首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 175 毫秒
1.
The effects of acetylcholine and sodium nitroprusside on the activity of cGMP-dependent protein kinase were studied in the perfused rat heart. Acetylcholine produced a dose-dependent increase in cGMP levels and cGMP-dependent protein kinase activity, and reduced the force of contraction. Both acetylcholine and sodium nitroprusside produced rapid increases in cardiac cGMP, with nitroprusside being the more potent agent. Only acetylcholine, however, raised the activity ratio of the cGMP-dependent protein kinase and decreased the force of contraction. Whereas acetylcholine and nitroprusside were slightly additive in their effects on total cGMP levels, the increase in the activity ratio of the cGMP-dependent protein kinase and the decrease in the force of contraction produced by acetylcholine were unchanged by nitroprusside. The results suggest that the cGMP produced by acetylcholine, but not nitroprusside, was coupled to protein kinase activation in this tissue.  相似文献   

2.
The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, contractile force, and glycogen metabolism were investigated in the perfused rat heart. While both agents produced time- and concentration-dependent increases in cyclic GMP, only acetylcholine significantly decreased contractile force. Neither agent altered the basal cyclic AMP concentration, cyclic AMP-dependent protein kinase activity ratio, or phosphorylase activity. When dosages were adjusted to give approximately equal increases in cyclic GMP, acetylcholine attenuated the effect of epinephrine on contractile force and glycogen phosphorylase activity while nitroprusside did not antagonize the action of the beta-adrenergic agent on either parameter. The data suggest that increased cardiac cyclic GMP is not sufficient to completely explain the action of acetylcholine on either contractile force or its antagonism of epinephrine-induced increases in force or glycogen phosphorylase activity.  相似文献   

3.
The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, contractile force, and glycogen metabolism were investigated in the perfused rat heart. While both agents produced time- and concentration-dependent increases in cyclic GMP, only acetylcholine significantly decreased contractile force. Neither agent altered the basal cyclic AMP concentration, cyclic AMP-dependent protein kinase activity ratio, or phosphorylase activity. When dosages were adjusted to give approximately equal increases in cyclic GMP, acetylcholine attenuated the effect of epinephrine on contractile force and glycogen phosphorylase activity while nitroprusside did not antagonize the action of the beta-adrenergic agent on either parameter. The data suggest that increased cardiac cyclic GMP is not sufficient to completely explain the action of acetylcholine on either contractile force or its antagonism of epinephrine-induced increases in force or glycogen phosphorylase activity.  相似文献   

4.
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is subject to regulation by a variety of agents. Previous workers have found that cyclic AMP-dependent protein kinase and calcium-stimulated protein kinases activate tyrosine hydroxylase. We wanted to determine whether cyclic GMP might also be involved in the regulation of tyrosine hydroxylase activity. We found that treatment of rat PC12 cells with sodium nitroprusside (an activator of guanylate cyclase), 8-bromocyclic GMP, forskolin (an activator of adenylate cyclase), and 8-bromocyclic AMP all produced an increase in tyrosine hydroxylase activity measured in vitro or an increased conversion of [14C]tyrosine to labeled catecholamine in situ. Sodium nitroprusside also increased the relative synthesis of cyclic GMP in these cells. In the presence of MgATP, both cyclic GMP and cyclic AMP increased tyrosine hydroxylase activity in PC12 cell extracts. The heat-stable cyclic AMP-dependent protein kinase inhibitor failed to attenuate the activation produced in the presence of cyclic GMP. It eliminated the activation produced in the presence of cyclic AMP. Sodium nitroprusside also increased tyrosine hydroxylase activity in vitro in rat corpus striatal synaptosomes and bovine adrenal chromaffin cells. In all cases, the cyclic AMP-dependent activation of tyrosine hydroxylase was greater than that of the cyclic GMP-dependent second messenger system. These results indicate that both cyclic GMP and cyclic AMP and their cognate protein kinases activate tyrosine hydroxylase activity in PC12 cells.  相似文献   

