首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Responses of 75 single units in the goldfish olfactory bulb were analyzed in detail for their relationship to the time-course of the change in odor concentration during each odor stimulus. Odor stimuli were controlled for rise time, duration, and peak concentration by an apparatus developed for the purpose. This apparatus enabled aqueous odor stimuli to be interposed into a constant water stream without changes in flow rate. The time-course of the concentration change within the olfactory sac was inferred from conductivity measurements at the incurrent and excurrent nostrils. Temporal patterns of firing rate elicited by stimuli with relatively slow rising and falling phases could be quite complex combinations of excitation and suppression. Different temporal patterns were produced by different substances at a single concentration in most units. Statistical measures of the temporal pattern of response for a small number of cells at a given concentration were more characteristic of the stimulus substance than any of three measures of magnitude of response. The temporal patterns change when the peak concentration, duration, and rise time of the stimuli are varied. The nature of these changes suggests that the different patterns are due primarily to the combined influence of two factors: (a) a stimulus whose concentration varies over time and (b) a relationship between concentration and impulse frequency which varies from unit to unit. Some units produce patterns suggestive of influence by neural events of long time constant. The importance of temporal patterns in odor quality and odor intensity coding is discussed.  相似文献   

2.

Background

The impact of respiratory dynamics on odor response has been poorly studied at the olfactory bulb level. However, it has been shown that sniffing in the behaving rodent is highly dynamic and varies both in frequency and flow rate. Bulbar odor response could vary with these sniffing parameter variations. Consequently, it is necessary to understand how nasal airflow can modify and shape odor response at the olfactory bulb level.

Methodology and Principal Findings

To assess this question, we used a double cannulation and simulated nasal airflow protocol on anesthetized rats to uncouple nasal airflow from animal respiration. Both mitral/tufted cell extracellular unit activity and local field potentials (LFPs) were recorded. We found that airflow changes in the normal range were sufficient to substantially reorganize the response of the olfactory bulb. In particular, cellular odor-evoked activities, LFP oscillations and spike phase-locking to LFPs were strongly modified by nasal flow rate.

Conclusion

Our results indicate the importance of reconsidering the notion of odor coding as odor response at the bulbar level is ceaselessly modified by respiratory dynamics.  相似文献   

3.
Davis  Richard G. 《Chemical senses》1979,4(3):191-206
The judgment of odor similarity between members of pairs ispreferable to odor naming in some situations. Similarity judgmentsare numerically summarized by multidimensional scaling (MDS)methods, which encourage the use of large numbers of pairs ofodorants; but the presentation of many different odorants involvesdifficulties in stimulus preparation and presentation. The microencapsulationof odorants provides a stimulus presentation method for olfactorytests using nothing more than paper and pencil. This reportexamines the feasibility of the microencapsulated odorant asa stimulus procedure in MDS analyzed similarity judgments. Inaddition, the effects of repeated testing, both within and betweentest sessions was examined. Special attention was given to asymmetryof similarity perception. The new method of odor delivery provedto be excellent, and the MDS model produced was as expected.Systematic trends to judge pairs as increasingly similar overrepeated judging, both within and between sessions, was observed.There were instances of asymmetry of similarity perception betweenthe two orders of presentations of some odor pairs, but notothers. The results suggested additional studies which willlead to a psychometrics of individual differences in odor qualityperception.  相似文献   

4.
Studies of olfactory function show that disruption of GABA A receptors within the insect antennal lobe (AL) disrupts discrimination of closely related odors, suggesting that local processing within the AL specifically enhances fine odor discrimination. It remains unclear, however, how extensively AL function has been disrupted in these circumstances. Here we psychophysically characterize the effect of GABA A blockade in the AL of the moth Manduca sexta. We used 2 GABA A antagonists and 3 Pavlovian-based behavioral assays of olfactory function. In all cases, we used matched saline-injected controls in a blind study. Using a stimulus generalization assay, we found that GABA A disruption abolished the differential response to related odors, suggesting that local processing mediates fine odor discrimination. We then assessed the effect of GABA A antagonist on discrimination thresholds. Moths were differentially conditioned to respond to one odor (reinforced conditioned stimulus [CS+]) but not a second (unreinforced conditioning stimulus [CS-]) then tested for a significant differential conditioned response between them across a series of increasing concentrations. Here, GABA A blockade disrupted discrimination of both similar and dissimilar odor pairs as indicated by generally increased discrimination thresholds. Finally, using a detection threshold assay, we established that GABA A blockade also increases detection thresholds. Because detection is a prerequisite of discrimination, this later finding suggests that disrupted discrimination may be due to impairment of the ability to detect. We conclude that the loss of ability to detect and subsequently discriminate is attributable to a loss of ability of the AL to provide a clear neural signal from background.  相似文献   

