首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Liver pyruvate kinase (L-type isozyme) was purified from the livers of rats fed a high carbohydrate, low protein diet for 4 days. The protein was homogeneous as judged by polyacrylamide-gel electrophoresis with and without added sodium dodecyl sulfate and as judged by high speed sedimentation and low speed equilibrium centrifugation. The specific activity of the purified protein was 190–220 international units (IU)/mg. A precipitating antiserum directed specifically against liver pyruvate kinase was obtained from rabbits and was used to determine the amount of liver pyruvate kinase protein present in the 80,000g supernatant fraction of rat liver homogenates in response to the dietary status of the animal. Rats maintained on a high carbohydrate, low protein diet for 4 days prior to sacrifice have at least 20 mg of precipitable liver pyruvate kinase protein per liver. Starvation of the animal results in a marked reduction in liver pyruvate kinase so that by 3 days of starvation less than 7 mg of liver pyruvate kinase protein per liver remains. Refeeding the animal a high carbohydrate, low protein diet results in a return of the liver pyruvate kinase protein to the prestarvation level of 20 mg per liver. The liver pyruvate kinase activity per liver varies in the same direction as does the liver pyruvate kinase protein but does not parallel the change in protein. Animals fed a high carbohydrate, low protein diet for 4 days have 60–70 IU/mg of liver pyruvate kinase protein whereas animals starved for periods exceeding 30 h have greater than 100 IU/mg of liver pyruvate kinase protein. Refeeding starved animals with a high carbohydrate, low protein diet initially causes a large increase in activity per milligram of liver pyruvate kinase protein followed by a return of this value to the prestarvation level. The observed rise in the ratio of activity per milligram of liver pyruvate kinase protein during starvation suggests a modification in the enzyme protein resulting either in an increase in the specific activity of the enzyme or in a decrease in the affinity of the enzyme for the antibody.  相似文献   

2.
Intact rats trained on a controlled feeding and lighting schedule designated ;8+16' exhibited diurnal oscillations in liver weight, glucokinase activity and liver glycogen content. Glucokinase activity expressed as units/g of liver decreased to 30% of that from unoperated controls during the first 48h after partial hepatectomy and returned to near normal values in 2 weeks. When the glucokinase activity was expressed as units/liver per 100g body wt., a decrease to 50% of control activity was observed between 24 and 48h after the operation. A similar pattern was found for pyruvate kinase type I. In contrast, pyruvate kinase type III activity increased after partial hepatectomy. It is suggested that the newly divided cells after partial hepatectomy do not synthesize glucokinase and pyruvate kinase I but do synthesize pyruvate kinase III. Glycogen was found to accumulate as early as 24h after partial hepatectomy, and normal concentrations were reached after 48h if the operation was performed at times other than during the feeding periods.  相似文献   

3.
Ferricyanide was reduced to ferrocyanide by the perfused rat heart at a linear rate of 78 nmol/min per g of heart (non-recirculating mode). Ferricyanide was not taken up by the heart and ferrocyanide oxidation was minimal (3 nmol/min per g of heart). Perfusate samples from hearts perfused without ferricyanide did not reduce ferricyanide. A single high-affinity site (apparent Km=22 μM) appeared to be responsible for the reduction. Perfusion of the heart with physiological medium containing 0.5 mM ferricyanide did not alter contractility, biochemical parameters or energy status of the heart. Perfusate flow rate and perfusate oxygen concentration exerted opposing effects on the rate of ferricyanide reduction. A net decreased reduction rate resulted from a decreased perfusion flow rate. Thus, the rate of supply of ferricyanide dominated over the stimulatory effect of oxygen restriction; the latter effect only becoming apparent when the oxygen concentration was lowered at a high perfusate flow rate. Whereas glucose (5 mM) increased the rate of ferricyanide reduction, pyruvate (2 mM), acetate (2 mM), lactate (2 mM) and 3-hydroxybutyrate (2 mM) each had no effect. Insulin (3 nM), glucagon (0.5 μM), dibutyryl cyclic AMP (0.1 mM) and the β-adrenergic agonist ritodrine (10 μM) also had no effect, however the α1-adrenergic agonist, methoxamine (10 μM), produced a net increase in the rate of ferricyanide reduction. It is concluded that a trans-plasma membrane electron efflux occurs in perfused rat heart that is sensitive to oxygen supply, glucose, perfusion flow rate, and the α-adrenergic agonist methoxamine.  相似文献   

