corticosteroid-naive woman with Crohn's disease (CD) activity index of 249.8 complicated by HBV infection was offered Entecavir to control HBV reactivation during immunosuppressive therapy for CD. The patient refused Entecavir, fearing that it might adversely affect her pregnancy outcome. Instead, we applied intensive granulocyte/monocyte adsorptive apheresis (GMA) at two sessions per week to deplete inflammatory cytokine-producing leucocytes as an immunosuppressive therapy in this case.ResultsGMA induced stable remission (CD activity index, I 105) and endoscopic improvement without HBV reactivation or safety concern. Furthermore, CD remission was paralleled by suppression of tumor necrosis factor and interleukin as measured in serum samples.ConclusionsImmunosuppressive therapy required to treat an active CD potentially can promote HBV reactivation and worsen liver function. In this study involving a CD case complicated by chronic HBV infection, intensive GMA as a non-pharmacologic treatment intervention was associated with clinical remission and endoscopic improvement without HBV reactivation. Furthermore, GMA was well-tolerated and was without any safety concern. However, suppression of tumor necrosis and interleukin-6by GMA in this clinical setting is potentially very interesting.  相似文献   

13.
Hepatitis B virus (HBV) persistence is facilitated by exhaustion of CD8 T cells that express the inhibitory receptor programmed cell death-1 (PD-1). Improvement of the HBV-specific T cell function has been obtained in vitro by inhibiting the PD-1/PD-ligand 1 (PD-L1) interaction. In this study, we examined whether in vivo blockade of the PD-1 pathway enhances virus-specific T cell immunity and leads to the resolution of chronic hepadnaviral infection in the woodchuck model. The woodchuck PD-1 was first cloned, characterized, and its expression patterns on T cells from woodchucks with acute or chronic woodchuck hepatitis virus (WHV) infection were investigated. Woodchucks chronically infected with WHV received a combination therapy with nucleoside analogue entecavir (ETV), therapeutic DNA vaccination and woodchuck PD-L1 antibody treatment. The gain of T cell function and the suppression of WHV replication by this therapy were evaluated. We could show that PD-1 expression on CD8 T cells was correlated with WHV viral loads during WHV infection. ETV treatment significantly decreased PD-1 expression on CD8 T cells in chronic carriers. In vivo blockade of PD-1/PD-L1 pathway on CD8 T cells, in combination with ETV treatment and DNA vaccination, potently enhanced the function of virus-specific T cells. Moreover, the combination therapy potently suppressed WHV replication, leading to sustained immunological control of viral infection, anti-WHs antibody development and complete viral clearance in some woodchucks. Our results provide a new approach to improve T cell function in chronic hepatitis B infection, which may be used to design new immunotherapeutic strategies in patients.  相似文献   

14.
15.
Cellular immune responses to the hepatitis B virus polymerase   总被引:14,自引:0,他引:14  
CD4 T cells play an important role in hepatitis B virus (HBV) infection by secretion of Th1 cytokines that down-regulate HBV replication, and by promoting CD8 T cell and B cell responses. We have identified and characterized 10 CD4 T cell epitopes within polymerase and used them to analyze the immunological effects of long-term antiviral therapy as compared with spontaneous recovery from HBV infection. Candidate epitopes were tested for binding to 14 HLA-DR molecules and in IFN-gamma ELISPOT and cytotoxicity assays using peripheral blood lymphocytes from 66 HBV-infected patients and 16 uninfected controls. All 10 epitopes bound with high affinity to the most prevalent HLA-DR Ags, were conserved among HBV genomes, and induced IFN-gamma responses from HBV-specific CD4+ T cells. Several epitopes contained nested MHC class I motifs and stimulated HBV-specific IFN-gamma production and cytotoxicity of CD8+ T cells. HBV polymerase-specific responses were more frequent during acute, self-limited hepatitis and after recovery (12 of 18; 67%) than during chronic hepatitis (16 of 48 (33%); p=0.02). Antiviral therapy of chronic patients restored HBV polymerase and core-specific T cell responses during the first year of treatment, but thereafter, responses decreased and, after 3 years, were no more frequent than in untreated patients. Decreased T cell responsiveness during prolonged therapy was associated with increased prevalence of lamivudine-resistant HBV mutants and increased HBV titers. The data provide a rationale for the combination of antiviral and immunostimulatory therapy. These newly described HBV polymerase epitopes could be a valuable component of a therapeutic vaccine for a large and ethnically diverse patient population.  相似文献   

