首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
Previous studies have suggested that transglutaminase has a role in the internalization of some polypeptide hormones and is inhibited by the antibiotic, bacitracin. Bacitracin has been used in insulin-receptor studies to inhibit extracellular degradation of 125I-labelled insulin. The aim of this study was to investigate bacitracin's effect on 125I-labelled insulin-receptor interactions in isolated rat hepatocytes. 1 g/l bacitracin increased cell-associated 125I-labelled insulin at 20, 30 and 37°C (P < 0.001, 0.0005 and 0.0005, respectively). At 5 and 15°C (internalization does not occur), bacitracin did not affect cell-associated 125I-labelled insulin. The bacitracin effect was concentration dependent, increasing to 2 g/l. Scatchard analysis showed that bacitracin did not alter insulin receptor affinity or number. 1 g/l bacitracin abolished the effect of chloroquine. The increased cell-associated radioactivity with bacitracin was surface-bound in nature. 0.5 g/l bacitracin decreased 125I-labelled insulin degradation in hepatocyte suspensions (P < 0.001) and in buffer previously incubated with hepatocytes (P < 0.0005). More 125I-labelled insulin remained associated with cells during dissociation studies at 37°C when the buffer contained 1 g/l bacitracin. Label that appeared in the buffer after 60 min was significantly more intact in the presence of bacitracin (P < 0.025). These results suggest that bacitracin retards the internalization of 125I-labelled insulin in isolated rat hepatocytes.  相似文献   

2.
125I-labelled α2-macroglobulin-typrin complex (125I-labelled α2-macroglobulin·trypsin) was associated to isolated rat adipocytes and hepatocytes with a half-time of about 60 min at 37°C. The association of 0.5 μg/ml 125I-labelled α2-macroglobulin·trypsin was inhibited by unlabelled α2-macroglobulin·trypsin with a half-inhibition constant of about 8 μg/ml (11 nM). 125I-Labelled α2-macrioglubulin became cell-associated to a smaller extent (10–40% of that of α2-macroglobulin·trypsin) and the half-inhibition constant was about 35 μg/ml in adipocytes. The cell associated of 125I-labelled α-macroglobulin·trypsin was markedly inhibited by dansylcadaverin, bacitracin, omission of Ca2+ from the medium or pretreatment of the cell with trypsin. After incubation for 180 min more than 60% of the cell-associated 125-Ilabelled α2-macroglobulin·trypsin was not removed by treatment of the cells with trypsin-EDTA and represented probably internalized marterial. 125I-Labelled α2-macroglobulin·trypsin was degraded to trichloroacetic acid-soluble fragments by suspensions of both cell types but only to a negligible extent by incubation media preincubated with these cells. The rate of degradation of 0.5 μg/ml 125I-labelled α2-macroglobulin was approx. 40% of that of 125I-labelled α2-macroglobulin·trypsin. Degradation of 125I-labelled α2-macroglobulin·trypsin was abolished by a high concentration (0.5 mg/ml) and α2-macroglobulin·trypsin. It is concluded that α2-macroglobulin·trypsin by a specific and saturable mechanism is bound to, internalized and degraded by isolated rat adipocytes and hepatocytes.  相似文献   

