首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Recently, an Escherichia coli CM2555 strain was described as sensitive to chloramphenicol when expressing the chloramphenicol resistance gene (cat) from a multicopy plasmid. This sensitivity was linked to dysfunction of the acrA gene, which encodes a component of the AcrAB-TolC multidrug efflux pump. Preliminary data indicate that the sensitivity phenotype might be due to a decline in intracellular acetyl coenzyme A concentration accompanying the reaction catalyzed by chloramphenicol acetyltransferase, the cat-encoded resistance protein. Here, we demonstrate that the acrA dysfunction is the factor impairing the intracellular acetyl coenzyme A levels in the cat-expressing CM2555 strain. This effect might be alleviated by the interplay of proteins constituting two homologous efflux systems: AcrAB-TolC and AcrEF-TolC. However, our results show also that this is a genetic background-specific phenomenon, as the decrease in acetyl coenzyme A level is not evident in a cat-bearing acrAB derivative of the commonly used strain C600.  相似文献   

2.
Summary The Escherichia coli Tn9 derived chloramphenicol resistance gene (cam r) is functionally expressed in the yeast Saccharomyces cerevisiae. This gene was introduced into yeast cells as part of a hybrid yeast/E. coli shuttle plasmid. A number of plasmid associated yeast mutants overproducing the cam r gene product, chloramphenicol acetyltransferase (acetyl-CoA: chloramphenicol 3-0-acetyltransferase, E.C. 2.3.1.28) were isolated. One of the plasmid mutants was analyzed in some detail. Even though this mutant showed a 1,000 fold overproduction of chloramphenicol acetyltransferase in the yeast host the level of RNA complementary to the cam r gene was not increased. A deletion of 127 base pairs in the region immediately upstream from the 5 end of the cam r gene appeared to be responsible for the up phenotype of this mutant. This mutation affected the expression of the cam r gene in E. coli in a down fashion, in contrast to its effect in yeast.  相似文献   

3.
4-Dimethylaminoazobenzene-2-carboxylic acid (DMBC) was utilized as a necessary carbon and nitrogen source by Pseudomonas stutzeri IAM 12097. o-Aminobenzoic acid (o-ABA), N,N-dimethyl-p-phenylenediamine (DMPA) and cathecol were identified as intermediates of DMBC degradation. DMBC was degraded at a concentration below 70 mol dm–3. The ability to utilize DMBC in P. stutzeri was lost spontaneously to some extent. When P. stutzeri was cured of plasmid DNA (approximately 8 MDal) by treatment with mitomycin C, acridine orange, and chloramphenicol, DMBC was not utilized by the resultant strain. These facts suggest that the degradative ability on DMBC in P. stutzeri is controlled by plasmid DNA. Correspondence to: C. Yatome  相似文献   

4.
The stability of plasmids inLactobacillus plantarum was investigated by extended incubation of bacterial cells in the presence of different carbohydrates. Strain caTC2, carrying a plasmid-encoded chloramphenicol-resistant (Cmr) phenotype, was grown overnight (16–18 h) in MRS, MRS-L, and MRS-M broths containing 2% glucose, lactose, and maltose respectively at 30°C. The cultures were subsequently held at 30°C and room temperature (21±1°C) for an extended period (7 days). The total viable cell counts were assayed on MRS agar plates and tested for sensitivity to 30 g chloramphenicol/ml by replica plating. The plasmid profiles of the chloramphenicol-sensitive strains showed that there was a loss of the 8.5-kb plasmid, but not the 10.6 or 6.5 kb plasmids. Concomitant loss of the chloramphenicol resistance phenotype and plasmid at high frequency, particularly by using MRS-L at 21°C method, suggests that this would be a simple and efficient method for curing selected plasmids in lactobacilli.Contribution No. 2039 from the Centre for Food and Animal Research.  相似文献   

