首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
The aim of this experiment was to study the influence of 18-hour food deprivation on basal and stimulated lipolysis in adipocytes obtained from young male Wistar rats. Fat cells from fed and fasted rats were isolated from the epididymal adipose tissue by collagenase digestion. Adipocytes were incubated in Krebs-Ringer buffer (pH 7.4, 37 degrees C) without agents affecting lipolysis and with different lipolytic stimulators (epinephrine, forskolin, dibutyryl-cAMP, theophylline, DPCPX, amrinone) or inhibitors (PIA, H-89, insulin). After 60 min of incubation, glycerol and, in some cases, also fatty acids released from adipocytes to the incubation medium were determined. Basal lipolysis was substantially potentiated in cells of fasted rats in comparison to adipocytes isolated from fed animals. The inhibition of protein kinase A activity by H-89 partially suppressed lipolysis in both groups of adipocytes, but did not eliminate this difference. The agonist of adenosine A (1) receptor also did not suppress fasting-enhanced basal lipolysis. The epinephrine-induced triglyceride breakdown was also enhanced by fasting. Similarly, the direct activation of adenylyl cyclase by forskolin or protein kinase A by dibutyryl-cAMP resulted in a higher lipolytic response in cells derived from fasted animals. These results indicate that the fasting-induced rise in lipolysis results predominantly from changes in the lipolytic cascade downstream from protein kinase A. The antagonism of the adenosine A (1) receptor and the inhibition of cAMP phosphodiesterase also induced lipolysis, which was potentiated by food deprivation. Moreover, the rise in basal and epinephrine-stimulated lipolysis in adipocytes of fasted rats was shown to be associated with a diminished non-esterified fatty acids/glycerol molar ratio. This effect was presumably due to increased re-esterification of triglyceride-derived fatty acids in cells of fasted rats. Comparing fed and fasted rats for the antilipolytic effect of insulin in adipocytes revealed that short-term food deprivation resulted in a substantial deterioration of the ability of insulin to suppress epinephrine-induced lipolysis.  相似文献   

2.
In the present study, we have examined the effects of insulin and glucagon on the lipolysis of rainbow trout (Oncorhynchus mykiss). To this end, adipocytes were isolated from mesenteric fat and incubated in the absence (basal lipolysis) or presence of different concentrations of insulin and glucagon. In addition, to further elucidate the effects of these hormones in vivo on adipocyte lipolysis, both fasting and intraperitoneal glucagon injection experiments were performed. Basal lipolysis, measured as the glycerol released in the adipocyte medium, increased proportionally with cell concentration and incubation time. Cell viability was verified by measuring the release of lactate dehydrogenase (LDH) activity in the medium. Insulin (at doses of 35 and 350 nM) decreased lipolysis in isolated adipocytes of rainbow trout in vitro, while glucagon was clearly lipolytic at concentrations of 10 and 100 nM. Furthermore, hypoinsulinemia induced by fasting, as well as glucagon injection, significantly increased lipolysis in isolated adipocytes approximately 1.5- and 1.4-fold, respectively, when compared with adipocytes from control fish. Our data demonstrate that lipolysis, as measured in isolated adipocytes of rainbow trout, can be regulated by both insulin and glucagon. These results not only indicate that insulin is an important hormone in lipid deposition via its anti-lipolytic effects on rainbow trout adipocytes, but also reveal glucagon as a lipolytic hormone, as shown by both in vitro and in vivo experiments.  相似文献   

