首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
The distribution of traits along phylogenies bears signatures of how ecological and evolutionary processes have interacted to influence phenotypic evolution, which can be deciphered using macroevolutionary models. BBMV implements a model for the evolution of continuous characters on phylogenies that generalizes existing ones, like Brownian motion and the Ornstein‐Uhlenbeck model. In this model quantitative characters evolve under both random diffusion and a deterministic force that can be of any possible shape and strength. The model can be used to infer evolutionary scenarios that remained inaccessible so far, like directional trends, disruptive selection, and even bounded evolution. With this new tool at hand, researchers will be able to test complex hypothesis‐driven scenarios regarding trait evolution, but they will also have the possibility to estimate the shape of the adaptive landscapes in which traits evolved. Ultimately, this will provide a way to infer how ecological processes have influenced phenotypic evolution over long timescales. The BBMV package is implemented in the R statistical language and is freely available on the CRAN repository < https://CRAN.R‐project.org/package=BBMV >. All source code can also be found on < https://github.com/fcboucher/BBMV >, along with a detailed tutorial.  相似文献   

3.
Evolution is a fundamentally population level process in which variation, drift and selection produce both temporal and spatial patterns of change. Statistical model fitting is now commonly used to estimate which kind of evolutionary process best explains patterns of change through time using models like Brownian motion, stabilizing selection (Ornstein–Uhlenbeck) and directional selection on traits measured from stratigraphic sequences or on phylogenetic trees. But these models assume that the traits possessed by a species are homogeneous. Spatial processes such as dispersal, gene flow and geographical range changes can produce patterns of trait evolution that do not fit the expectations of standard models, even when evolution at the local‐population level is governed by drift or a typical OU model of selection. The basic properties of population level processes (variation, drift, selection and population size) are reviewed and the relationship between their spatial and temporal dynamics is discussed. Typical evolutionary models used in palaeontology incorporate the temporal component of these dynamics, but not the spatial. Range expansions and contractions introduce rate variability into drift processes, range expansion under a drift model can drive directional change in trait evolution, and spatial selection gradients can create spatial variation in traits that can produce long‐term directional trends and punctuation events depending on the balance between selection strength, gene flow, extirpation probability and model of speciation. Using computational modelling that spatial processes can create evolutionary outcomes that depart from basic population‐level notions from these standard macroevolutionary models.  相似文献   

4.
The shift from egg laying to live‐bearing is one of the most well‐studied transitions in evolutionary biology. Few studies, however, have assessed the effect of this transition on morphological evolution. Here, we evaluated the effect of reproductive mode on the morphological evolution of 10 traits, among 108 species of phrynosomatid lizards. We assess whether the requirement for passing shelled eggs through the pelvic girdle has led to morphological constraints in oviparous species and whether long gestation times in viviparous species have led to constraints in locomotor morphology. We fit models to the data that vary both in their tempo (strength and rate of selection) and mode of evolution (Brownian or Ornstein‐Uhlenbeck) and estimates of trait optima. We found that most traits are best fit by a generalized multipeak OU model, suggesting differing trait optima for viviparous vs. oviparous species. Additionally, rates (σ2) of both pelvic girdle and forelimb trait evolution varied with parity; viviparous species had higher rates. Hindlimb traits, however, exhibited no difference in σ2 between parity modes. In a functional context, our results suggest that the passage of shelled eggs constrains the morphology of the pelvic girdle, but we found no evidence of morphological constraint of the locomotor apparatus in viviparous species. Our results are consistent with recent lineage diversification analyses, leading to the conclusion that transitions to viviparity increase both lineage and morphological diversification.  相似文献   

5.
Comparative biologists often attempt to draw inferences about tempo and mode in evolution by comparing the fit of evolutionary models to phylogenetic comparative data consisting of a molecular phylogeny with branch lengths and trait measurements from extant taxa. These kinds of approaches ignore historical evidence for evolutionary pattern and process contained in the fossil record. In this article, we show through simulation that incorporation of fossil information dramatically improves our ability to distinguish among models of quantitative trait evolution using comparative data. We further suggest a novel Bayesian approach that allows fossil information to be integrated even when explicit phylogenetic hypotheses are lacking for extinct representatives of extant clades. By applying this approach to a comparative dataset comprising body sizes for caniform carnivorans, we show that incorporation of fossil information not only improves ancestral state estimates relative to those derived from extant taxa alone, but also results in preference of a model of evolution with trend toward large body size over alternative models such as Brownian motion or Ornstein–Uhlenbeck processes. Our approach highlights the importance of considering fossil information when making macroevolutionary inference, and provides a way to integrate the kind of sparse fossil information that is available to most evolutionary biologists.  相似文献   