4.
(1) Pyruvate kinase type M2 from rat lung has been purified 840-fold with an overall yield of 20%. The enzyme gave a single band upon SDS-electrophoresis and isoelectrofocusing and had a specific activity of 1340 U/mg protein. The homotetramer of Mr = 224 000 and an isoelectric point of pH 5.8 had an amino acid composition closely resembling that of other pyruvate kinase isoenzymes type M2, excepts that of the chicken liver. The enzyme was crystallized. (2) The enzyme has its pH optimum at pH 6.5. The K0.5 value for phosphoenolpyruvate is 0.26 mM (nH = 1.81) which decreases in the presence of 0.2 mM fructose 1,6-bisphosphate to 0.056 mM (nH = 1.06). 1 μM fructose 1,6-bisphosphate activates the enzyme at 0.1 mM phosphoenolpyruvate half-maximally. The Km value for ADP at 1 mM phosphoenolpyruvate is 0.4 mM. The Km value for other nucleoside diphosphates increases in the order ADP<GDP<IDP<UDP. (3) No evidence for an interconversion of pyruvate kinase type M2 from rat or chicken lung was found. The enzyme was neither a substrate for the cAMP-dependent protein kinase from rabbit muscle nor for the cAMP-independent protein kinase from chicken liver. Since pyruvate kinase type M2 from chicken liver is inactivated by phosphorylation catalyzed by a cAMP-independent protein kinase (Eigenbrodt, E., Abdel-Fattah Mostafa, M. and Schoner, W. (1977) Hoppe-Seyler's Z. Physiol. Chem. 358, 1047–1055) we suggest that the interconvertible form of pyruvate kinase type M2 may represent a separate form of the pyruvate kinase type M2 family.  相似文献   

5.
The effect of glucagon on the phosphorylation of pyruvate kinase in 32P-labelled slices from rat liver was investigated. Pyruvate kinase was isolated by immunoadsorbent chromatography. The enzyme was partially phosphorylated in the absence of added hormone (0.2 mol of phosphate/mol of enzyme subunit). Upon incubation with 10?7 M glucagon, the incorporation of [32P]phosphate was 0.6–0.7 mol/mol of enzyme subunit. Concomitantly, the concentration of intracellular cyclic 3′,5′-AMP increased from 0.3 to 3.2 μM. The phosphorylation inhibited the enzyme activity at low concentrations of phosphoenolpyruvate (60% at 0.5 mM). Almost maximal phosphorylation of the enzyme was reached within 2 min after the addition of glucagon. The concentration of hormone giving half maximal effect on the pyruvate kinase phosphorylation was about 7×10?9M. The inactivation of the enzyme paralleled the increase in phosphorylation. It is concluded that pyruvate kinase is phosphorylated in the intact liver cell.  相似文献   

6.
A reversible interconversion of two kinetically distinct forms of hepatic pyruvate kinase regulated by glucagon and insulin is demonstrated in the perfused rat liver. The regulation does not involve the total enzyme content of the liver, but rather results in a modulation of the substrate dependence. The forms of pyruvate kinase in liver homogenates are distinguished by measurements of the ratio of the enzyme activity at a subsaturating concentration of P-enolpyruvate (1.3 mM) to the activity at a saturating concentration of this substrate (6.6 mM). A low ratio form of pyruvate kinase (ratio between 0.1 and 0.2) is obtained from livers perfused with 10(-7) M glucagon or 0.1 mM adenosine 3':5'-monophosphate (cyclic AMP). A high ratio form of the enzyme is obtained from livers perfused with no hormone (ratio = 0.35 to 0.45). The regulation of pyruvate kinase by glucagon and cyclic AMP occurs within 2 min following the hormone addition to the liver. Insulin (22 milliunits/ml) counteracts the inhibition of pyruvate kinase caused by 5 X 10(-11) M glucagon, but has only a slight influence on the enzyme properties in the absence of the hyperglycemic hormone. The low ratio form of pyruvate kinase obtained from livers perfused with glucagon or cyclic AMP is unstable in liver extracts and will revert to a high ratio form within 10 min at 37 degrees or within a few hours at 0 degrees. Pyruvate kinase is quantitatively precipitated from liver supernatants with 2.5 M ammonium sulfate. This precipitation stabilizes the enzyme and preserves the kinetically distinguishable forms. The kinetic properties of the two forms of rat hepatic pyruvate kinase are examined using ammonium sulfate precipitates from the perfused rat liver. At pH 7.5 the high ratio form of the enzyme has [S]0.5 = 1.6 +/- 0.2 mM P-enolpyruvate (n = 8). The low ratio form of enzyme from livers perfused with glucagon or cyclic AMP has [S]0.5 = 2.5 +/- 0.4 mM P-enolpyruvate (n = 8). The modification of pyruvate kinase induced by glucagon does not alter the dependence of the enzyme activity on ADP (Km is approximately 0.5 mM ADP for both forms of the enzyme). Both forms are allosterically modulated by fructose 1,6-bisphosphate, L-alanine, and ATP. The changes in the kinetic properties of hepatic pyruvate kinase which follow treating the perfused rat liver with glucagon or cyclic AMP are consistent with the changes observed in the enzyme properties upon phosphorylation in vitro by a clyclic AMP-stimulated protein kinase (Ljungstr?m, O., Hjelmquist, G. and Engstr?m, L. (1974) Biochim. Biophys. Acta 358, 289--298). However, other factors also influence the enzyme activity in a similar manner and it remains to be demonstrated that the regulation of hepatic pyruvate kinase by glucagon and cyclic AMP in vivo involes a phosphorylation.  相似文献   