3.
Growth hormone (GH) has a lipolytic effect in adipose tissue but this effect may differ in adipose tissue from various fat depots. This latter possibility was investigated in the present study, in which the effects of GH in vivo on catecholamine-induced lipolysis and the number of β-adrenergic receptors in isolated adipocytes from different fat depots of hypophysectomized rats were investigated. Female and male Sprague-Dawley rats were hypophysectomized or sham-operated at 45 days of age. One week after the operation, hormonal replacement therapy with L-thyroxine and hydrocortisone acetate was given. In addition, groups of rats were treated with GH (1.33 mg/kg per day, given as two daily subcutaneous injections). After 1 week of hormonal treatment, adipocytes were isolated from the parametrial, epididymal and inguinal fat pads, and glycerol release after catecholamine-stimulation and 125I-cyanopindolol binding were measured. Hypophysectomy resulted in a marked decrease in the lipolytic response to catecholamines. GH treatment significantly increased catecholamine-induced lipolysis with similar effects in adipocytes from parametrial or epididymal and inguinal fat depots in both female and male rats. There were no differences between norepinephrine compared with isoproterenol-induced responses. 125I-cyanopindolol binding was reduced after hypophysectomy and normalized by GH treatment, without differences between parametrial and inguinal adipose tissue regions. We conclude that the lipolytic effects of GH in the rat may partly be mediated by a stimulatory effect on β-adrenergic receptors in adipocytes. In addition, GH exerted similar effect on catecholamine-induced lipolysis and β-adrenergic receptors in adipocytes from parametrial, epididymal and inguinal fat depots.  相似文献   

4.
Male Wistar rats, 6-8 week old, were fasted for 72 hours. The in vitro lipolytic activity of epididymal adipocytes was measured in the presence of adrenalin (a alpha and beta adrenergic agonist), isoprenaline (a pure beta agonist), theophylline (a phosphodiesterase inhibitor) or UK 14304 (a alpha 2 adrenoceptor agonist) associated with adenosine deaminase. The basal lipolytic activity, expressed per 100 mg lipids, was higher in fasted adipocytes than in fed ones. Its stimulation by adrenalin or isoproterenol was decreased by fast. The effects of these drugs were more potentiated by theophylline in fasted adipocytes than in fed ones. The UK 14304 inhibition of adenosine deaminase-stimulated lipolysis was about 20% in fasted adipocytes and 50% in fed adipocytes. The in vitro resistance of fasted adipocytes to the lipolytic effect of adrenalin or isoproterenol may be related to the hypothyroid status of fasted rats.  相似文献   

5.
The ability of conjugated linoleic acid (CLA) to reduce adiposity may be due to changes in energy expenditure and/or direct effects on adipocyte lipid metabolism. The aim of the present work was to analyse if CLA supplementation modifies lipolytic activity in adipose tissue from hamsters fed on high-fat diet. Hamsters were divided into two groups and fed on diets supplemented with either 0.5% linoleic acid (control) or 0.5% trans-10,cis-12 CLA. After 6 weeks, animals were fasted overnight and adipose tissues were dissected and weighed. Adipocytes were isolated by collagenase digestion and incubated in Krebs-Ringer bicarbonate buffer with or without several agents acting at different levels of the lipolytic cascade. Adipocyte diameters were measured by microscopy. Adipose tissue DNA content was assessed by spectrophotometry. Animals fed on CLA diet showed significantly reduced adipose tissue mass. No differences between both groups was found for basal lipolysis, lipolytic effects of isoproterenol, forskolin, dibutyryl-cAMP and isobutylmethylxanthine, and pD2 for isoproterenol. A similar total DNA amount was found in adipose tissue of both groups, showing that CLA diet had no effect on total cell number per fat pad. Although DNA content per gram tissue, an indirect reverse index of cell size, was significantly increased in CLA fed hamsters, microscopy did not reveal differences in medium mature adipocyte diameter, nor in cell size distribution between both groups. These results suggest that adipose tissue size reduction induced by trans-10,cis-12 CLA intake is not due to changes in lipolysis. Reduced preadipocyte differentiation into mature adipocytes may account for this fat-lowering effect.  相似文献   

6.
The effects of age and cellularity on lipolysis have been investigated in isolated epididymal fat cells from both Swiss albino mice and Sprague-Dawley rats. No significant lipolytic response to glucagon could be demonstrated with adipocytes from either young or old mice, while glycerol output was increased by this hormone with fat cells from young rats. Larger adipocytes from older mice showed significantly greater isoproterenol-stimulated lipolysis than those from younger animals if the glycerol output was expressed on a per cell basis. However, the lipolytic response per cell appeared to be equivalent in young and old rat adipocytes with either isoproterenol or ACTH-(1-24). In a complete aging study, relationships between body weight, epididymal fat pad weight and cellularity were examined covering the life span of the mouse. ACTH-(1-24)- and dibutyryl cyclic AMP-stimulated lipolysis increased with age and cell size but fell at senescence when adipocyte size diminished. Although an effect of aging per se cannot be ruled out with the experimental techniques used in the present study, a dominant influence of adipocyte size on the lipolytic process was demonstrated.  相似文献   