5.
The Drosophila mushroom body (MB) is a higher olfactory center where olfactory and other sensory information are thought to be associated. However, how MB neurons of Drosophila respond to sensory stimuli other than odor is not known. Here, we characterized the responses of MB neurons to a change in airflow, a stimulus associated with odor perception. In vivo calcium imaging from MB neurons revealed surprisingly strong and dynamic responses to an airflow stimulus. This response was dependent on the movement of the 3rd antennal segment, suggesting that Johnston''s organ may be detecting the airflow. The calyx, the input region of the MB, responded homogeneously to airflow on. However, in the output lobes of the MB, different types of MB neurons responded with different patterns of activity to airflow on and off. Furthermore, detailed spatial analysis of the responses revealed that even within a lobe that is composed of a single type of MB neuron, there are subdivisions that respond differently to airflow on and off. These subdivisions within a single lobe were organized in a stereotypic manner across flies. For the first time, we show that changes in airflow affect MB neurons significantly and these effects are spatially organized into divisions smaller than previously defined MB neuron types.  相似文献   

6.
Here we demonstrate the feasibility of using an array of live insects to detect concentrated packets of odor and infer the location of an odor source (~15 m away) using a backward Lagrangian dispersion model based on the Langevin equation. Bayesian inference allows uncertainty to be quantified, which is useful for robotic planning. The electroantennogram (EAG) is the biopotential developed between the tissue at the tip of an insect antenna and its base, which is due to the massed response of the olfactory receptor neurons to an odor stimulus. The EAG signal can carry tens of bits per second of information with a rise time as short as 12 ms (K A Justice 2005 J. Neurophiol. 93 2233-9). Here, instrumentation including a GPS with a digital compass and an ultrasonic 2D anemometer has been integrated with an EAG odor detection scheme, allowing the location of an odor source to be estimated by collecting data at several downwind locations. Bayesian inference in conjunction with a Lagrangian dispersion model, taking into account detection errors, has been implemented resulting in an estimate of the odor source location within 0.2 m of the actual location.  相似文献   

7.
In order to study the problem how the olfactory neural system processes the odorant molecular information for constructing the olfactory image of each object, we present a dynamic model of the olfactory bulb constructed on the basis of well-established experimental and theoretical results. The information relevant to a single odor, i.e. its constituent odorant molecules and their mixing ratios, are encoded into a spatio-temporal pattern of neural activity in the olfactory bulb, where the activity pattern corresponds to a limit cycle attractor in the mitral cell network. The spatio-temporal pattern consists of a temporal sequence of spatial firing patterns: each constituent molecule is encoded into a single spatial pattern, and the order of magnitude of the mixing ratio is encoded into the temporal sequence. The formation of a limit cycle attractor under the application of a novel odor is carried out based on the intensity-to-time-delay encoding scheme. The dynamic state of the olfactory bulb, which has learned many odors, becomes a randomly itinerant state in which the current firing state of the bulb itinerates randomly among limit cycle attractors corresponding to the learned odors. The recognition of an odor is generated by the dynamic transition in the network from the randomly itinerant state to a limit cycle attractor state relevant to the odor, where the transition is induced by the short-term synaptic changes made according to the Hebbian rule under the application of the odor stimulus. Received: 28 July 1997 / Accepted in revised form: 6 May 1998  相似文献   

8.
For most olfactometers described in the literature, adjusting olfactory stimulation intensity involves modifying the dilution of the odorant in a neutral solution (water, mineral, oil, etc.), the dilution of the odorant air in neutral airflow, or the surface of the odorant in contact with airflow. But, for most of these above-mentioned devices, manual intervention is necessary for adjusting concentration. We present in this article a method of controlling odorant concentration via a computer which can be implemented on even the most dynamic olfactometers. We used Pulse Width Modulation (PWM), a technique commonly used in electronic or electrical engineering, and we have applied it to odor delivery. PWM, when applied to odor delivery, comprises an alternative presentation of odorant air and clean air at a high frequency. The cycle period (odor presentation and rest) is 200 ms. In order to modify odorant concentration, the ratio between the odorant period and clean air presentation during a cycle is modified. This ratio is named duty cycle. Gas chromatography measurements show that this method offers a range of mixing factors from 33% to 100% (continuous presentation of odor). Proof of principle is provided via a psychophysical experiment. Three odors (isoamyl acetate, butanol and pyridine) were presented to twenty subjects. Each odor was delivered three times with five values of duty cycles. After each stimulation, the subjects were asked to estimate the intensity of the stimulus on a 10 point scale, ranging from 0 (undetectable) to 9 (very strong). Results show a main effect of the duty cycles on the intensity ratings for all tested odors.  相似文献   