5.
Summary Four recombinant strains ofEscherichia coli were examined for the effects of the dissolved oxygen level on the level of biomass, the plasmid content, and the level of recombinant protein at the stationary phase of batch growth. Strains JM101/pYEJ001, and TB-1/pYEJ001 (encoding chloramphenicol acetyltransferase), and strain TB-1/p1034, and TB-1/pUC19 (encoding -galactosidase) were grown at the constant dissolved oxygen levels of 0, 50, and 100% air saturation, as well as in the absence of dissolved, oxygen control. The biomass of all strains under constant aerobic conditions was 12–36 times higher than that under anaerobic conditions, but was the same as or slightly higher than that without dissolved oxygen control. The plasmid content in all strains under anaerobic conditions was 2.9–11.7 times higher than that under aerobic conditions. The optimal dissolved oxygen concentration for the specific activity of recombinant proteins was dependent upon the strain. In no strain were constant aerobic conditions optimal. However, because of the effect on biomass, controlled aerobic conditions were optimal for the volumetric activity of recombinant protein in all but one strain.  相似文献   

6.
Summary We have examined DNA strand breakage, DNA degradation, and the rate of DNA synthesis in lig and lig-recB strains of Escherichia coli K12 incubated in the presence and absence of 3 g/ml chloramphenicol. Substantial DNA strand breakage and DNA degradation is observed in the lig strain upon growth at 40°C; however, such strand breakage and DNA degradation is not observed in the lig-recB strain. Incubation of the lig strain at 40°C in the presence of 3 g/ml chloramphenicol reduces the amount of DNA strand breakage and DNA degradation to the level observed in the lig-recB strain. Together, these results demonstrate that exonuclease V (the recBC gene product) is responsible for the increased DNA degradation associated with DNA ligase deficiency.  相似文献   

7.
Summary A strain of Escherichia coli lacking the entire ponB gene and a strain lacking the proximal part of the ponA gene were constructed by substitution with a drug resistance gene. These strains lost either penicillin-binding protein(PBP) -1b or -1a totally and their growth was apparently normal at 30°C and 42°C except that growth of the ponB deletion strain was poor on a nutrient agar plate containing no NaCl at 30°C as well as at 42°C. Transductional experiments to introduce the ponB deletion into the ponA deletion strain, and vice versa, showed that the ponA ponB double deletion was lethal unless the deletion was functionally compensated, e.g., by the presence of a plasmid carrying either gene. Thus, either PBP-1b (ponB) or PBP-1a (ponA), but not both, is dispensable for cell viability, at least under ordinary culture conditions. Transductional experiments also suggested that the component of PBP-1b or the PBP-1b lacking the C-terminal portion encoded in the distal region to the SphI site on the ponB was sufficient for supporting growth of the E. coli cell.Abbreviations Ap ampicillin - Cm chloramphenicol - Km kanamycin - Tc tetracycline  相似文献   

8.
Abstract:Enterotoxigenic Escherichia coli causes diarrhea by producing several virulence factors including heat-labile enterotoxin (LT). LT is maximally expressed at 37°C. The histone-like nucleoid structuring protein (H-NS) appears to inhibit LT expression by binding to a downstream regulatory element (DRE) at low temperatures. An hns+ E. coli strain, X7026, carrying an LT–beta-galactosidase translational fusion plasmid (pLT-lac) was shown to be responsive to varying amounts of sodium chloride (NaCl) as well as sucrose or lithium chloride. Maximal responsiveness to the various osmolytes was obtained with cells grown at 37°C under microaerophilic conditions. Temperature-osmotic upshift experiments demonstrate LT expression is thermo-osmoregulated. pLT-lac was tested in an hns strain or its congenic hns+ strain for its response to NaCl. LT expression is elevated in the hns strain regardless of NaCl concentration and retains its osmoresponsiveness. The response of the DRE deletion plasmid (pLT-lacNC) to NaCl is similar to that of the undeleted plasmid.  相似文献   