5.
Synthetic atriopeptin II, an atrial natriuretic factor with potent vasodilatory effects, was studied in isolated strips of rat thoracic aorta to determine its actions on contractility, cyclic nucleotide concentrations and endogenous activity of cyclic nucleotide-dependent protein kinases. Atriopeptin II was found to relax aortic strips precontracted with 0.3 microM norepinephrine whether or not the endothelial layer was present. Relaxation to atriopeptin II was closely correlated in a time- and concentration-dependent manner with increases in cyclic GMP concentrations and activation of cyclic GMP-dependent protein kinase (cyclic GMP-kinase). The threshold concentration for all three effects was 1 nM. Atriopeptin II (10 nM for 10 min) produced an 80% relaxation, an 8-fold increase in cyclic GMP concentrations and a 2-fold increase in cyclic GMP-kinase activity ratios. Atriopeptin II did not significantly alter cyclic AMP concentrations or cyclic AMP-dependent protein kinase activity. These data suggest that cyclic GMP and cyclic GMP-kinase may mediate vascular relaxation to a new class of vasoactive agents, the atrial natriuretic factors. Similar effects have been observed with the nitrovasodilator, sodium nitroprusside, and the endothelium-dependent vasodilator, acetylcholine. Therefore, a common biochemical mechanism of action that includes cyclic GMP accumulation and activation of cyclic GMP-kinase may be involved in vascular relaxation to nitrovasodilators, endothelium-dependent vasodilators and atrial natriuretic factors.  相似文献   

6.
Cyclic GMP-dependent protein kinase was purified from foetal calf hearts, and its general properties and subunit structure were studied. The enzyme was purified over 900-fold from the heart extract by pH 5.3-isoelectric precipitation, DEAE-cellulose chromatography, Sephadex G-200 filtration and hydroxyapatite treatment. The purified myocardial enzyme, free from cyclic AMP-dependent protein kinase contamination, exhibited an absolute requirement of stimulatory modulator (or crude modulator containing the stimulatory modulator component) for its cyclic GMP-stimulated activity. Inhibitory modulator (protein inhibitor) of cyclic AMP-dependent protein kinase could not stimulate nor inhibit the cyclic GMP target enzyme. The enzyme had Ka values of 0.013, 0.033 and 3.0 micronM for 8-bromo cyclic GMP, cyclic GMP and cyclic AMP respectively. The cyclic GMP-dependent enzyme required Mg2+ and Co2+ for its activity, with optimal concentrations of about 30 and 0.5 mM respectively. The pH optimum for the enzyme activity ranged from 6 to 9. Histones were generally effective substrate proteins. The enzyme exhibited a greater affinity for histones than did the cyclic AMP-dependent class of protein kinase. The holoenzyme (apparent mol.wt. 150 000) of the myocardial cyclic GMP-dependent protein kinase was dissociated into a cyclic GMP-independent catalytic subunit (apparent mol.wt. 60 000) by cyclic GMP and histone. The catalytic subunit required the stimulatory modulator for its activity, as in the case of the holoenzyme in the presence of cyclic GMP.  相似文献   

7.
Initial and transient increases in the basal levels of cyclic GMP in the heart were noted prior to cardiac hypertrophy in rats administered isoproterenol. Increased levels of cyclic AMP-phosphodiesterase (in both the soluble and particulate fractions) and stimulatory modulator of cyclic GMP-dependent protein kinase, however, were associated with the progression, or the state, of cardiomegaly, with their levels returning to the control values upon regression of the hypertrophy. The levels of cyclic GMP phosphodiesterase in the soluble fraction were lower, whereas those in the particulate fraction were higher, in the hypertrophied heart than the control. In cardiac hypertrophy, the maximal activity ratio(--cyclic AMP/+cyclic AMP) of cyclic AMP-dependent protein kinase in the incubated minced heart caused by isoproterenol was lower, whereas the concentration of isoproterenol required to increase the activity ratio half-maximally was higher than controls; the reduced responsiveness to the drug, however, was reversed when the hypertrophy regressed. These observations, taken collectively, appear to suggest that the desensitization of the beta-adrenergic mechanism seen in the cardiac hypertrophy produced by repeated administration of isoproterenol is associated with adaptive modifications in certain parameters of the cyclic nucleotide systems.  相似文献   