16.
Intracerebral inoculation with mouse hepatitis virus strain A59 results in viral replication in the CNS and liver. To investigate whether B cells are important for controlling mouse hepatitis virus strain A59 infection, we infected muMT mice who lack membrane-bound IgM and therefore mature B lymphocytes. Infectious virus peaked and was cleared from the livers of muMT and wild-type mice. However, while virus was cleared from the CNS of wild-type mice, virus persisted in the CNS of muMT mice. To determine how B cells mediate viral clearance, we first assessed CD4(+) T cell activation in the absence of B cells as APC. CD4(+) T cells express wild-type levels of CD69 after infection in muMT mice. IFN-gamma production in response to viral Ag in muMT mice was also normal during acute infection, but was decreased 31 days postinfection compared with that in wild-type mice. The role of Ab in viral clearance was also assessed. In wild-type mice plasma cells appeared in the CNS around the time that virus is cleared. The muMT mice that received A59-specific Ab had decreased virus, while mice with B cells deficient in Ab secretion did not clear virus from the CNS. Viral persistence was not detected in FcR or complement knockout mice. These data suggest that clearance of infectious mouse hepatitis virus strain A59 from the CNS requires Ab production and perhaps B cell support of T cells; however, virus is cleared from the liver without the involvement of Abs or B cells.  相似文献   

17.
Residual hepatitis B virus (HBV) DNA can be detected in serum and liver after apparent recovery from transient infection. However, it is not known if this residual HBV DNA represents ongoing viral replication and antigen expression. In the current study, ducks inoculated with duck hepatitis B virus (DHBV) were monitored for residual DHBV DNA following recovery from transient infection until 9 months postinoculation (p.i.). Resolution of DHBV infection occurred in 13 out of 15 ducks by 1-month p.i., defined as clearance of DHBV surface antigen-positive hepatocytes from the liver and development of anti-DHBV surface antibodies. At 9 months p.i., residual DHBV DNA was detected using nested PCR in 10/11 liver, 7/11 spleen, 2/11 kidney, 1/11 heart, and 1/11 adrenal samples. Residual DHBV DNA was not detected in serum or peripheral blood mononuclear cells. Within the liver, levels of residual DHBV DNA were 0.0024 to 0.016 copies per cell, 40 to 80% of which were identified as covalently closed circular viral DNA by quantitative PCR assay. This result, which was confirmed by Southern blot hybridization, is consistent with suppressed viral replication or inactive infection. Samples of liver and spleen cells from recovered animals did not transmit DHBV infection when inoculated into 1- to 2-day-old ducklings, and immunosuppressive treatment of ducks with cyclosporine and dexamethasone for 4 weeks did not alter levels of residual DHBV DNA in the liver. These findings further characterize a second form of hepadnavirus persistence in a suppressed or inactive state, quite distinct from the classical chronic carrier state.  相似文献   

18.
Cytomegalovirus (CMV) infection is the most frequent viral complication in patients after allogeneic stem cell transplantation. As CMV replication is tightly controlled by the cellular arm of specific immunity, the kinetics of CMV-specific T cells in association with individual reactivation episodes were prospectively analyzed in 40 allogeneic transplant recipients in a routine clinical setting and evaluated as determinant of impaired CMV control. Antigen-specific CD4 and CD8 T cells were quantified directly from whole blood using intracellular cytokine staining after specific stimulation and MHC class I multimers, respectively. Highly dynamic intraindividual changes of CMV-specific CD4 T cells were observed in patients experiencing CMV viremia. Episodes of CMV reactivation were associated with a drop of CMV-specific CD4 T cells that re-increased after viral clearance (p<0.0001). Furthermore, levels of CMV-specific CD4 T cells at the onset of viremia inversely correlated with peak viral load thereafter (p = 0.02). In contrast, CMV-peptide specific CD8 T cells did not show any association with viremia (p = 0.82). Interestingly, therapeutic dosages of cyclosporine A and corticosteroids led to a dose-dependent reduction of CMV-specific T-cell functions, indicating a causal link between intensified immunosuppressive treatment and CMV reactivation. In conclusion, levels of CMV-specific CD4 T cells inversely correlate with reactivation episodes and may represent a valuable measure to individually guide antiviral therapy after stem cell transplantation.  相似文献   

19.
Cyclophilin A (CyPA) is a peptidyl-prolyl cis/trans isomerase originally identified as the target of the immunosuppressive drug cyclosporine A. A number of reports have demonstrated that CyPA plays a critical role in the successful replication of viruses such as human immunodeficiency virus (HIV), hepatitis C virus (HCV), hepatitis B virus (HBV), etc. However, recent studies demonstrated that CyPA also possesses a repressive effect on the replication of some viruses like Influenza A virus and rotavirus. Moreover, CyPA could also regulate host IFN-I response to viral infections. Together, these evidences showed diverse roles of CyPA in viral infection.  相似文献   

20.
Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号