9.
Encoding and decoding of overlapping odor sequences   总被引:3,自引:0,他引:3  
Broome BM  Jayaraman V  Laurent G 《Neuron》2006,51(4):467-482
Odors evoke complex responses in locust antennal lobe projection neurons (PNs)-the mitral cell analogs. These patterns evolve over hundreds of milliseconds and contain information about odor identity and concentration. In nature, animals often encounter many odorants in short temporal succession. We explored the effects of such conditions by presenting two different odors with variable intervening delays. PN ensemble representations tracked stimulus changes and, in some delay conditions, reached states that corresponded neither to the representation of either odor alone nor to the static mixture of the two. We then recorded from Kenyon cells (KCs), the PNs' targets. Their responses were consistent with the PN population's behavior: in some conditions, KCs were recruited that did not fire during single-odor or mixture stimuli. Thus, PN population dynamics are history dependent, and responses of individual KCs are consistent with piecewise temporal decoding of PN output over large sections of the PN population.  相似文献   

10.
Cury KM  Uchida N 《Neuron》2010,68(3):570-585
It has been proposed that a single sniff generates a "snapshot" of the olfactory world. However, odor coding on this timescale is poorly understood, and it is not known whether coding is invariant to changes in respiration frequency. We investigated this by recording spike trains from the olfactory bulb in awake, behaving rats. During rapid sniffing, odor inhalation triggered rapid and reliable cell- and odor-specific temporal spike patterns. These fine temporal responses conveyed substantial odor information within the first ~100 ms, and correlated with behavioral discrimination time on a trial-by-trial basis. Surprisingly, the initial transient portions of responses were highly conserved between rapid sniffing and slow breathing. Firing rates over the entire respiration cycle carried less odor information, did not correlate with behavior, and were poorly conserved across respiration frequency. These results suggest that inhalation-coupled transient activity forms a robust neural code that is invariant to changes in respiration behavior.  相似文献   

11.
Olsson MJ  Cain WS 《Chemical senses》2000,25(5):493-499
There is no natural physical continuum for odor quality along which an odor quality discrimination (OQD) threshold can be measured. In an attempt to overcome this problem, the substitution-reciprocity (SURE) method defines a framework for the measurement of an OQD threshold. More specifically, it (i) defines a threshold concept for OQD, including the quantification of qualitative change of the stimulus, and (ii) suggests how to avoid perceived intensity as an unwanted cue for discrimination. In doing this, the psychometric properties of odor quality in the case of eugenol and citral are investigated using both discrimination (experiment 1) and scaling (experiment 2). Based on discriminatory responses, a change of approximately one-third in stimulus content was needed to reach the OQD threshold for eugenol and citral.  相似文献   

12.
Nociceptive stimulus involuntarily interrupts concurrent activities. This interruptive effect is related to the protective function of nociception that is believed to be under stringent evolutionary pressure. To determine whether such interruptive effect is conserved in invertebrate and potentially uncover underlying neural circuits, we examined Drosophila melanogaster. Electric shock (ES) is a commonly used nociceptive stimulus for nociception related research in Drosophila. Here, we showed that background noxious ES dramatically interrupted odor response behaviors in a T‐maze, which is termed blocking odor response by electric shock (BOBE). The interruptive effect is not odor specific. ES could interrupt both odor avoidance and odor approach. To identify involved brain areas, we focused on the odor avoidance to 3‐OCT. By spatially abolishing neurotransmission with temperature sensitive ShibireTS1, we found that mushroom bodies (MBs) are necessary for BOBE. Among the 3 major MB Kenyon cell (KCs) subtypes, α/β neurons and γ neurons but not α’/β’ neurons are required for normal BOBE. Specifically, abolishing the neurotransmission of either α/β surface (α/βs), α/β core (α/βc) or γ dorsal (γd) neurons alone is sufficient to abrogate BOBE. This pattern of MB subset requirement is distinct from that of aversive olfactory learning, indicating a specialized BOBE pathway. Consistent with this idea, BOBE was not diminished in several associative memory mutants and noxious ES interrupted both innate and learned odor avoidance. Overall, our results suggest that MB α/β and γ neurons are parts of a previously unappreciated central neural circuit that processes the interruptive effect of nociception.  相似文献   