3.
125I-Labelled alpha 2-macroglobulin-trypsin complex (125I-labelled alpha 2-macroglobulin X trypsin) was associated to isolated rat adipocytes and hepatocytes with a half-time of about 60 min at 37 degrees C. The association of 0.5 micrograms/ml 125I-labelled alpha 2-macroglobulin X trypsin was inhibited by unlabelled alpha 2-macroglobulin X trypsin with a half-inhibition constant of about 8 micrograms/ml (11 nM). 125I-Labelled alpha 2-macroglobulin became cell-associated to a smaller extent (10-40% of that of alpha 2-macroglobulin X trypsin) and the half-inhibition constant was about 35 micrograms/ml in adipocytes. The cell association of 125I-labelled alpha 2-macroglobulin X trypsin was markedly inhibited by dansylcadaverine, bacitracin, omission of Ca2+ from the medium or pretreatment of the cells with trypsin. After incubation for 180 min more than 60% of the cell-associated 125I-labelled alpha 2-macroglobulin X trypsin was not removed by treatment of the cells with trypsin-EDTA and represented probably internalized material. 125I-Labelled alpha 2-macroglobulin X trypsin was degraded to trichloroacetic acid-soluble fragments by suspensions of both cell types but only to a negligible extent by incubation media preincubated with these cells. The rate of degradation of 0.5 micrograms/ml 125I-labelled alpha 2-macroglobulin was approx. 40% of that of 125I-labelled alpha 2-macroglobulin X trypsin. Degradation of 125I-labelled alpha 2-macroglobulin X trypsin was abolished by a high concentration (0.5 mg/ml) of alpha 2-macroglobulin X trypsin. It is concluded that alpha 2-macroglobulin X trypsin by a specific and saturable mechanism is bound to, internalized and degraded by isolated rat adipocytes and hepatocytes.  相似文献   

4.
A photoreactive analogue of human melanin‐concentrating hormone was designed, [d‐ Bpa13,Tyr19]‐MCH, containing the d‐ enantiomer of photolabile p‐benzoylphenylalanine (Bpa) in position 13 and tyrosine for radioiodination in position 19. The linear peptide was synthesized by the continuous‐flow solid‐ phase methodology using Fmoc‐strategy and PEG‐PS resins, purified to homogeneity and cyclized by iodine oxidation. Radioiodination of [d ‐Bpa13,Tyr19]‐MCH at its Tyr19 residue was carried out enzymatically using solid‐ phase bound glucose oxidase/lactoperoxidase, followed by purification on a reversed‐ phase mini‐column and HPLC. Saturation binding analysis of [125I]‐[d‐ Bpa13,Tyr19]‐MCH with G4F‐7 mouse melanoma cells gave a KD of 2.2±0.2×10−10 mol/l and a Bmax of 1047±50 receptors/cell. Competition binding analysis showed that MCH and rANF(1–28) displace [125I]‐[d‐ Bpa13,Tyr19]‐MCH from the MCH binding sites on G4F‐7 cells whereas α‐MSH has no effect. Receptor crosslinking by UV‐irradiation of G4F‐7 cells in the presence of [125I]‐[d‐ Bpa13,Tyr19]‐MCH followed by SDS‐polyacrylamide gel electrophoresis and autoradiography yielded a band of 45–50 kDa. Identical crosslinked bands were also detected in B16‐F1 and G4F mouse melanoma cells, in RE and D10 human melanoma cells as well as in COS‐7 cells. Weak staining was found in rat PC12 phaeochromocytoma and Chinese hamster ovary cells. No crosslinking was detected in human MP fibroblasts. These data demonstrate that [125I]‐[d‐ Bpa13,Tyr19]‐MCH is a versatile photocrosslinking analogue of MCH suitable to identify MCH receptors in different cells and tissues; the MCH receptor in these cells appears to have the size of a G protein‐coupled receptor, most likely with a varying degree of glycosylation. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
High affinity binding sites for a somatostatin-28 analog in rat brain   总被引:8,自引:0,他引:8  
J C Reubi  M H Perrin  J E Rivier  W Vale 《Life sciences》1981,28(19):2191-2198
Using an iodinated analog of a large (28 residues) and biologically active form of somatostatin, 125I[Leu8,D-Trp22,Tyr25]SS-28, it was possible to demonstrate saturable and high affinity binding sites (dissociation constant = 0.46 ± 0.04 nM) in rat cortical membranes. Somatostatin, somatostatin-28, as well as two potent analogs, [D-Trp8] somatostatin and [D-Trp22] somatostatin-28, could completely displace the radiogland in the nanomolar range whereas the inactive analog Des-Trp8-somatostatin and the unrelated peptide GnRH showed no affinity for these binding sites; octa- and nona-peptide analogs of somatostatin were inactive. High binding was found in hippocampus, amygdala, tuberculum olfactorium, caudate-putamen and cortex; moderate binding in midbrain and hypothalamus, and no binding in the cerebellum. These results suggest that specific somatostatin receptors can be measured within the brain with 125I[Leu8,D-Trp22,Tyr25] SS-28 as radioligand.  相似文献   