7.
The alpha-ketoglutarate dehydrogenase complex of Escherichia coli utilizes pyruvate as a poor substrate, with an activity of 0.082 units/mg of protein compared with 22 units/mg of protein for alpha-ketoglutarate. Pyruvate fully reduces the FAD in the complex and both alpha-keto[5-14C]glutarate and [2-14C]pyruvate fully [14C] acylate the lipoyl groups with approximately 10 nmol of 14C/mg of protein, corresponding to 24 lipoyl groups. NADH-dependent succinylation by [4-14C]succinyl-CoA also labels the enzyme with approximately 10 nmol of 14C/mg of protein. Therefore, pyruvate is a true substrate. However, the pyruvate and alpha-ketoglutarate activities exhibit different thiamin pyrophosphate dependencies. Moreover, 3-fluoropyruvate inhibits the pyruvate activity of the complex without affecting the alpha-ketoglutarate activity, and 2-oxo-3-fluoroglutarate inhibits the alpha-ketoglutarate activity without affecting the pyruvate activity. 3-Fluoro[1,2-14C]pyruvate labels about 10% of the E1 components (alpha-ketoacid dehydrogenases). The dihydrolipoyl transsuccinylase-dihydrolipoyl dehydrogenase subcomplex (E2E3) is activated as a pyruvate dehydrogenase complex by addition of E. coli pyruvate dehydrogenase, the E1 component of the pyruvate dehydrogenase complex. All evidence indicates that the alpha-ketoglutarate dehydrogenase complex purified from E. coli is a hybrid complex containing pyruvate dehydrogenase (approximately 10%) and alpha-ketoglutarate dehydrogenase (approximately 90%) as its E1 components.  相似文献   

8.
Using perfused livers of rats fasted for 48 hours, glucose production and incorporation of 2-14C pyruvate (trace dose) into perfusate glucose were studied. Both were found to be inhibited by PGE1 (infused at a concentration of 0.5 μg/min) by about 60 %. The incorporation of 1-14C glycerol into perfusate glucose and into glycerol-glyceride part of the liver glycerides were also studied, using the same test conditions. The former incorporation was significantly inhibited (56%) and the latter strongly stimulated (360 %) by PGE1. PGE1 had no effect on glucose production in a perfusate overloaded with sodium pyruvate, nor on pyruvate carboxylase and phospho-enolpyruvate carboxykinase activity. This was in contrast with the results obtained in perfusions with a trace dose of 2-14C pyruvate. The results showed that PGE1, at the physiological concentration used, stimulated the incorporation of 1-14C glycerol into glycerol-glyceride part of liver glycerides and, when there was no overload of pyruvate present in the perfusion medium, inhibited gluconeogenesis at some point, possibly, but perhaps not exclusively, between the glycerol and glucose steps.  相似文献   