6.
Environmental variation favors the evolution of phenotypic plasticity. For many species, we understand the costs and benefits of different phenotypes, but we lack a broad understanding of how plastic traits evolve across large clades. Using identical experiments conducted across North America, we examined prey responses to predator cues. We quantified five life‐history traits and the magnitude of their plasticity for 23 amphibian species/populations (spanning three families and five genera) when exposed to no cues, crushed‐egg cues, and predatory crayfish cues. Embryonic responses varied considerably among species and phylogenetic signal was common among the traits, whereas phylogenetic signal was rare for trait plasticities. Among trait‐evolution models, the Ornstein–Uhlenbeck (OU) model provided the best fit or was essentially tied with Brownian motion. Using the best fitting model, evolutionary rates for plasticities were higher than traits for three life‐history traits and lower for two. These data suggest that the evolution of life‐history traits in amphibian embryos is more constrained by a species’ position in the phylogeny than is the evolution of life history plasticities. The fact that an OU model of trait evolution was often a good fit to patterns of trait variation may indicate adaptive optima for traits and their plasticities.  相似文献   

7.
Leaf litter decomposability is an important effect trait for ecosystem functioning. However, it is unknown how this effect trait evolved through plant history as a leaf ‘afterlife’ integrator of the evolution of multiple underlying traits upon which adaptive selection must have acted. Did decomposability evolve in a Brownian fashion without any constraints? Was evolution rapid at first and then slowed? Or was there an underlying mean-reverting process that makes the evolution of extreme trait values unlikely? Here, we test the hypothesis that the evolution of decomposability has undergone certain mean-reverting forces due to strong constraints and trade-offs in the leaf traits that have afterlife effects on litter quality to decomposers. In order to test this, we examined the leaf litter decomposability and seven key leaf traits of 48 tree species in the temperate area of China and fitted them to three evolutionary models: Brownian motion model (BM), Early burst model (EB), and Ornstein-Uhlenbeck model (OU). The OU model, which does not allow unlimited trait divergence through time, was the best fit model for leaf litter decomposability and all seven leaf traits. These results support the hypothesis that neither decomposability nor the underlying traits has been able to diverge toward progressively extreme values through evolutionary time. These results have reinforced our understanding of the relationships between leaf litter decomposability and leaf traits in an evolutionary perspective and may be a helpful step toward reconstructing deep-time carbon cycling based on taxonomic composition with more confidence.  相似文献   

8.
The largest known dinosaurs weighed at least 20 million times as much as the smallest, indicating exceptional phenotypic divergence. Previous studies have focused on extreme giant sizes, tests of Cope's rule, and miniaturization on the line leading to birds. We use non‐uniform macroevolutionary models based on Ornstein–Uhlenbeck and trend processes to unify these observations, asking: what patterns of evolutionary rates, directionality and constraint explain the diversification of dinosaur body mass? We find that dinosaur evolution is constrained by attraction to discrete body size optima that undergo rare, but abrupt, evolutionary shifts. This model explains both the rarity of multi‐lineage directional trends, and the occurrence of abrupt directional excursions during the origins of groups such as tiny pygostylian birds and giant sauropods. Most expansion of trait space results from rare, constraint‐breaking innovations in just a small number of lineages. These lineages shifted rapidly into novel regions of trait space, occasionally to small sizes, but most often to large or giant sizes. As with Cenozoic mammals, intermediate body sizes were typically attained only transiently by lineages on a trajectory from small to large size. This demonstrates that bimodality in the macroevolutionary adaptive landscape for land vertebrates has existed for more than 200 million years.  相似文献   

9.
Evolutionary theory predicts that selection in distinct microhabitats generates correlations between morphological and ecological traits, and may increase both phenotypic and taxonomic diversity. However, some microhabitats exert unique selective pressures that act as a restraining force on macroevolutionary patterns of diversification. In this study, we use phylogenetic comparative methods to investigate the evolutionary outcomes of inhabiting the arboreal microhabitat in salamanders. We find that arboreality has independently evolved at least five times in Caudata and has arisen primarily from terrestrial ancestors. However, the rate of transition from arboreality back to terrestriality is 24 times higher than the converse. This suggests that macroevolutionary trends in microhabitat use tend toward terrestriality over arboreality, which influences the extent to which use of the arboreal microhabitat proliferates. Morphologically, we find no evidence for an arboreal phenotype in overall body proportions or in foot shape, as variation in both traits overlaps broadly with species that utilize different microhabitats. However, both body shape and foot shape display reduced rates of phenotypic evolution in arboreal taxa, and evidence of morphological convergence among arboreal lineages is observed. Taken together, these patterns suggest that arboreality has played a unique role in the evolution of this family, providing neither an evolutionary opportunity, nor an evolutionary dead end.  相似文献   