6.
A novel class of alkyne linked [Tyr3]octreotate analogues have been labelled by a copper catalysed azide-alkyne cycloaddition reaction (CuAAC) to form a 1,4-substituted triazole using the reagent [18F]2-fluoroethyl azide. An unexpected variability in reactivity during the CuAAC reaction was observed for each alkyne analogue which has been investigated. Two lead alkyne linked [Tyr3]octreotate analogues, G-TOCA (3a) and βAG-TOCA (5a) have been identified to be highly reactive in the click reaction showing complete conversion to the [18F]2-fluoroethyl triazole linked [Tyr3]octreotate analogues FET-G-TOCA (3b) and FET-βAG-TOCA (5b) under mild conditions and with short synthesis times (5 min at 20 °C). As well as ease of synthesis, in vitro binding to the pancreatic tumour AR42J cells showed that both FET-G-TOCA and FET-βAG-TOCA have high affinity for the somatostatin receptor with IC50 of 4.0 ± 1.4, and 1.6 ± 0.2 nM, respectively.  相似文献   

7.
Receptor-binding kinetics and degradation of tyrosine A-14 and A-19 125I-labelled insulin was studied using cultured human lymphocytes. Receptor-binding ability of A-14 insulin was 1.5-times as high as that of A-19 insulin. Dissociation from receptors on lymphocytes showed no difference between these two labelled insulins. In association studies percent bound of A-14 insulin was 1.5-times as high as that of A-19 insulin at any time after incubation. These results suggested that lower binding affinity of A-19 insulin was due to decreased association rate, but not due to increased dissociation rate. Degradation of A-14 insulin by incubation media of lymphocytes was also 1.5-times as high as that of A-19 insulin.  相似文献   

8.
Liao YY  Lee CW  Ho IK  Chiou LC 《Life sciences》2012,90(7-8):306-312
AimThe nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor was reported to be functionally heterogeneous. We investigated if [Tyr10]N/OFQ(1-11), a peptide ligand reported to selectively bind to the high affinity site of 125I-[Tyr14]N/OFQ in rodent brains, can be a tool for revealing the NOP receptor heterogeneity. We have previously founded an NOP receptor subset insensitive to Ro 64-6198 and (+)-5a Compound, two non-peptide NOP agonists, in rat ventrolateral periaqueductal gray (vlPAG) neurons. Here, we examined if [Tyr10]N/OFQ(1-11) differentiated (+)-5a Compound-sensitive and -insensitive vlPAG neurons. Certain mu-opioid (MOP) receptor ligands highly competing with [Tyr10]N/OFQ(1-11) in binding studies also showed high affinity at expressed heteromeric NOP–MOP receptors. We also examined if [Tyr10]N/OFQ(1-11) distinguished heteromeric NOP–MOP receptors from homomeric NOP receptors.Main methodsThe NOP receptor activity was evaluated by G-protein coupled inwardly rectifying potassium (GIRK) currents in rat vlPAG slices, and by inhibition of cAMP accumulation in HEK293 cells expressing NOP receptors or co-expressing NOP and MOP receptors.Key findingsIn vlPAG neurons, [Tyr10]N/OFQ(1-11), like N/OFQ, induced GIRK currents through NOP receptors. It was less potent (EC50: 8.98 μM) but equi-efficacious as N/OFQ. [Tyr10]N/OFQ(1-11) displayed different pharmacological profiles as (+)-5a Compound, and was effective in both (+)-5a Compound-sensitive and -insensitive neurons. In NOP-expressing HEK293 cells and NOP- and MOP-co-expressing cells, [Tyr10]N/OFQ(1-11) displayed similar concentration–response curves in decreasing cAMP accumulation.Significance[Tyr10]N/OFQ(1-11) is an NOP full agonist and less potent than N/OFQ. However, it can neither reveal the functional heterogeneity of NOP receptors in vlPAG neurons nor differentiate heteromeric NOP–MOP and homomeric NOP receptors.  相似文献   