9.
Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of immunoprecipitates of liver cytosol with anti-(L-type pyruvate kinase) serum revealed proteins of mol.wt. 56 000 and 42 000 in addition to the heavy and light chains. The ratio of the 56 000 mol.wt. to the 42 000 mol.wt. protein increased under dietary conditions that resulted in an increase in the apparent specific activity of hepatic pyruvate kinase. The 42 000 mol.wt. protein was removed from immunoprecipitates if the liver cytosol was partially purified by pH precipitation and (NH4)2SO4 fractionation before addition of the antiserum. This technique may be used to analyse the formation of pure L-type pyruvate kinase in liver. By using H14CO3-labelling, the t1/2 of L-type pyruvate kinase was estimated as 75 +/- 1.7 h in post-weaned high-carbohydrate-diet-fed rats. Before weaning there was little immunoreactive pyruvate kinase in rat liver cytosol. Induction began between 6 and 24 h after weaning and reached a maximum value 120 h after weaning. When clearly enhanced total pyruvate kinase activity was first observed at 24 h post-weaning, the apparent specific activity of hepatic pyruvate kinase was considerably lower than the specific activity of the pure isolated enzyme. When the induction of L-type pyruvate kinase was monitored by the incorporation of L-[4,5-3H]leucine, the maximum rate of synthesis occurred 24--48 h after weaning. After this period synthesis declined, indicating a relatively slow turnover of the enzyme once the enzyme concentration was established in the liver.  相似文献   

10.
A true breeding strain was made from a wild-caught mouse with low erythrocyte pyruvate kinase (E.C. 2.7.1.40) activity. This variation showed additive inheritance and segregated as an allele at a single locus (Pk-1 b). Mice homozygous for the reduced blood pyruvate kinase activity cosegregated for reduced liver activity. In both these tissues the variant enzyme had a lowered heat stability and reduced K m values for ADP. An increased stimulation by FDP was also detected in the liver pyruvate kinase. No difference in the isoelectric point of the variant enzyme in either erythrocyte or liver was observed when compared with the enzyme from C57BL mice (Pk-1 a/Pk-1 a). It is concluded that Pk-1 is the structural gene for the erythrocyte and the major liver pyruvate kinase. No other tissue pyruvate kinase showed altered characteristics.This work was supported by a Medical Research Council grant.  相似文献   

11.
A radioimmunoassay specific for liver pyruvate kinase was used to determine the mechanism(s) involved in the insulin stimulation of this enzyme activity in chronically diabetic rats. Rats, made diabetic with alloxan, were fed on a high-carbohydrate (50%-sucrose) fat-free diet and treated with insulin for 12, 36 or 60 h. Livers were removed at the various times, a piece was kept for determination of glycogen, and the remainder was homogenized. The 100000 g supernatant was prepared and used for determination of pyruvate kinase activity and quantity. Glycogen increased to a maximum of approx. 7% by 12 h after insulin treatment, and was maintained at this elevated value for 60 h. Liver pyruvate kinase activity, which is depressed in diabetes, did not respond to insulin until 36 h of treatment, with a more substantial increase occurring by 60 h. Radioimmunoassay data indicated that the increase in activity was concomitant with a substantial increase in the quantity of the enzyme and a moderate increase in its specific activity. These results demonstrate that a dual mechanism, i.e. an increase in both the quantity and specific activity of the enzyme, regulates the insulin-mediated stimulation of liver pyruvate kinase in the diabetic rat.  相似文献   

12.
Summary The mechanism of activation by inorganic phosphate and ATP of cardiac muscle pyruvate kinase was studied with the aid of steady-state kinetics. The enzyme was purified to homogeneity to a final specific activity of 400 units/ mg (phosphate buffer, pH 7.6, 25 °C). At pH 7.6 the enzyme displays Michaelis-Menten kinetics with respect to both its substrates, phosphoenolpyruvate and ADP. Substrate kinetic constants are: app.Km(phosphoenolpyruvate) –0.04 mM, app.Km(ADP) =0.22 mM. Under the conditions used in the standard assay the specific activity is greatly enhanced by inorganic phosphate (50 mM) or ATP (2.5 mM). Each of these modifiers, acting separately, increases the Vmax without seriously affecting Michaelis constants and Hill coefficients. In the presence of both Pi and ATP, only a decrease in Vmax was observed.The kinetics of activation by inorganic phosphate of pyruvate kinase was examined. Studying the effect of varying concentrations of Pi on the initial rate we obtained a hyperbolic saturation curve with the app. Km(Pi) = 20 mM and Vmax = 167 units/ mg. The evidence is presented that inorganic phosphate is a substrate for a side reaction catalyzed by cardiac pyruvate kinase. It is shown that in the presence of pyruvate, inorganic phosphate and ATP in the assay system, Pi is incorporated into acid-labile products of this reaction, inorganic pyrophosphate being one of them.These findings indicate the existence of an alternative reaction catalyzed by pyruvate kinase by which energy may be stored in the form of inorganic pyrophosphate.Abbreviations PEP phosphoenolpyruvate - Pi inorganic phosphate - TEA triethanolamine - EDTA ethylenediaminetetraacetate  相似文献   