7.
Hepatocytes in primary culture from fed and 2 month fasted Arctic charr Salvelinus alpinus were exposed to physiological doses of either cortisol, salmon growth hormone (GH), salmon insulin‐like growth factor‐I (IGF‐I) or a combination of salmon GH and salmon IGF‐I. Fasting significantly lowered medium glucose levels compared to the fed fish, but had no significant effects on hepatocyte glycogen content or on the activities of enzymes involved in the intermediary metabolism. Cortisol treatment had no effect on hepatocyte glycogen content or on the enzyme activities investigated, but resulted in a significant increase in medium glucose concentration in hepatocytes isolated from fasted, but not fed fish. GH and IGF‐I treatments, both singly and in combination, significantly increased the glycogen content of hepatocytes isolated from fed fish, with less pronounced effects on hepatocytes isolated from fasted fish. The combination of GH and IGF‐I significantly increased lactate dehydrogenase activity regardless of the feeding state and significantly reduced the phosphenolpyruvate carboxykinase activity and medium glucose concentration in hepatocytes isolated from fed fish. Further, GH and IGF‐I significantly increased the activities of alanine aminotransferase and aspartate aminotransferase in hepatocytes isolated from fasted fish, but not fed fish. There were no effects of GH, IGF‐I, or their combination, on glucose 6‐phosphate dehydrogenase or 3‐hydroxyacyl‐CoA dehydrogenase activities. The results demonstrated that nutritional status of the animal modulates hepatocyte responsiveness to metabolic hormones, and suggested a role for GH and IGF‐I in hepatic glycogen conservation.  相似文献   

8.
1. Plasma glucose, glycerol, free fatty acids and total lipid content of the white adipose tissue were measured in euthermic and hibernating jerboa. 2. During hibernation, plasma glucose and glycerol were low compared to the euthermic animals, whereas there was no obvious difference in plasma free fatty acids. The white adipose tissue lipid content was strongly reduced in the hibernating state. 3. The effect of lipolytic hormones (norepinephrine and glucagon) and antilipolytic hormone (insulin) on in vitro glycerol release by adipose tissue isolated from hibernating or euthermic jerboa has been studied. 4. The white adipose tissue from hibernating jerboa presented a higher sensitivity to norepinephrine and glucagon than that of euthermic jerboa; insulin did not modify either basal glycerol release or lipolysis induced by the two lipolytic hormones at low temperatures (7 degrees C) and during the rewarming (from 7 degrees C to 37 degrees C) of the tissue slices. 5. These results suggested that white adipose tissue constitutes an important source of substrates derived from lipolysis during hibernation.  相似文献   

9.
1. Rates of lipolysis were measured at different concentrations of glucagon in adipocytes prepared from parametrial adipose tissue of fed or starved rats in different reproductive states. All experiments were performed in the presence of a high concentration of adenosine deaminase (1 unit/ml). 2. Maximal rates of lipolysis (elicited by 25 nM-glucagon in each instance) were higher in adipocytes from peak-lactating rats than those from pregnant animals in both the fed and starved states. 3. Of adipocytes from fed animals, those from peak-lactating rats were the most sensitive to glucagon, whereas those from late-pregnant and early-lactating rats were 1-2 orders of magnitude less sensitive. 4. Adipocytes from 24 h-starved rats showed a much smaller stimulation of lipolysis by glucagon, making the assessment of sensitivity difficult. Therefore, rates of lipolysis were also measured in the presence of a maximally anti-lipolytic dose of insulin. The presence of insulin did not alter the relative sensitivities to glucagon of adipocytes from fed animals in different reproductive states, although all dose-response curves were shifted to the right. When lipolysis in adipocytes from starved animals was measured in the presence of insulin, it became evident that starvation for 24 h markedly increased the sensitivity of adipocytes from late-pregnant rats to glucagon, but did not affect that of cells from animals in the other reproductive states. 5. It is concluded that the large changes in sensitivity to glucagon that occurred during the reproductive cycle may enable the modulation of adipose-tissue lipolysis in vivo to satisfy the different metabolic requirements of the animal in the transition from pregnancy to peak lactation.  相似文献   