9.
Degradation of 125I-labelled HDL ([125I]HDL) was measured in isolated rat hepatocytes that had been preincubated with [125I]HDL and then reincubated in fresh medium without [125I]HDL. About 5 % of the [125I]HDL associated with the cells in advance were degraded per hour at 37 °C. This in vitro degradation was inhibited about 50% by lysosomal inhibitors such as chloroquine, ammonia and leupeptin. Depolymerization of microtubuli by colchicine inhibited the degradation of [125I]HDL to about 65–75 % of the control cells. Cytochalasin B (CB), a destabilizer of microfilaments, had a less marked effect on the degradation in vitro. Degradation of [125I]HDL associated with cells in vivo after intravenous injection was also studied in isolated cells. About 8.5% of the [125I]HDL associated with the cells in vivo were degraded per hour in the isolated cells. The effects of ammonia, chloroquine, leupeptin and colchicine on HDL degradation were similar for [125I]HDL taken up in vivo and in vitro. Subcellular fractionation by centrifugation in sucrose gradients indicated that [125I]HDL associated with hepatocytes in vivo are primarily accumulated in lysosomes. [125I]HDL associated with the cells in vitro are located in organelles whose distribution coincides with that of 5′-nucleotidase. These organelles may be endocytic vesicles. It is concluded that the internalization of [125I]HDL in rat hepatocytes is relatively slow. The intracellular degradation of the apoproteins of HDL is at least partly lysosomal.  相似文献   

10.
The interaction of normal and acute-phase high-density lipoproteins of the subclass 3 (N-HDL3 and AP-HDL3) with human neutrophils and the accompanying degradation of HDL3 apolipoproteins have been studied in vitro. The chemical composition of normal and acute-phase HDL3 was similar except that serum amyloid A protein (apo-SAA) was a major apolipoprotein in AP-HDL3 (approx. 30% of total apolipoproteins). 125I-labelled AP-HDL3 was degraded 5-10 times faster than 125I-labelled N-HDL3 during incubation with neutrophils or neutrophil-conditioned medium. Apo-SAA, like apolipoprotein A-II (apo-A-II), was more susceptible than apolipoprotein A-I (apo-A-I) to the action of proteases released from the cells. The amounts of cell-associated AP-HDL3 apolipoproteins at saturation were up to 2.8 times greater than N-HDL3 apolipoproteins; while apo-A-I was the major cell-associated apolipoprotein when N-HDL3 was bound, apo-SAA constituted 80% of the apolipoproteins bound in the case of AP-HDL3. The associated intact apo-SAA was mostly surface-bound as it was accessible to the action of exogenous trypsin. alpha 1-Antitrypsin-resistant (alpha 1-AT-resistant) cellular degradation of AP-HDL3 apolipoproteins also occurred; experiments in which pulse-chase labelling was performed or lysosomotropic agents were used indicated that insignificant intracellular degradation occurred which points to the involvement of cell-surface proteases in this degradation.  相似文献   