13.
W T Hron  L A Menahan 《Enzyme》1983,30(2):83-88
The activities of phosphofructokinase, pyruvate kinase and pyruvate dehydrogenase were examined in liver as a function of age in Swiss albino mice. The hepatic activity of phosphofructokinase and total pyruvate dehydrogenase peaked in mice between 8 and 12 weeks of age and then decreased to a value that remained stable in mature animals older than 24 weeks of age. Yet, the activity of pyruvate kinase and pyruvate dehydrogenase in the active form in liver remained unchanged in mice up to 12 weeks of age. As mice matured, a progressive increase in the activity of both pyruvate kinase and the active form of pyruvate dehydrogenase in liver was observed while phosphofructokinase was unaltered. The pyruvate dehydrogenase complex, both total activity and the proportion of the enzyme in the active form, in the epididymal fat pad of the mouse showed no consistent age trend. The observed increase in the activity of both pyruvate kinase and the active form of pyruvate dehydrogenase should provide an augmented capacity for the generation of acetyl-CoA units for de novo fatty acid synthesis in livers of mature mice.  相似文献   

14.
15.
The regulation of type L pyruvate kinase concentrations in liver of young (35–45 days old) and adult (60–85 days old) rats starved and re-fed a 71% sucrose diet was investigated. Re-feeding is accompanied by an increase in the enzyme level in liver determined kinetically and immunologically. A constant ratio of kinetic activity to immunological activity was observed under all conditions examined, indicating that activity changes are the result of a regulation of synthesis or degradation and not an interconversion between kinetically active and inactive forms of the enzyme. Synthesis of pyruvate kinase was directly examined by using hepatocytes isolated from starved and re-fed rats. A stimulation of pyruvate kinase synthesis is observed on re-feeding. This increase in synthesis of pyruvate kinase is retained by the isolated hepatocyte for up to 7h in the absence of hormonal stimuli. Administration of glucagon (1μm) to the isolated hepatocytes had no influence on synthesis of pyruvate kinase and no evidence for a glucagon-directed degradation of the enzyme was found. Re-feeding the rat was followed by a transient increase in the synthesis of pyruvate kinase. The peak rate of synthesis was observed before a detectable increase in the enzyme concentration. After a rapid synthesis period, a new steady-state level of the enzyme was achieved and synthesis rates declined. The time course and magnitude for the response to the sucrose diet was dependent on the age of the rat. In young rats, an increase in pyruvate kinase synthesis is observed within 6h and peak synthesis occurs at 11h after re-feeding sucrose. The peak synthesis rate for pyruvate kinase for young rats represents approx. 1% of total protein synthesis. With adult rats, increased pyruvate kinase synthesis is not observed for 11h, with peak synthesis occurring at 24h after re-feeding. In the older rats, peak pyruvate kinase synthesis constitutes greater than 4% of total protein synthesis. Continued re-feeding of the adult rat beyond 24h is accompanied by a decline of pyruvate kinase synthesis to approx. 1.5% of total protein synthesis. The concentration of the enzyme, however, does not decline during this period, suggesting that control of pyruvate kinase degradation as well as synthesis occurs.  相似文献   

16.
The effect of individual nutrients on pyruvate kinase activity was studied in the rat liver and kidney, and experimental results are summarized as follows: The level of the enzyme in the liver increased with the feeding of carbohydrate, and unaffected by the feeding of protein or fat. On the other hand, the level of renal enzyme was influenced by the amount of protein ingested. The feeding of protein led to increased enzyme activity in this organ. The results presented show that there is a clear difference in the response of pyruvate kinase level in the liver and kidneys to changes in the diet.  相似文献   

17.
The enzyme from cod fish muscle that catalyzes the irreversible decarboxylation of oxalacetate and is homogeneous by several criteria contains very significant pyruvate kinase activity. For every unit of decarboxylase activity (0.90 unit/mg) there are 235 units of pyruvate kinase activity (212 units/mg). The inability to separate the two activities by a variety of physical techniques indicates that both are due to a single enzyme protein. Improtantly, the two activities appear to take place at the same or overlapping sites on the enzyme. Phosphoenolpyruvate and 4-ethyloxalacetate are strong linear competitive inhibitors of the decarboxylase activity with respect to oxalacetate having dissociation constants of 3.2 and 10.2 muM, respectively, while 4-ethyloxalacetate is a linear competitive inhibitor of the pyruvate kinase activity with respect to phosphoenolpyruvate, Ki - 13.5 muM. In addition, both activities exhibit sigmoidal kinetics for substrates. The differential influence of effectors on substrate cooperativity for the two reactions indicates that the decarboxylase reaction may be an important tool for studying allosteric mechanisms in this enzyme.  相似文献   