10.
The role of somatolactin (SL) in the regulation of energy homeostasis in gilthead sea bream (Sparus aurata) has been analysed. First, a down-regulation of plasma SL levels in response to gross shifts in dietary amino acid profile and the graded replacement of fish meal by plant protein sources (50%, 75% and 100%) has been observed. Thus, the impaired growth performance with changes in dietary amino acid profile and dietary protein source was accompanied by a decrease in plasma SL levels, which also decreased over the course of the post-prandial period irrespective of dietary nitrogen source. Secondly, we examined the effect of SL and growth hormone (GH) administration on voluntary feed intake. A single intraperitoneal injection of recombinant gilthead sea bream SL (0.1 microg/g fish) evoked a short-term inhibition of feed intake, whereas the same dose of GH exerted a marked enhancement of feed intake that still persisted 1 week later. Further, we addressed the effect of arginine (Arg) injection upon SL and related metabolic hormones (GH, insulin-like growth factor-I (IGF-I), insulin and glucagon) in fish fed diets with different nitrogen sources. A consistent effect of Arg injection (6.6 micromol/g fish) on plasma GH and IGF-I levels was not found regardless of dietary treatment. In contrast, the insulinotropic effect of Arg was found irrespective of dietary treatment, although the up-regulation of plasma glucagon and glucose levels was more persistent in fish fed a fish meal based diet (diet FM) than in those fed a plant protein diet with a 75% replacement (diet PP75). In the same way, a persistent and two-fold increase in plasma SL levels was observed in fish fed diet FM, whereas no effect was found in fish fed diet PP75. Taken together, these findings provide additional evidence for a role of SL as a marker of energy status, which may be perceived by fish as a daily and seasonal signal of abundant energy at a precise calendar time.  相似文献   

11.
The lipolytic response to fatigue-induced stress was studied in fed and fasted rabbits and in fed propranolol-treated rabbits. The initial plasma glycerol level was higher and the increase in glycerol after stress was lower in fasted as compared to fed animals. Propranolol lowered the initial glycerol level and attenuated the fatigue-induced rise in glycerol concentration. The data suggest that in rabbits, as in other species, catecholamines increase lipolysis through stimulation of beta-adrenoceptors. The increment in alpha-adrenergic responsiveness during fasting may contribute to decreased glycerol response to stress observed in fasted rabbits.  相似文献   

12.
Glucose oxidation and incorporation into lipid were measured in epididymal adipose tissues and isolated adipose cells of normal and hypophysectomized rats in an effort to determine whether the acute hypoglycemic effect of a systemic growth hormone (GH) injection was related to alterations in the glucose metabolism of adipose tissue. The rats were fed rat chow or a high sucrose diet and received 100 mug GH intraperitoneally 30 minutes or three and one-half hours before sacrifice. Hypophysectomized rats showed a lower plasma glucose as compared with normal rats on both diets. Thirty minutes after a GH injection there was a further decrease of the plasma glucose which, however, was not present in those rats receiving GH three and one-half hours before sacrifice. Adipose tissues from hypophysectomized rats fed the high sucrose diet showed a blunted insulin sensitivity as compared with normal rats on a similar diet. The insulin sensitivity of these tissues was further decreased 30 minutes after a GH injection. Basal glucose metabolism of isolated adipocytes from hypophysectomized rats, as compared with normal rats, was depressed if they were fed rat chow, was at normal levels if they were fed the high sucrose diet and was increased if they were fed the sucrose diet and received triiodothyronine and cortisone supplements. No manipulations of diet or hormonal treatments made the isolated adipocyte from hypophysectomized rats sensitive to insulin either 30 minutes or three and one-half hours after a GH injection. Since basal glucose utilization is not enhanced by GH injection and both the blunted insulin sensitivity of adipose tissue and the absent insulin sensitivity of adipopocytes would be expected to produce hyperglycemia rather than hypoglycemia, it is concluded that immediate systemic effects of a GH injection on carbohydrate metabolism are not related to changes in glucose metabolism of the peripheral adipose tissues.  相似文献   