8.
Possible involvement of cyclic GMP-dependent and cyclic AMP-dependent protein kinases, protein kinase modulators and cyclic nucleotide phosphodiesterases in functions of vascular tissues were investigated in the dog. All of the above activities, localized in the smooth muscle-rich inner layer of the blood vessels, were found to be higher in the arteries than in the veins. The peripheral arteries were disproportionately richer in cyclic GMP-dependent protein kinase (as indicated by high ratios of cyclic GMP-dependent to cyclic AMP-dependent protein kinase) than were the veins, with the exception of the pulmonary artery, an atypical arterial tissue exposed to low blood pressure. Interestingly, the protein kinase ratio for the aorta, an artery with no significant role in blood pressure regulation, was not higher than that for the vena cava. Creation of femoral arteriovenous fistulae in the dogs led to preferential reductions in the cyclic GMP-dependent enzyme activity both in the proximal and distal arteries, whereas it was elevated in the stressed vein distal to the anastomotic site. The cyclic GMP-dependent enzyme was preferentially reduced in the saphenous artery distal to occlusion. Changes in the cyclic GMP-dependent enzyme activity appeared to precede gross atrophy or hypertrophy of the vessels. It is suggested that the vascular cyclic GMP-dependent protein kinase may be closely related to peripheral resistance and its regulation.  相似文献   

9.
Myosin light chain phosphorylation in intact rat thoracic aorta was elevated during contraction induced by 0.3 microM norepinephrine, but was not maintained. Addition of 0.5 microM sodium nitroprusside to norepinephrine treated rat aorta strips led to elevation of cyclic GMP levels, relaxation of tension, and dephosphorylation of myosin light chain. Depletion of extracellular calcium or addition of calmodulin antagonists trifluoperazine and W7 diminished the contraction and phosphorylation of myosin light chain by norepinephrine, but did not prevent dephosphorylation by sodium nitroprusside or the elevated levels of cyclic GMP. Isoproterenol, 8-bromo cyclic GMP, and dibutyryl cyclic AMP all caused dephosphorylation of myosin light chain and induced relaxation during the period of development of tone. Eight other proteins had increased phosphorylation following norepinephrine treatment and one protein had less phosphorylation. The different proteins phosphorylated by norepinephrine showed varying degrees of sensitivity to Ca2+-free solution and to the calmodulin antagonists. The pattern of protein phosphorylation caused by sodium nitroprusside was best mimicked by 8-bromo cyclic GMP, rather than isoproterenol and dibutyryl cyclic AMP. These proteins were, generally, unaffected by Ca2+-free solution and the calmodulin antagonists. The present observations support the hypothesis that vasodilators inhibit tone development through myosin light chain dephosphorylation. Furthermore, the nitrovasodilators act through elevation of cyclic GMP and phosphorylation of proteins by cyclic GMP-dependent protein kinase.  相似文献   

10.
Cyclic GMP-dependent protein kinase has been purified to apparent homogeneity from bovine adrenal cortex and its presence in the rat adrenal cortex has been demonstrated. Sucrose density sedimentation studies indicated that the Mr of the enzyme was 145,000. This protein was composed to two identical subunits each with Mr of 75,000. The enzyme molecule was asymmetric with a frictional coefficient of 1.54, Stokes radius of 53.5 Å and a sedimentation coefficient of 6.5. The enzyme self-phosphorylated and the stoichiometry of cyclic GMP binding was two molecules per holoenzyme. Calmodulin or troponin C markedly stimulated the apparent maximal velocity of cyclic GMP-dependent protein kinase without affecting its basal activity. This effect of protein modulators was independent of calcium. Sucrose density gradient studies indicated that the stimulatory effect of calmodulin was due to its interaction with histones. An interaction of calmodulin with the enzyme was not observed. The steroidogenic potential of cyclic GMP and its analogs correlated closely with their ability to stimulate cyclic GMP-dependent protein kinase; the order of potency for both activities was 8-bromocylic GMP > cyclic GMP > N2-monobutyryl cyclic GMP > N2, O2-dibutyryl cyclic GMP. In each case, calmodulin enhanced the cyclic GMP-dependent protein kinase activity for histone phosphorylation. These results indicate that although cyclic GMP is the primary regulator of cyclic GMP-dependent protein kinase, other modulator proteins such as calmodulin could act as additional regulators of the phosphorylation of substrate proteins. In addition, the demonstration of cyclic GMP-dependent protein kinase in rat adrenal glands, and the results with cyclic GMP and its analogs relating to their activation of protein kinase and steroidogenesis are consistant with the concept that cyclic GMP is one of the mediators of adrenal steroidogenesis.  相似文献   