9.
We have developed anAgrobacterium-mediated transformation system, using tobacco cell suspensions, that permits evaluation of factors affecting transformation within seven days of co-cultivation. Tobacco cell transformation was determined by monitoring -glucuronidase (GUS) activity detected in plant cell extracts. The use of a chimeric gene construct, 35S-GUS/INT, containing a portable intron in theuidA reading frame, assured only plant-specific GUS expression. During the co-cultivation period, induction of the bacterialvir-region was monitored using a heterologous gene construct composed of avirB promoter fragment from pTiC58 fused to the chloramphenicol acetyltranferase (CAT) gene ofTn9. Tobacco cell transformants were confirmed by antibiotic selection of transformed plant cells and by X-Gluc staining. Maximum transformation was obtained when plant suspension cultures were growing rapidly which also was coincidental with elevated levels of bacterialvir-region expression. One week after co-cultivation, the transformed cultures exhibited a stable pattern of GUS activity which remained constant without antibiotic selection. The system was used to compare the virulence of a number ofAgrobacterium strains. GUS activity of plant cells co-cultivated with a strain containing a cointegrate plasmid was 3-fold higher than that of one with a binary configuration of the T-DNA. When the co-cultivatingAgrobacterium strain also carried the plasmid used to monitorvir induction, the frequency of transformation was reduced by as much, as 97%.  相似文献   

10.
Summary A chromate-resistant strain of Pseudomonas mendocina MCM B-180 capable of reducing hexavalent chromium was found to harbour a single plasmid. Incubation of the strain at 42°C for 24 h caused loss of chromate resistance as well as the plasmid, pARI180. Transformation of E. coli DH5 with purified pARI180 plasmid DNA resulted in simultaneous acquisition of resistance to chromate and the appearance of plasmid in the transformants. Most importantly, the plasmid transfer was found to confer chromate reduction ability on to the E. coli transformants.  相似文献   

11.
Yao  Wensheng  Yang  Yunliu  Chiao  Juishen 《Current microbiology》1994,29(4):223-227
An electro-transformation system has been developed forNocardia asteroides andNocardia corallina by using aNocardia-Escherichia coli shuttle vector. The shuttle vector, named pCY104, was constructed by joining a 2.5-kb crypticN. asteroides plasmid pCY101 with theE. coli plasmid pIJ4625. The resistance genes for kanamycin, chloramphenicol, and thiostrepton on plasmid pCY104 were expressed inN. asteroides andN. corallina. The transformation method was optimized forN. asteroides, and transformation efficiency of 8×104 transformants per g plasmid DNA was achieved routinely.  相似文献   

12.
Summary A novel deletion derivative, kal, of the kalilo senescence plasmid from Neurospora intermedia, was recovered from a culture treated with chloramphenicol. The deletion derivative exists in mitochondria as two different, equally abundant forms: a 2.8 kb duplex DNA molecule kal-2.8) and a 1.4 kb hairpin form kal-1.4). The kal-2.8 plasmid contains the 1366 by terminal inverted repeats and a partially duplicated 102 by segment of the unique sequence of the 8.6 kb kalilo plasmid. In contrast, the kal-1.4 hairpin plasmid appears to result from the folding of single strands that are generated during the replication of kal-2.8. Both forms of kal have covalently linked terminal proteins. Sequence analysis suggests that kal was generated either by slippage of the tip of a growing strand during the replication of kalilo, or by illegitimate recombination between two copies of the plasmid at non-homologous palindromic sequences that might form cruciform structures. In either case, the deletion process was mediated at least in part by an inverted repeat of 5 by in the unique region of kalilo. Since the terminal segments of kalilo DNA that are implicated in plasmid integration might also form cruciform structures, it is possible, but improbable, that the process that generated the first kal molecule is related to that which mediates integration of the plasmid into mitochondrial DNA.  相似文献   