13.
The effects of somatostatin, insulin, insulin-like growth factor I (IGF-I), and insulin-like growth factor II (IGF-II)/MSA on growth hormone (GH) (1 microgram/ml)-induced lipolysis were examined employing chicken adipose tissue in vitro. Basal and GH-stimulated glycerol release were inhibited by somatostatin (1 ng/ml) and by IGF-II/MSA (10 and 100 ng/ml). Insulin and IGF-I (10 and 100 ng/ml) completely inhibited the lipolytic response to GH without affecting basal glycerol release. Insulin and IGF-I were equipotent in inhibiting GH-induced lipolysis while IGF-II is only 16% as potent as insulin.  相似文献   

14.
In vitro actions of purified plerocercoid growth factor (PGF) were compared with those of insulin and human growth hormone (hGH) in adipose tissue from normal male rats. Insulin-like effects were measured by the ability of PGF, insulin, or hGH to stimulate oxidation of [U-14C]glucose to 14CO2, to stimulate lipogenesis, and to inhibit epinephrine-induced lipolysis. PGF and insulin stimulated significant increases in glucose oxidation and lipogenesis in adipose tissue that had not been preincubated as well as in tissue that had been preincubated. hGH stimulated insulin-like effects only in tissue that had been preincubated for 3 hr. Insulin, hGH, and PGF inhibited epinephrine-induced lipolysis of preincubated (3 hr) adipose tissue. hGH produced a dramatic lipolytic response in tissue freshly removed from normal rats but no dose of PGF was lipolytic. PGF did not displace 125I-insulin from its receptors on adipocytes but did competitively inhibit 125I-hGH binding to adipocytes. These results suggest that PGF has direct insulin-like actions which are initiated by binding a GH receptor, but PGF had no anti-insulin action and the insulin-like activity of PGF was unaffected by refractoriness of adipose tissue to GH.  相似文献   

15.
We have studied the effect of several doses of GLP-1, compared to that of insulin and glucagons, on lipogenesis, lipolysis and cAMP cellular content, in human adipocytes isolated from normal subjects. In human adipocytes, GLP-1 exerts a dual action, depending upon the dose, on lipid metabolism, being lipogenic at low concentrations of the peptide (ED50, 10(-12) M), and lipolytic only at doses 10-100 times higher (ED50, 10(-10) M); both effects are time- and GLP-1 concentration-dependent. The GLP-1 lipogenic effect is equal in magnitude to that of equimolar amounts of insulin; both hormones apparently act synergically, and their respective action is abolished by glucagon. The lipolytic effect of GLP-1 is comparable to that of glucagon, apparently additive to it, and the stimulated value induced by either one is neutralized by the presence of insulin. In the absence of IBMX, GLP-1, at 10(-13) and 10(-12) M, only lipogenic doses, does not modify the cellular content of cAMP, while from 10(-11) M to 10(-9) M, also lipolytic concentrations, it has an increasing effect; in the presence of IBMX, GLP-1 at already 10(-12) M increased the cellular cAMP content. In human adipocytes, GLP-1 shows glucagon- and also insulin-like effects on lipid metabolism, suggesting the possibility of GLP-1 activating two distinct receptors, one of them similar or equal to the pancreatic one, accounting cAMP as a second messenger only for the lipolytic action of the peptide.  相似文献   