11.
Initial and transient increases in the basal levels of cyclic GMP in the heart were noted prior to cardiac hypertrophy in rats administered isoprotenol. Increased levels of cyclic AMP-phosphodiesterase (in both the soluble and particulate fractions) and stimulatory modulator of cyclic GMP-dependent protein kinase, however, were associated with the progression, or the state, of cardiomegaly, with their levels returning to the control values upon regression of the hypertrophy. The levels of cyclic GMP phosphodiesterase in the soluble fraction were lower, whereas those in the particulate fraction were higher, in the hypertrophied heart than the control. In cardiac hypertrophy, the maximal activity ratio (?cyclic AMP/+cyclic AMP) of cyclic AMP-dependent protein kinase in the incubated minced heart caused by isoproterenol was lower, whereas the concentration of isoproterenol required to increase the activit ratio half-maximally was higher than controls; The reduced responsiveness to the drug, however, was reversed when the hypertrophy regressed. These observations, taken collectively, appear to suggest that the desensitization of the β-adrenergic mechanism seen in the cardiac hypertrophy produced by repeated administration of isoproterenol is associated with adaptive modifications in certain parameters of the cyclic nucleotide systems.  相似文献   

12.
Possible involvement of cyclic GMP-dependent and cyclic AMP-dependent protein kinases, protein kinase modulators and cyclic nucleotide phosphodiesterases in functions of vascular tissues were investigated in the dog. All of the above activities, localized in the smooth muscle-rich inner layer of the blood vessels, were found to be higher in the arteries than in the veins. The peripheral arteries were disproportionately richer in cyclic GMP-dependent protein kinase (as indicated by high ratios of cyclic GMP-dependent to cyclic AMP-dependent protein kinase) than were the veins, with the exception of the pulmonary artery, an atypical arterial tissue exposed to low blood pressure. Interestingly, the protein kinase ratio for the aorta, an artery with no significant role in blood pressure regulation, was not higher than that for the vena cava. Creation of femoral arteriovenous fistulae in the dogs led to preferential reductions in the cyclic GMP-dependent enzyme activity both in the proximal and distal arteries, whereas it was elevated in the stressed vein distal to the anastomotic site. The cyclic GMP-dependent enzyme was preferentially reduced in the saphenous artery distal to occlusion. Changes in the cyclic GMP-dependent enzyme activity appeared to precede gross atrophy or hypertrophy of the vessels. It is suggested that the vascular cyclic GMP-dependent protein kinase may be closely related to peripheral resistance and its regulation.  相似文献   

13.
Guanosine 3',5'-monophosphate-dependent protein kinase (cyclic GMP-dependent protein kinase) and adenosine 3',5'-monophosphate-dependent protein kinase (cyclic AMP-dependent protein kinase) exhibited a high degree of cyclic nucleotide specificity when hormone-sensitive triacylglycerol lipase, phosphorylase kinase, and cardiac troponin were used as substrates. The concentration of cyclic GMP required to activate half-maximally cyclic dependent protein kinase was 1000- to 100-fold less than that of cyclic AMP with these substrates. The opposite was true with cyclic AMP-dependent protein kinase where 1000- to 100-fold less cyclic AMP than cyclic GMP was required for half-maximal enzyme activation. This contrasts with the lower degree of cyclic nucleotide specificity of cyclic GMP-dependent protein kinase of 25-fold when histone H2b was used as a substrate for phosphorylation. Cyclic IMP resembled cyclic AMP in effectiveness in stimulating cyclic GMP-dependent protein kinase but was intermediate between cyclic AMP and cyclic GMP in stimulating cyclic AMP-dependent protein kinase. The effect of cyclic IMP on cyclic GMP-dependent protein kinase was confirmed in studies of autophosphorylation of cyclic GMP-dependent protein kinase where both cyclic AMP and cyclic IMP enhanced autophosphorylation. The high degree of cyclic nucleotide specificity observed suggests that cyclic AMP and cyclic GMP activate only their specific kinase and that crossover to the opposite kinase is unlikely to occur at reported cellular concentrations of cyclic nucleotides.  相似文献   