11.
[Tyr6]‐γ2‐MSH(6–12) with a short effecting time of about 20 min is one of the most potent rMrgC receptor agonists. To possibly increase its potency and metabolic stability, a series of analogues were prepared by replacing the Tyr6 residue with the non‐canonical amino acids 3‐(1‐naphtyl)‐L ‐alanine, 4‐fluoro‐L ‐phenylalanine, 4‐methoxy‐L ‐phenylalanine and 3‐nitro‐L ‐tyrosine. Dose‐dependent nociceptive assays performed in conscious rats by intrathecal injection of the MSH peptides showed [Tyr6]‐γ2‐MSH(6–12) hyperalgesic effects at low doses (5–20 nmol) and analgesia at high doses (100–200 nmol). This analgesic activity is fully reversed by the kyotorphin receptor‐specific antagonist Leu–Arg. For the two analogues containing in position 6, 4‐fluoro‐L ‐phenylalanine and 3‐nitro‐L ‐tyrosine, a hyperalgesic activity was not observed, while the 3‐(1‐naphtyl)‐L ‐alanine analogue at 10 nmol dose was found to induce hyperalgesia at a potency very similar to γ2‐MSH(6–12), but with longer duration of the effect. Finally, the 4‐methoxy‐L ‐phenylalanine analogue (0.5 nmol) showed greatly improved hyperalgesic activity and prolonged effects compared to the parent [Tyr6]‐γ2‐MSH(6–12) compound. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Native insulin inhibits the binding and degradation of 125I-labelled insulin in parallel. Half-maximal inhibition of degradation occurs with 10nm-insulin, a hormone concentration sufficient to saturate the insulin receptor. The proportion of bound hormone that is degraded increases as the insulin concentration is increased, suggesting that low-affinity uptake is functionally related to degradation. Since only a small fraction (approx. 10%) of the overall degradation occurs at the plasma membrane, or in the extracellular medium, translocation of bound hormone into the cell is the predominant mechanism mediating the degradation of insulin. In the presence of 0.6nm-insulin, a concentration at which most cell-associated hormone is receptor-bound, chloroquine increases the amount of 125I-labelled insulin retained by hepatocytes. However, chloroquine increases the retention of degradation products of insulin in incubations containing sufficient hormone (6nm) to saturate the receptor and permit occupancy of low-affinity sites. Glucagon does not compete for the interaction of 125I-labelled insulin (1nm) with the insulin receptor. In contrast, 20μm-glucagon inhibits 75% of the uptake of insulin (0.1μm) by low-affinity sites. A fraction of the cell-bound radioactivity is not intact insulin throughout a 90min association reaction at 37°C. During dissociation, fragments of 125I-labelled insulin are released to the medium more rapidly than is intact hormone. The production and transient retention of degradation products of the hormone complicates the characterization of the insulin receptor by equilibrium or kinetic methods of assay. It is proposed that insulin degradation occurs by receptor- and non-receptor-mediated pathways. The latter may be related to the action of glutathione–insulin transhydrogenase, with which both insulin and glucagon interact.  相似文献   

13.
1. A new method is described for labelling proteins to high specific radioactivities with 125I. The protein is treated with a 125I-labelled acylating agent, iodinated 3-(4-hydroxyphenyl)propionic acid N-hydroxysuccinimide ester, which reacts with free amino groups in the protein molecule to attach the 125I-labelled groups by amide bonds. 2. Three protein hormones have been labelled by this method, human growth hormone, human thyroid-stimulating hormone and human luteinizing hormone. Specific radioactivities of up to 170, 120 and 55μCi/μg respectively have been obtained for these hormones. 3. The immunoreactivity of these labelled hormones has been investigated by using a radioimmunoassay system specific for each hormone. These preparations have also been compared with and found to be equal or superior to labelled hormones prepared by chemical substitution of 125I into tyrosine residues of the proteins by using the chloramine-t-oxidation procedure. 4. With some antisera the immunoreactivity of the antigen was diminished by the introduction of a single I atom into the tyrosyl groups, whereas antigen containing a single 125I-labelled 3-(4-hydroxyphenyl)propionamide group showed the same immunoreactivity as the unmodified antigen.  相似文献   