13.
The brain's link between perception and action involves several steps, which include stimulus transduction, neuronal coding of the stimulus, comparison to a memory template and choice of an appropriate behavioral response. All of these need time, and many studies report that the time needed to compare two stimuli correlates inversely with the perceived distance between them. We developed a behavioral assay in which we tested the time that a honeybee needs to discriminate between odors consisting of mixtures of two components, and included both very similar and very different stimuli spanning four log-concentration ranges. Bees learned to discriminate all odors, including very similar odors and the same odor at different concentrations. Even though discriminating two very similar odors appears to be a more difficult task than discriminating two very distinct substances, we found that the time needed to make a choice for or against an odor was independent of odor similarity. Our data suggest that, irrespective of the nature of the olfactory code, the bee olfactory system evaluates odor quality after a constant interval. This may ensure that odors are only assessed after the olfactory network has optimized its representation.  相似文献   

14.
Flies generate robust and high-performance olfactory and visual behaviors. Adult fruit flies can distinguish small differences in odor concentration across antennae separated by less than 1 mm [1], and a single olfactory sensory neuron is sufficient for near-normal gradient tracking in larvae [2]. During flight a male housefly chasing a female executes a corrective turn within 40 ms after a course deviation by its target [3]. The challenges imposed by flying apparently benefit from the tight integration of unimodal sensory cues. Crossmodal interactions reduce the discrimination threshold for unimodal memory retrieval by enhancing stimulus salience [4], and dynamic crossmodal processing is required for odor search during free flight because animals fail to locate an odor source in the absence of rich visual feedback [5]. The visual requirements for odor localization are unknown. We tethered a hungry fly in a magnetic field, allowing it to yaw freely, presented odor plumes, and examined how visual cues influence odor tracking. We show that flies are unable to use a small-field object or landmark to assist plume tracking, whereas odor activates wide-field optomotor course control to enable accurate orientation toward an attractive food odor.  相似文献   

15.
Odor discrimination times and their dependence on stimulus similarity were evaluated to test temporal and spatial models of odor representation in mice. In a go/no-go operant conditioning paradigm, discrimination accuracy and time were determined for simple monomolecular odors and binary mixtures of odors. Mice discriminated simple odors with an accuracy exceeding 95%. Binary mixtures evoking highly overlapping spatiotemporal patterns of activity in the olfactory bulb were discriminated equally well. However, while discriminating simple odors in less than 200 ms, mice required 70-100 ms more time to discriminate highly similar binary mixtures. We conclude that odor discrimination in mice is fast and stimulus dependent. Thus, the underlying neuronal mechanisms act on a fast timescale, requiring only a brief epoch of odor-specific spatiotemporal representations to achieve rapid discrimination of dissimilar odors. The fine discrimination of highly similar stimuli, however, requires temporal integration of activity, suggesting a tradeoff between accuracy and speed.  相似文献   

16.
Moore  Paul A. 《Chemical senses》1994,19(1):71-86
Natural odors occur as turbulent plumes resulting in spatiallyand temporally variable odor signals at the chemoreceptor cells.Concentrations can fluctuate widely within discrete packetsof odor and individual packets are very intermittent and unpredictable.Chemoreceptor cells display the temporally dynamic propertiesof adaptation and disadaptation, which serve to alter theirresponses to these fluctuating odor patterns. A computationalmodel, modified from one previously published, was used to investigate,the effect of adaptation and recovery of adaptation (disadaptation)on the spike output of model olfectory receptor cells undernatural stimulus conditions. The response characteristics ofmodel cells were based upon empirically determined dose-response,adaptation, disadaptation and flicker fusion properties of peripheralolfactory cells. The physiological properties of the model cell(adaptation and disadaptation rate and the dose-response relationship)could be modified independently, allowing assessment of therole of each in shaping the responses of the model cell. Completeadaptation and disadaptation time courses ranged from 500 ms(rapid cells) to 10 s (slow cells). The stimuli for the modelcells were quantified odor plume recordings obtained under avariety of biologically relevant flow conditions. As expected,the rapidly adapting model cells displayed different responsecharacteristics than the slowly adapting model cells to identicaltemporal odor profiles. Responses of the model cells dependedupon their adaptation and disadaptation rates, and the frequencycharacteristics of the odor presentation. These results indicatethat adaptation and disadaptation determine the range of concentrationfluctuations over which a particular cell will respond. Thus,these properties function as an olfactory equivalent of a band-passfilter in electronics. This type of filtering has implicationsfor the extraction of information from odor signals, men isthe coding of temporal and intensity features.  相似文献   