13.
Summary A pUB110-derived plasmid/Bacillus subtilis host combination was segregationally unstable when grown in chemostat culture with complex or minimal medium and under starch, glucose or magnesium limitation. The kinetics of plasmid loss were described in terms of the difference in growth rates between plasmid-containing and plasmid-free cells (d) and the rate at which plasmid-free cells were generated from plasmid-containing cells (R). Loss of plasmid-containing cells from the population was d dominated. Changes in medium composition and the nature of growth limitation caused variations in both d and R. The plasmid was most stable in glucose-limited chemostat cultures with minimal medium and least stable under starch limitation with complex complex medium. R and d were smaller for cultures in complex media than those in minimal media. Limitation by starch induced expression of the plasmid-encoded HT amylase gene and was associated with increased values of R and d. Magnesium limitation in minimal medium caused a significant increase in d and a decrease in R.Abbreviations Cm chloramphenicol - Kan kanamycin - Cmr cells resistant to chloramphenicol (5 mg L–1) - Kanr cells resistant to kanamycin (5 mg L–1) - CmsKans cells sensitive to chloramphenicol and kanamycin  相似文献   

14.
Summary Agrobacterium-mediated transformation of thin cell layer explants (Klimaszewska and Keller 1985) yielded large numbers of transgenic plants of a major Canadian rapeseed cultivar Brassica napus ssp. oleifera cv Westar. The morphology and fertility of these plants were indistinguishable from controls. The Ti plasmid vector, pGV3850 (Zambryski et al. 1983) was used as a cis vector and as a helper plasmid for the binary vector pBin19 (Bevan 1984). Selectable marker genes that conferred resistance to high levels of kanamycin (Km) on Nicotiana tabacum were less efficient in the selection of transgenic B. napus. At low levels of Km (15 g/ml) large numbers of transgenic plants (50%) were identified among the regenerants by nopaline synthase activity and several of these were confirmed by Southern blot analyses. Only a small number were resistant to higher levels of Km (80 g/ml). Preliminary analyses indicated that resistance to Km was transmitted to the selfed progeny. Chimeric chloramphenicol acetyl transferase genes were ineffective biochemical markers in transgenic B. napus.Contribution No. 1092 Plant Research Centre, Ontario, Canada  相似文献   

15.
A strain ofStreptomyces venezuelae described as having been cured of chloramphenicol production, was mutagenised with ultraviolet light and chloramphenicol-producing clones were obtained from the surviving population. Since this suggests that the supposed cured strain has not lost the genetic capacity of chloramphenicol synthesis, alternative explanations are offered.  相似文献   

16.
Summary Rts1 is a kanamycin-resistance plasmid and multiphenotypically thermosensitive. The detrimental host cell growth at 42° C is expressed only when it exitst autonomously but not in an integrated state. However, a cholate-resistant (plt) mutant of the Hfr with an integrated Rts1 plasmid was found to be thermosensitive like a strain with the same plasmid autonomoulsy. This thermosensitivity depends on the existence of the integrated plasmid. Deletion derivatives of integrated plasmid genome from this Hfr strain were isolated with or without thermal selective growth at 42° C and mapping of the plasmid was attempted by analyzing them. A total of 141 kanamycin-sensitive derivatives were independently isolated and examined for their thermosensitivity (genetic locus: tsg), incompatibility (genetic locus: incT), conjugal fertility (genetic locus: tra), restriction of T4 phase (two genetic loci: resA and resB) and for DNase activity (genetic locus: dns). On the basis of characterization of 141 deletion derivatives, they were divided into 15 patterns which would correspond to a linear map integrated into the chromosome: ... resA ... dns ... resB ... tra ... kan ... incT ... tsg ... It is noteworthy that restriction of T4D phage is determined by two distinct genes, resA and resB, intervened by dns and that propagation of T4D phage on a strain with a resA + resB - genome failed to produce modified progeny phages.  相似文献   