14.
An analogue of human melanin-concentrating hormone (MCH) suitable for radioiodination was designed in which Tyr13 and Val19 of the natural peptide were replaced by phenylalanyl and tyrosyl residues: [Phe13, Tyr19] -MCH. The peptide was synthesized by the continuous-flow solid-phase methodology using Fmocstrategy and Polyhipe PA 500 and PEG-PS resins. The linear MCH peptides with either acetamidomethyl-protected or free cysteinyl residues were purified to homogeneity and cyclized by iodine oxidation, yielding the final product with the correct molecular weight of 2434.61. Radioiodination of the C-terminal tyrosine was carried out enzymatically using solid-phase bound glucose oxidase/lactoperoxidase, followed by purification on a reversed-phase mini-column and by high-pressure liquid chromatography. The resulting [125I]-[Phe13, Tyr19]-MCH tracer was the first radiolabelled MCH peptide suitable for radioreceptor assay: saturation binding analysis using mouse G4F-7 melanoma cells demonstrated the presence of 1090 MCH receptors per cell. The dissociation constant (KD ) was 1.18 × 10?10 M, indicating high-affinity MCH receptors on these cells. MCH receptors were also found in other cell lines such as mouse B16-F1 and G4F and human RE melanoma cells as well as in PC12 and COS-7 cells. Competition binding analyses with a number of other peptides such as α-MSH, neuropeptide Y, substance P and pituitary adenylate cyclase activating peptide, demonstrated that the binding to the MCH receptor is specific. Atrial natriuretic factor was found to be a weak competitor of MCH, indicating topological similarities between MCH and ANF when interacting with MCH receptors.  相似文献   

15.
Summary Previous studies have shown that somatostatin modulates angiotensin-induced aldosterone secretion by adrenal glomerulosa cells. This effect is mediated through specific receptors which do not show any preference for somatostatin-14 (S14) or the N-extended form somatostatin-28 (S28). The study of the distribution of 125I-Tyr [Tyr0, DTrp8] S14-and 125I-Tyr[Leu8, DTrp22, Tyr25] S28-binding in frozen sections of the rat adrenal by autoradiography indicated that both peptides bind to similar loci. High concentrations of binding sites were observed in the zona glomerulosa, and low concentrations were detected in the medulla. At the ultrastructural level, immunocytochemistry after cryoultramicrotomy revealed endogenous S14-and S28-like immunoreactive material in zona glomerulosa and in medulla. In glomerulosa cells, immunoreactive material was localized at the plasma membrane level, in the cytoplasmic matrix, in the mitochondria, and in the nucleus. S14-and S28-like materials were detected in both epinephrine and norepinephrine-storing cells of the adrenal medulla. In these cells, the distribution of either immunoreactive product was similar; it was observed in cytoplasmic matrix, secretory granules and nucleus, but not at the plasma membrane level. In situ hybridization does not reveal somatostatin mRNA in zona glomerulosa or medulla. These results demonstrate that S14 and S28 bind to, and are taken up by zona glomerulosa and adrenal medullary cells, but are not produced by these cells.  相似文献   

16.
We have investigated the binding and internalization of α2-macroglobulin and serum albumin by human placental syncytiotrophoblast cells in vitro. The time course (obtained at 4°C) of α2-macroglobulin binding indicated that an equilibrium was reached after 4 h. The binding of 125I-labelled α2-macroglobulin to syncytiotrophoblast cells was competitively reduced in the presence of excess unlabelled α2-macroglobulin. When the concentration-dependence of binding was examined over a wide concentration range, non-linear regression analysis yielded a Kd of 6.4 nM. In the case of albumin, binding was weak and ligand dissociated from the cell surface during aqueous washing making it impractical to analyze the binding reaction. In other experiments, syncytiotrophoblast cells were incubated with 125I-labelled α2-macroglobulin at 37°C. Under these conditions, trypsin-resistant cell-associated radioactivity increased with time consistent with ligand internalization. 125I-Labelled-ligand was internalized with a t1/2 of about 5 min. After a lag period some radioactivity was released back into the incubation medium. When measured at times up to 210 min, this was found to consist of mostly TCA-precipitable material that had been lost from the cell surface. However, when the incubation was extended to 24 h, almost 15% of the initial cell-associated radioactivity was released to the extracellular medium as TCA-soluble material, consistent with a slow rate of ligand degradation. The specific binding of 65Zn-labelled α2M was similar to that of the 125I-labelled ligand and trypsin-resistance measurements provided evidence of α2M-mediated 65Zn uptake. These results support a role for syncytiotrophoblast in the metabolism of α2-macroglobulin during pregnancy and are also consistent with a role for α2-macroglobulin in the maternal-fetal transport of zinc. J. Cell. Biochem. 68:427–435, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The parathyrin receptor in renal cortex has been investigated by studying the binding of 125I-labelled parathyrin, or of unlabelled parathyrin detected with 125I-labelled antibodies, to a partially purified plasma membrane fraction. The kinetics of hormone uptake demonstrated a biphasic response in both systems at 22 °C but this phenomenon was not detectable at 37 °C. Specific displacement of lactoperoxidase labelled 125I-labelled parathyrin occurred with 8 ng unlabelled bovine parathyrin. The apparent affinity constant was 2.3 · 108M?1 and the apparent binding capacity of the membranes 1.25 pmol/mg protein. Using the labelled antibody technique the receptor showed maximal binding at pH 7.0–7.5. As little as 80 pg bovine parathyrin produced a significant increase in binding of labelled anti-bovine parathyrin antibody and saturation of binding sites was demonstrated at 2.5 pmol/mg protein. Oxidized hormone showed undetectable binding. Treatment of membranes with phospholipases A or D, or Trypsin greatly reduced subsequent hormone binding. Prior incubation of membranes with 1–34 synthetic parathyrin decreased the binding of intact hormone whereas gastrin, insulin and glueagon had no effect. Growth hormone and calcitonin slightly increased parathyrin binding.  相似文献   