14.
This study examined the binding of both cyclic AMP and cyclic GMP to receptor proteins in particulate and soluble subfractions of renal cortical homogenates from the golden hamster. The binding of both nucleotides was compared to subsequent effects of both nucleotides on the phosphorylation of histone from identical fractions. Cyclic AMP binding and cyclic AMP-dependent protein kinase activity predominated in the cytosol, with some binding and enzyme activity also detected in particulate fractions. Cyclic GMP and cyclic GMP-dependent protein kinase activity could only be demonstrated in cytosolic fractions and represented only 20-30% of cyclic AMP-dependent activity in this fraction. Binding of both nucleotides was highly specific, however, cyclic AMP showed some interaction with cyclic GMP binding. Evidence suggesting that each nucleotide interacts with a specific protein kinase was as follows: both the binding activity of the cyclic nucleotides and their combined protein kinase activity show additivity; cyclic AMP and cyclic GMP binding activity could be separated on sucrose gradients; cyclic AMP and cyclic GMP protein kinase activity could be separated with Sephadex G-100 chromatography, after preincubation of homogenate supernatants with either cyclic AMP or cyclic GMP. The results demonstrate the presence of both cyclic AMP- and cyclic GMP-dependent protein kinase in renal cortex.  相似文献   

15.
Guanosine 3′,5′-monophosphate-dependent protein kinase (cyclic GMP-dependent protein kinase) and adenosine 3′,5′-monophosphate-dependent protein kinase (cyclic AMP-dependent protein kinase) exhibited a high degree of cyclic nucleotide specificity when hormone-sensitive triacylglycerol lipase, phosphorylase kinase, and cardiac troponin were used as substrates. The concentration of cyclic GMP required to activate half-maximally cyclic dependent protein kinase was 1000- to 100-folds less than that of cylic AMP with these substrates. The opposite was true with cyclic AMP-dependent protein kinase where 1000- to 100-fold less cyclic GMP was required for half-maximal enzyme activation. This contrasts with the lower degree of cyclic nucleotide specificity of cyclic GMP-dependent protein kinase of 25-fold when histone H2b was used as a substrate for phosphorylation. Cyclic IMP resembled cyclic AMP in effectiveness in stimulating cyclic GMP-dependent protein kinase but was intermediate between cyclic AMP and cyclic GMP in stimulating cyclic. AMP-dependent protein kinase. The effect of cyclic IMP on cyclic GMP-dependent protein kinase was confirmed in studies of autophosphorylation of cyclic GMP-dependent protein kinase where both cyclic AMP and cyclic IMP enhanced autophophorylation. The high degree of cyclic nucleotide specificity observed suggests that cyclic AMP and cyclic GMP activate only their specific kinase and that crossover to the opposite kinase is unlikely to occur at reported cellular concentrations of cyclic nucleotides.  相似文献   

16.
Guanosine 3':5'-monophosphate (cyclic GMP)-dependent protein kinase was purified from the guinea pig fetal lung, a tissue shown to be the richest in this enzyme in all mammalian sources examined, and its general properties studied. The enzyme was purified 150-fold from crude extract by steps of pH 5.4 isoelectric precipitation, Sephadex G-200 filtration, hydroxylapatite treatment and DEAE-cellulose chromatography. The purified enzyme, free from contamination with adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase, had a specific activity at least equivalent to 600-fold purification of the enzyme from the adult lung. The pulmonary enzyme exhibited an absolute requirement of protein kinase modulator (prepared from various mammalian tissues with an exception of skeletal muscle) for its activity. Inhibitor protein of cyclic AMP-dependent protein kinase purified from rabbit skeletal muscle could not stimulate nor inhibit the cyclic GMP target enzyme, indicating the factors from mammalian sources regulating the two classes of protein kinases may not be the same. The enzyme had Ka values of 1.3 times 10(-8) and 3.3 times 10(-8) M for 8-bromo cyclic GMP and cyclic GMP, respectively, compared to 3.0 times 10(-6) M for cyclic AMP. Cyclic GMP lowered the Km of the enzyme for ATP from 6.3 times 10(-5) M in its absence to 2.1 times 10(-5) M in its presence, accompanied by an approximate doubling of the Vmax. The molecular weight of the enzyme (assayed by its catalytic and cyclic GMP-binding abilities) was estimated to be 123,000, corresponding to a sedimendation coefficient of 7.06 S, by means of sucrose density gradient ultracentrifugation. The cyclic GMP-dependent enzyme required Mg2+ and Co2+ for its activity with optimal concentrations of about 30 and 0.7 mM, respectively. The maximal activity seen in the presence of Mg2+, however, was nearly twice as high as that seen in the presence of Co2+. Histones were generally effective substrates for the enzyme, whereas protamine, casein, phosvitin, phosphorylase kinase, and activator protein of phosphodiesterase were not. The cyclic GMP-dependent enzyme exhibited a greater affinity for histones than did the cyclic AMP-dependent enzyme in the presence of Mg2+.  相似文献   