17.
Exposure of anestrous ewes to a ram or its odor results in the activation of the luteinizing hormone (LH) secretion leading to reinstatement of cyclicity in most females. Sexual experience and learning have been suggested as important factors to explain the variability of the female responses. In experiment 1, we compared the behavioral and endocrine responses of four groups of anestrous females that differed in age (young or adult) and previous exposure to males [naive (no exposure) or experienced (courtship behavior for young and numerous mating for adults)]. Age did not seem to affect the LH response to males or their odor. In contrast, sexual experience was a critical factor: the proportion of females exhibiting an LH response to male odor was significantly higher in experienced than in naive ewes. Sexual experience affected the response to male odor, but did not have an effect on responses to the male himself. A second experiment investigated whether the LH response to male odor could result from an associative learning process. Accordingly, we tested the effectiveness of a conditioned stimulus (lavender odor) previously associated with the male, in inducing the endocrine response. The results indicate that the odor of lavender activated LH secretion only in ewes that have been previously exposed to scented males. This demonstrates that ewes are able to learn the association between a neutral odor and their sexual partner.  相似文献   

18.
Effects of gonadal steroids on conspecific odor preference for either (1) sexually active male or active female, (2) sexually active or gonadectomized (gdx) males, (3) sexually active or gdx females, and (4) gdx males or gdx females were determined in male and female rats in a three-chamber apparatus. For the first test, gdx females were made sexually active by treatments with estradiol benzoate (EB) and progesterone (P), and sexually active males were selected by prior screening. Sexually active males and females preferred opposite-sex odor over same-sex odor. Odor of sexually active opposite-sex conspecifics was preferred over that of inactive ones. Immediately after the completion of the first test, sexually active males were gdx and females were left without hormonal treatment. Second and third tests were carried out 2 and 5 weeks after the first test. In the second test, gdx males preferred odor of sexually active males rather than that of receptive females (male-directed preference); in the third test, both males and females showed no preference when tested with four stimulus pairs. The final tests were carried out in gdx males with EB and P, and gdx females with 2-week exposure to testosterone (T). Males with EB and P showed a male-directed preference again, whereas T-treated females kept their own female preference. Injection of EB alone to gdx males did not induce any preference. The present study clearly demonstrated sex difference in conspecific odor preference. Although both male and female preferences depend on their circulating sex steroids, the direction of male preference is more susceptible to their hormonal states, compared to that of females.  相似文献   

19.
This study examined certain structural and functional aspects of the olfactory system in regenerated posterior tentacles of the terrestrial snail Achatina fulica. Regeneration of the epithelial sensory pad occurs with accurate size regulation. All five neuronal cell types which are normally revealed by horseradish peroxidase backfilling are also regenerated. The sensory cells attain normal numbers at about 20 weeks postlesion. The organization of neuronal elements within the tentacle is chaotic, however, at early stages of regeneration. Even later, the digitlike extensions of the ganglion, which are characteristic of intact tentacles, fail to appear. The recovery of odor sensitivity was evaluated using a tentacular olfactormeter and a behavioral assay that involved locomotor orientation towards the odor stimulus. Thresholds and concentration-dependent response rates were equivalent for regenerated and intact tentacles, tested in the same animals, at 10 weeks post-lesion.  相似文献   

20.
It is well established that for most people linguistic processing is primarily a left hemisphere activity, whereas recent evidence has shown that basic odor perception is more lateralized to the right hemisphere. Importantly, under certain conditions, emotional responding also shows right hemisphere laterality. Hedonic (pleasantness) assessments constitute basic level emotional responses. Given that olfaction is predominantly ipsilateral in function, it was hypothesized that odor pleasantness evaluations may be accentuated by right nostril perception and that odor naming would be superior with left nostril perception. To test this prediction we presented eight familiar neutral-mildly pleasant odors for subjects to sniff through the left and right nostrils. Subjects smelled each odor twice (once through each nostril) at two different sessions, separated by 1 week. At each session subjects provided pleasantness, arousal and naming responses to each odorant. Results revealed that odors were rated as more pleasant when sniffed through the right nostril and named more correctly when sniffed through the left. No effects for arousal were obtained. These findings are consistent with previously demonstrated neural laterality in the processing of olfaction, emotion and language, and suggest that a local and functional convergence may exist between olfaction and emotional processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号