10.
The interplay between colour vision and animal signalling is of keen interest to behavioural ecologists and evolutionary biologists alike, but is difficult to address in terrestrial animals. Unlike most avian lineages, in which colour vision is relatively invariant among species, the fairy‐wrens and allies (Maluridae) show a recent gain of ultraviolet sensitivity (UVS). Here, we compare the rates of colour evolution on 11 patches for males and females across Maluridae in the context of their visual system. We measured reflectance spectra for 24 species, estimating five vision‐independent colour metrics as well as metrics of colour contrast among patches and sexual dichromatism in a receiver‐neutral colour space. We fit Brownian motion (BM) and Ornstein–Uhlenbeck (OU) models to estimate evolutionary rates for these metrics and to test whether male coloration, female coloration or dichromatism was driven by selective regimes defined by visual system or geography. We found that in general male coloration evolved rapidly in comparison with females. Male colour contrast was strongly correlated with visual system and expanded greatly in UVS lineages, whereas female coloration was weakly associated with geography (Australia vs. Papua New Guinea). These results suggest that dichromatism has evolved in Maluridae as males and females evolve at different rates, and are driven by different selection pressures.  相似文献   

11.
Understanding the evolution of complex functional traits is a challenge for evolutionary physiology. Here we investigate the evolution of subdigital toepads in lizards, which have arisen independently at least three times, although with subtle anatomical differences. Some designs (anole, gecko) appear functionally equivalent, whereas other designs (skink) are inferior. The functional equivalence of geckos and anoles highlights the creative aspect of the evolutionary process in that these two groups have arrived at the same functional endpoint along very different trajectories. However, this functional equivalence does not result in equivalence for performance at whole-organism tasks (e.g., running uphill), as the evolution of behavior (e.g., toe-furling) has enabled geckos to be superior climbers than anoles. We also show that adaptive increases in the toepad size within a closely related lizard genus (Anolis) has resulted in concomitant evolution of enhanced clinging ability and increased perch heights. A third insight is that pad-bearing geckos are capable of carrying tremendous loads (up to 250% of body weight) up smooth surfaces, and that the toepad itself does not appear limiting. This comparative and whole-organism approach to lizard toepads underscores how organisms can evolve multiple solutions to evolutionary problems.  相似文献   

12.
Because of their function as reproductive signals in plants, floral traits experience distinct selective pressures related to their role in speciation, reinforcement, and prolonged coexistence with close relatives. However, few studies have investigated whether population‐level processes translate into detectable signatures at the macroevolutionary scale. Here, we ask whether patterns of floral trait evolution and range overlap across a clade of California Jewelflowers reflect processes hypothesized to shape floral signal differentiation at the population level. We found a pattern of divergence in floral scent composition across the clade such that close relatives had highly disparate floral scents given their age. Accounting for range overlap with close relatives explained additional variation in floral scent over time, with sympatric species pairs having diverged more than allopatric species pairs given their age. However, three other floral traits (flower size, scent complexity and flower color) did not fit these patterns, failing to deviate from a null Brownian motion model of evolution. Together, our results suggest that selection for divergence among close relatives in the composition of floral scents may play a key, sustained role in mediating speciation and coexistence dynamics across this group, and that signatures of these dynamics may persist at the macroevolutionary scale.  相似文献   

13.
The relationships between morphology, performance, behavior and ecology provide evidence for multiple and complex phenotypic adaptations. The anuran body plan, for example, is evolutionarily conserved and shows clear specializations to jumping performance back at least to the early Jurassic. However, there are instances of more recent adaptation to habit diversity in the post‐cranial skeleton, including relative limb length. The present study tested adaptive models of morphological evolution in anurans associated with the diversity of microhabitat use (semi‐aquatic arboreal, fossorial, torrent, and terrestrial) in species of anuran amphibians from Brazil and Australia. We use phylogenetic comparative methods to determine which evolutionary models, including Brownian motion (BM) and Ornstein‐Uhlenbeck (OU) are consistent with morphological variation observed across anuran species. Furthermore, this study investigated the relationship of maximum distance jumped as a function of components of morphological variables and microhabitat use. We found there are multiple optima of limb lengths associated to different microhabitats with a trend of increasing hindlimbs in torrent, arboreal, semi‐aquatic whereas fossorial and terrestrial species evolve toward optima with shorter hindlimbs. Moreover, arboreal, semi‐aquatic and torrent anurans have higher jumping performance and longer hindlimbs, when compared to terrestrial and fossorial species. We corroborate the hypothesis that evolutionary modifications of overall limb morphology have been important in the diversification of locomotor performance along the anuran phylogeny. Such evolutionary changes converged in different phylogenetic groups adapted to similar microhabitat use in two different zoogeographical regions.  相似文献   