16.
Amine degradation by adipocyte amine oxidases leads to the production of metabolites that interact with lipid and glucose metabolisms and their hormonal regulations. To further investigate these interactions, we determined the effect of a dietary amine, tyramine (TYR), on glycerol and lactate releases, respectively taken as indices of lipolytic and glycolytic activities of isolated adipocytes. Old male Wistar rats were used to prepare adipocytes by collagenase dissociation of retroperitoneal fat pads. The two tested doses of tyramine (10 microM and 1 mM) had no effect on basal glycerol release. On the other hand, TYR, at the highest dose tested (1 mM), weakly but significantly increased basal lactate release, which was elevated in adipocytes from old rats. Norepinephrine (NE), highly stimulated adipocyte lipolysis with a submaximal effect at 1 microM which was slightly but significantly inhibited by TYR 1 mM. Insulin 1 nM (INS) also poorly inhibited the NE-stimulated lipolysis in adipocytes isolated from old rats. TYR was able to potentiate the poor antilipolytic efficiency of INS. Under similar conditions, a high dose of NE greatly reduced lactate production and TYR (1 mM) reversed this inhibition of lactate release. INS was also able to totally reverse the inhibitory effect of NE on lactate release, but there was no potentiation between insulin and tyramine effects. It can be concluded that high doses of TYR interact with norepinephrine and insulin, at least on the control of glycerol and lactate release, by counteracting catecholamine effects and by mimicking insulin actions.  相似文献   

17.
Lipolytic activity of human isolated fat cells from different fat deposits was studied. The purpose of the present investigations was to determine the epinephrine responsiveness, with regard to alpha- and beta-adrenergic receptor site activity, of omental and subcutaneous adipocytes (abdominal or from the lateral part of the thigh). Adipocytes were obtained from normal subjects or from obese subjects on iso- or hypocaloric diets. The lipolytic effect of epinephrine varied according to the fat deposits, while the beta-lipolytic effect of isoproterenol was more stable (Fig. 1). We explored the possible involvement of adrenergic alpha-receptors, in order to explain these results. The potentiating action of phentolamine on epinephrine-induced lipolysis, and the antilipolytic effect of alpha-agonists on basal or theophylline--induced lipolysis, were found to be a good indication of alpha-adrenergic activity. The alpha-adrenergic antilipolytic effect was most prominent in adipose tissue from the lateral part of the thigh, and less noticeable in omental adipocytes. In conclusion, the inability of epinephrine to induce lipolysis, and the epinephrine-induced inhibition of lipolysis observed when the basal rate of FFA release was spontaneously increased in subcutaneous fat-cells of the thigh, could be explained by an increased alpha adrenergic responsiveness (Fig. 2). Moreover, various alpha-adrenergic agonists (phenylephrine, noradrenaline and adrenaline) showed a clear inhibiting effect on theophylline-stimulated adipocytes from the thigh. The pharmacological study of the antilipolytic effect of epinephrine on theophylline-induced lipolysis showed that the inhibition was linked to a specific stimulation of the alpha-receptors of the subcutaneous adipocytes (Fig. 4). From the different sets of experiments, it is shown that the modifications in the lipolytic effect of epinephrine on adipocytes of different areas could be explained by the occurrence of a variable alpha-adrenergic effect initiated by catecholamine. Furthermore, theophylline stimulation of lipolysis provides an accurate system to investigate the alpha-inhibiting effect of catecholamines. Our study was completed by the investigation of the lipolytic activity of subcutaneous fat cells from obese subjects submitted to a hypocaloric diet (800-1 000 Cal/day). An increased alpha-inhibitory effect of epinephrine was shown on the increased basal lipolytic activity observed in the fat cells of obese subjects on a hypocaloric diet (Fig. 5); a similar effect was observed when these adipocytes were stimulated by theophylline. To conclude, these investigations allow the alpha-adrenergic effect to be considered as a regulator mechanism of the in vitro lipolytic activity in human adipose tissue, since the antilipolytic effect is operative whenever the basal rate of lipolysis is increased (spontaneously, after caloric restriction, or with a lipolytic agent such as theophylline).  相似文献   