18.
Lambda bacteriophage containing yeast tyrosine transfer RNA genes were prepared by molecular recombination. These phage were identified by hybridization of 125I-labeled yeast tRNATyr to plaques from lambda-yeast recombinant phage pools. The cloned yeast EcoRI fragments that hybridize to 125I-labeled tRNATyr were compared in size with the fragments in total yeast DNA that hybridize to the same probe. These comparisons indicate that seven of the eight different tRNATyr genes have been isolated. Unambiguous evidence that these seven fragments contain tRNATyr coding regions was obtained by showing that they hybridize to aminoacylated [3H]Tyr-tRNATyr. Only one of the fragments hybridizes to 32P-labeled total yeast tRNA in the presence of competing unlabeled tRNATyr; the tRNATyr genes, therefore, are not predominantly organized into heteroclusters of tRNA genes.  相似文献   

19.
125I-Labelled asialo-fetuin was taken up by isolated rat hepatocytes by a saturable process. Half maximum uptake was seen at about 3 · 10?8M asialo-fetuin. Non-parenchymal liver cells did not take up asialo-fetuin in vitro. Rate of uptake of asialo-fetuin exceeded rate of degradation at all concentrations of asialo-fetuin tested. Asialo-fetuin consequently accumulated in the cells until the extracellular supply was exhausted. Asialo-fetuin degradation could be studied without concurrent uptake by incubating cells, previously exposed to asialo-fetuin, in asialo-fetuin-free medium. Degradation, as evidenced by increase in acid-soluble radioactivity, was inhibited by NH4Cl and chloroquine. The change with time in the intracellular distribution pattern of radioactivity in cells that had been exposed to 125I-labelled asialo-fetuin for 10 min was examined by means of differential centrifugation. Initially, the radioactivity was found mostly in the microsomal fraction. 60 min after the exposure to labelled protein, the distribution pattern of radioactivity resembled that of the lysosomal enzyme β-acetylglucosaminidase. The possibility that asialo-fetuin digestion takes place in lysosomes is discussed.  相似文献   

20.
Reactions between purified plasminogen and streptokinase, labelled with 131I and 125I respectively, were investigated by polyacrylamide-gel discontinuous electrophoresis. A molecular complex consisting of both 131I-labelled plasminogen and 125I-labelled streptokinase migrated between plasminogen and streptokinase. This complex contained bovine plasminogen activator activity. The relative quantities of 131I-labelled plasminogen and 125I-labelled streptokinase in this complex were markedly affected by reaction conditions. A fragment that retained 50% or more of the parent activator activity was released from the complex after exposure to mercaptoethanol. This subcomponent had an estimated molecular weight of 70000, and contained both 131I-labelled plasminogen and 125I-labelled streptokinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号