17.
Summary A derivative of the IncP-1 plasmid RP1, temperature-sensitive for maintenance, was inserted into the Pseudomonas aeruginosa chromosome by selection for a plasmid marker (carbenicillin resistance) at nonppermissive temperature. In one strain, PAO 1000, the plasmid was stably integrated in the trpA, B gene cluster mapped at 27 min, as shown by the following evidence. (i) Trp+ transductants lost all plasmid markers. (ii) Cleared lysates of PAO 1000 showed no plasmid band typical of the autonomous RP1 in agarose gel electrophoresis. (iii) No transfer of carbenicillin resistance by PAO 1000 was detectable. (iv) PAO 1000 mobilised the chromosome from an origin at, or very near, the plasmid insertion site with high frequency (recovery of proximal markers 10–3 per donor). Matings on the plate with and without interruption of conjugation showed that chromosome transfer was unidirectional. (v) Recombinants from PAO 1000-mediated crosses did not inherit plasmid markers or the trpA, B mutation. A derivative of PAO 1000 was obtained which had lost the Hfr property and all plasmid markers except carbenicillin resistance. This strain (PAO 1001), when carrying the autonomous RP1 plasmid, was capable of unidirectional chromosome mobilisation like PAO 1000, but with 50-fold lower efficiency. We propose that integration of the temperature-sensitive RP1 plasmid in PAO 1000 occurred via transposition of Tnl, the element specifying carbenicillin resistance.  相似文献   

18.
Summary A method was developed for the introduction of plasmids into Clostridium botulinum by electroporation. A 4.4 kb plasmid vector, pGK12, which contains genes for resistance to erythromycin (Emr) and chloramphenicol (Cmr) was electroporated into C. botulinum type A (Hall A). The highest transformation efficiency was obtained using midlog phase cells, 10% PEG 8000 as the electroporation solution, and 2.5 kV field strength. The transformation efficiency was highest (103 transformants/g of DNA) when 1 g of plasmid DNA and 4 × 108 CFU/ml of recipient cells were used. Plasmid DNA recovered from the transformants was indistinguishable from that introduced on the basis of restriction enzyme digestion and agarose gel electrophoresis.  相似文献   

19.
Resistance to the industrial biocide hexahydro-1,3,5-triethyl-s-triazine (HHTT) by a strain ofPseudomonas putida was shown to be encoded by a 32.5-megadalton (Mdal) plasmid as evidenced: (a) by visualization of the plasmid DNA by agarose gel electrophoresis, (b) by the loss of HHTT resistance as well as the loss of the 32.5-Mdal plasmid upon curing with novobiocin, and (c) by conjugal concomitant transfer of HHTT resistance and the 32.5-Mdal plasmid by mating the novobiocin-cured HHTT-sensitive derivative with the HHTT-resistant strain. The 32.5 Mdal did not encode for heavy metal or antibiotic resistance, and it was shown not to be one of the degradative plasmids ofPseudomonas. The mechanism of HHTT resistance was not discerned from these studies.  相似文献   

20.
The temperate bacteriophage adh mediates plasmid DNA transduction in Lactobacillus gasseri ADH at frequencies in the range of 10-8 to 10-10 transductants per PFU. BglII-generated DNA fragments from phage adh were cloned into the BclI site of the transducible plasmid vector pGK12 (4.4 kb). Phage adh lysates induced from Lactobacillus lysogens harboring pGK12 or the recombinant plasmids were used to transduce strain ADH to chloramphenicol resistance. The transduction frequencies of recombinant plasmids were 102- to 105-fold higher than that of native pGK12. The increase in frequency generally correlated with the extent of DNA-DNA homology between plasmid and phage DNAs. The highest transduction frequency was obtained with plasmid pTRK170 (6.6 kb), a pGK12 derivative containing the 1.4- and 0.8-kb BglII DNA fragments of adh. DNA hybridization analysis of pTRK170-transducing phage particles revealed that pTRK170 had integrated into the adh genome, suggesting that recombination between homologous sequences present in phage and plasmid DNAs was responsible for the formation of high-frequency transducing phage particles. Plasmid DNA analysis of 13 transductants containing pTRK170 showed that each had acquired intact plasmids, indicating that in the process of transduction a further recombination step was involved in the resolution of plasmid DNA monomers from the recombinant pTRK170::adh molecule. In addition to strain ADH, pTRK170 could be transduced via adh to eight different L. gasseri strains, including the neotype strain, F. Gasser 63 AM (ATCC 33323).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号