18.
1. Regulation of lipogenesis and lipolysis by insulin was studied on adipocytes isolated from 100 kg Large white male pigs. Two adipose tissues were studied: subcutaneous and perirenal. Animals were fed either a control low fat diet or a diet containing 14.7% sunflower seed oil. 2. The cell diameter was higher in the group fed the sunflower diet. 3. De novo lipogenesis was decreased for each adipose tissue in the group fed the sunflower diet. The perirenal site had a higher lipogenic activity than subcutaneous site whatever the diet. 4. Insulin did not significantly stimulate lipogenesis but had an important antilipolytic effect on stimulated lipolysis by isoproterenol. 5. The antilipolytic action of insulin was higher in perirenal adipocytes with the control diet. With the sunflower diet, the decrease was about 54.4% for subcutaneous adipocytes, whereas the inhibition was decreased in perirenal adipocytes. Addition of theophylline reversed the antilipolytic action of insulin. 6. Insulin binding was not affected neither by the dietary fat nor by the adipose tissue location. 7. Absence of de novo lipogenesis stimulation by insulin was not due to an impairment in insulin binding. 8. The different effects of dietary fat and adipose tissue location on the antilipolytic action of insulin could not be explained by a modification of insulin binding but rather by a latter event, probably at a post-insulin binding stage.  相似文献   

19.
The present study was undertaken to investigate the potentiation by p-chlorophenoxyisobutyrate (CPIB) of the antilipolytic effect of insulin in isolated adipocytes from rats fed a (1) sucrose diet, (2) glycerol-lard diet, or (3) chow diet. CPIB supplementation in the diet consistently resulted in decreased serum triglyceride levels in rats from the three dietary groups. The catecholamine-stimulated glycerol release was significantly depressed to a greater extent by insulin when the fat cells were obtained from rats given CPIB compared to those without drug treatment. The enhanced insulin sensitivity was, however, not accompanied by any changes in insulin binding to adipocytes. These two observations were found in cell preparations from rats fed any one of the diets, although differences among dietary groups could be detected. In an in vitro experiment, epinephrine-stimulated glycerol release was progressively inhibited by increasing concentrations of CPIB in the incubation medium. However, the antilipolytic response to an optimal concentration of insulin (100 muU/ml) was augmented in the presence of CPIB. Thus, it seems that CPIB can potentiate the action of insulin in inhibiting mobilization of free fatty acid from the adipose tissue, and the coordinated effect of both antilipolytic agents is important in lowering serum triglyceride concentration. The mechanism by which CPIB facilitates the effect of insulin is discussed.  相似文献   

20.
The aim of the present study was to gain insight into the signaling pathway used by leptin to stimulate lipolysis. The lipolytic rate of white adipocytes from sex- and age-matched lean (+/+) and fa/fa rats was determined in the absence or presence of leptin together with a number of agents acting at different levels of the signaling cascade. Leptin did not modify FSK-, dbcAMP-, and IBMX-stimulated lipolysis. Lipolysis can also be maximally stimulated by lowering media adenosine levels with adenosine deaminase (ADA), i.e., in the ligand-free state. Although ADA produced near maximal lipolysis in adipocytes of lean animals, only half of the maximal lipolytic rate (50.9+/-3.2%) was achieved in fat cells from fa/fa rats (P=0.0034). In adipocytes from lean animals preincubated with ADA, leptin caused a concentration-related stimulation of lipolysis (P=0.0001). However, leptin had no effect on the lipolytic activity of adipocytes in the ligand-free state from fa/fa rats. The adenosine A1 receptor agonist CPA effectively inhibited basal lipolysis in both lean and obese adipocytes (P=0.0001 and P=0.0090, respectively). Leptin had no effect on the lipolytic rate of adipocytes isolated from fa/fa rats and preincubated with CPA. When adipocytes were incubated with the A1 receptor antagonist DPCPX, a significant increase in glycerol release was observed in fa/fa fat cells (P=0.009), whereas cells isolated from lean rats showed no differences to ADA-stimulated lipolysis. After pretreatment with PTX, which inactivates receptor-mediated Gi function, adipocytes of obese rats became as responsive to the stimulatory actions of ISO as cells from lean rats (P=0.0090 vs. ISO in fa/fa rats; P=0.2416 vs. lean rats, respectively). PTX treatment of lean cells, however, did not alter their response to this lipolytic agent. It can be concluded that the lipolytic effect of leptin is located at the adenylate cyclase/Gi proteins level and that leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号