18.
The effect of thiamine triphosphate (ThTP) and thiamine diphosphate (ThDP) on the activity of rat liver pyruvate dehydrogenase complex regulatory enzymes (kinase and phosphatase) was studied in experiments with isolated enzyme preparations. It is shown that ThDP caused a pronounced activation of pyruvate dehydrogenase phosphatase (Ka is equal to 65.0 nM). ThTP inhibits phosphatase competitively against the substrate--the phosphorylated pyruvate dehydrogenase complex. The both thiamine phosphates inhibit the pyruvate dehydrogenase kinase activity almost similarly in concentrations exceeding 10 microM. The physiological significance of the antagonistic action of ThDP and ThTP on the pyruvate dehydrogenase phosphatase activity is discussed.  相似文献   

19.
—The distribution of pyruvate kinase (ATP: pyruvate phosphotransferase; EC 2.7.1.40) in several areas of the central nervous system, the ontogenic changes in the cerebro-cortical enzyme, and its modulation by certain metabolites were investigated in the rat. No significant differences in activity of pyruvate kinase in different regions of the nervous system were detected when activity was expressed per g of tissue. Studies on the ontogeny of pyruvate kinase in cerebral cortex revealed extremely low levels of enzymic activity at birth. A two-fold increase occurred between 1 and 20 days of postnatal age, with a further two-fold increase between 20 and 60 days of age. l -Phenylalanine, when added directly into the reaction mixture, produced a dose-dependent inhibition of cerebro-cortical pyruvate kinase; a similar inhibition of the enzyme activity was observed with copper. The inhibition by l -phenylalanine and copper was prevented and reversed by l -alanine. Although the cerebro-cortical enzyme was resistant to thermal inactivation at 37°C, incubation of the enzyme preparation at 55°C for 60 min resulted in approximately 60 per cent inhibition of its activity. Preincubation with l -alanine provided partial protection against thermal inactivation of the enzyme. Although l -alanine exerted no effect on the non-competitive inhibition of pyruvate kinase produced by calcium, such inhibition was prevented and reversed by EDTA. The sulphydryl inhibitor, P-chloromercuribenzoate, produced a dose-dependent inhibition of cerebro-cortical pyruvate kinase, whereas addition of penicillamine resulted in a slight activation of the enzyme. Although inhibition of pyruvate kinase by P-chloromercuribenzoate was unaffected by l -alanine, penicillamine effectively prevented and reversed the inhibition produced by P-chloromercuribenzoate.  相似文献   

20.
To determine which of the major isoenzymes of pyruvate kinase pancreatic islet pyruvate kinase most resembled, it was compared to pyruvate kinase from other tissues in kinetic and immunologic studies. The pattern of activation by fructose bisphosphate and the patterns of inhibition by alanine and phenylalanine were most similar to those of the M2 isoenzyme from kidney and were dissimilar to those of the isoenzymes from skeletal muscle (type M1) and liver (type L). The islet pyruvate kinase was inhibited by anti-M1 pyruvate kinase serum (which crossreacts with the M2 isoenzyme), but not by anti-L pyruvate kinase. These results are most consistent with islets possessing predominantly, if not exclusively, the M2 isoenzyme of pyruvate kinase. We previously showed that rat pancreatic islet cytosol contains protein kinases that can catalyze a calcium-activated phosphorylation of an endogenous peptide that has properties, such as subunit molecular weight and isoelectric pH, that are identical to those of the M2 and M, isoenzymes of pyruvate kinase, and that islet cytosol can catalyze phosphorylation of muscle pyruvate kinase. In the present study it was shown that incubating islet cytosol with ATP under conditions known to permit phosphorylation and inhibition of liver pyruvate kinase did not affect the islet pyruvate kinase activity. It is concluded that phosphorylation of the islet pyruvate kinase has no immediate effect on enzyme activity.Abbreviations EGTA ethylene glycos his (-aminoethyl ether)-N,N,NN-tetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号