17.
Cyclic nucleotide-dependent protein kinases of the rat pancreas   总被引:2,自引:0,他引:2  
A cyclic GMP-dependent protein kinase, which catalyzes the phosphorylation of histones and protamine by ATP, was present together with a cyclic AMP-dependent protein kinase and a readily active protein kinase in the rat pancreas. These three protein kinases were separated by chromatography on DEAE-cellulose. The cyclic GMP-dependent protein kinase was relatively cationic and fragile. Upon activation by cyclic GMP, this kinase dissociated into a light catalytic subunit and a somewhat heavier cyclic GMP binding subunit. A crude 27,000 × g pancreas supernatant had two apparent Ka values for cyclic GMP of 2.10?8 M and 3.10?7 M. The possible relationships between protein kinases and enzyme secretion are discussed.  相似文献   

18.
Cyclic GMP-dependent protein kinase from bovine lung and cyclic AMP-dependent protein kinase from bovine heart are inactivated by Nα-tosyl-L-lysine chloromethylketone (TLCK) in the presence of cyclic GMP and cyclic AMP, respectively. The inactivation of both protein kinases is pseudo-first order, suggesting the rate limiting step is beyond the binding of TLCK. Cyclic GMP-dependent protein kinase is inactivated less than 14 as rapidly as cyclic AMP-dependent protein kinase, although it shows a higher apparent affinity for TLCK. Cyclic AMP stimulated the rate of inactivation of cyclic AMP-dependent protein kinase 10-fold but cyclic GMP stimulated the rate of inactivation of cyclic GMP-dependent protein kinase only 1.5-fold. The rate of inactivation of cyclic GMP-dependent protein kinase by TLCK is sufficiently rapid (half-time of about 30 min at 37°C with 2 mM TLCK) to account for the effects of TLCK on cell growth observed by others.  相似文献   

19.
It has been suggested that increases in cyclic GMP levels are responsible for the negative inotropic effects of acetylcholine in the heart. This hypothesis was tested by monitoring the effects of acetylcholine and sodium nitroprusside on tension and cyclic nucleotide levels in strips of cat atrial appendage. Sodium nitroprusside markedly increased atrial cyclic GMP levels but did not decrease the twitch tension developed by the atrial strips. Low concentrations of acetylcholine, on the other hand, decreased twitch tension without increasing myocardial cyclic GMP levels. No significant change in cyclic AMP levels was observed in any of these experiments. These results are not consistent with the proposed role for cyclic GMP as the mediator of the negative inotropic effects of acetylcholine.  相似文献   

20.
Cyclic AMP dependent protein kinase has beeen identified in human skeletal muscle tissue. In crude muscle extracts the enzyme was 3--5 fold activated by cyclic AMP. The cyclic AMP-dependent activity (corresponding to the inactive holoenzyme) was completely inhibited by the heat stable inhibitor of protein kinase. Reciprocal changes of the cyclic AMP-dependent activity in skeletal muscle were observed after administration of epinephrine and insulin in vivo. Infusion of epinephrine in healthy volunteers increased the level of cyclic AMP and decreased the activity of the cyclic AMP-depenent form (i.e. the inactive form) of protein kinase. These changes were reversible after cessation of epinephrine administration. The results are consistent with an activation of protein kinase in vivo due to an epinephrine mediated increase of the concentration of cyclic AMP. I.v. injection of insulin had the opposite effect on the enzyme in skeletal muscle, leading to increased activity of the cyclic AMP-dependent form of protein kinase. Insulin had no effect on the level of cyclic AMP, but promoted a transient increase of cyclic GMP 1 min. after insulin injection. The effect by insulin on protein kinase cannot be related to the level of cyclic AMP or cyclic GMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号