14.
How the microbiome interacts with hosts across evolutionary time is poorly understood. Data sets including many host species are required to conduct comparative analyses. Here, we analyzed 142 intestinal microbiome samples from 92 birds belonging to 74 species from Equatorial Guinea, using the 16S rRNA gene. Using four definitions for microbial taxonomic units (97%OTU, 99%OTU, 99%OTU with singletons removed, ASV), we conducted alpha and beta diversity analyses. We found that raw abundances and diversity varied between the data sets but relative patterns were largely consistent across data sets. Host taxonomy, diet and locality were significantly associated with microbiomes, at generally similar levels using three distance metrics. Phylogenetic comparative methods assessed the evolutionary relationship between the microbiome as a trait of a host species and the underlying bird phylogeny. Using multiple ways of defining “microbiome traits”, we found that a neutral Brownian motion model did not explain variation in microbiomes. Instead, we found a White Noise model (indicating little phylogenetic signal), was most likely. There was some support for the Ornstein‐Uhlenbeck model (that invokes selection), but the level of support was similar to that of a White Noise simulation, further supporting the White Noise model as the best explanation for the evolution of the microbiome as a trait of avian hosts. Our study demonstrated that both environment and evolution play a role in the gut microbiome and the relationship does not follow a neutral model; these biological results are qualitatively robust to analytical choices.  相似文献   

15.
Evolutionary convergence provides natural opportunities to investigate how, when, and why novel traits evolve. Many convergent traits are complex, highlighting the importance of explicitly considering convergence at different levels of biological organization, or ‘multi-level convergent evolution’. To investigate multi-level convergent evolution, we propose a holistic and hierarchical framework that emphasizes breaking down traits into several functional modules. We begin by identifying long-standing questions on the origins of complexity and the diverse evolutionary processes underlying phenotypic convergence to discuss how they can be addressed by examining convergent systems. We argue that bioluminescence, a complex trait that evolved dozens of times through either novel mechanisms or conserved toolkits, is particularly well suited for these studies. We present an updated estimate of at least 94 independent origins of bioluminescence across the tree of life, which we calculated by reviewing and summarizing all estimates of independent origins. Then, we use our framework to review the biology, chemistry, and evolution of bioluminescence, and for each biological level identify questions that arise from our systematic review. We focus on luminous organisms that use the shared luciferin substrates coelenterazine or vargulin to produce light because these organisms convergently evolved bioluminescent proteins that use the same luciferins to produce bioluminescence. Evolutionary convergence does not necessarily extend across biological levels, as exemplified by cases of conservation and disparity in biological functions, organs, cells, and molecules associated with bioluminescence systems. Investigating differences across bioluminescent organisms will address fundamental questions on predictability and contingency in convergent evolution. Lastly, we highlight unexplored areas of bioluminescence research and advances in sequencing and chemical techniques useful for developing bioluminescence as a model system for studying multi-level convergent evolution.  相似文献   

16.
Fossil sequences provide observations of phenotypes within a lineage over time and represent essential data for increasing our understanding of phyletic evolution beyond microevolutionary timescales. I investigate if fossil time series of the diatom Stephanodiscus niagarae/yellowstonensis follow evolutionary dynamics compatible with hypotheses for how the adaptive landscape changes when a population enters a new environment. The lineage—which has a remarkably detailed stratigraphic record—invaded Yellowstone Lake immediately after recession of ice from the basin 14,000 years ago. Several phyletic models portraying different types of evolutionary dynamics—both compatible and not compatible with changes in the adaptive landscape following ecological opportunity—were fitted to the fossil times-series of S. niagarae/yellowstonensis. Different models best describe the three analyzed traits. Two of the models (a new model of decelerated evolution and an Ornstein–Uhlenbeck model) capture trait dynamics compatible with an event of ecological opportunity, whereas the third model (random walk) does not. Entering a new environment may accordingly affect trait dynamics for thousands of years, but the effects can vary across phenotypes. However, tests of model adequacy reveal shortcomings in all three models explaining the trait dynamics, suggesting model development is needed to more fully understand the phyletic evolution in S. niagarae/yellowstonensis.  相似文献   

17.
Phylogenetic comparative methods (PCMs) have been used to test evolutionary hypotheses at phenotypic levels. The evolutionary modes commonly included in PCMs are Brownian motion (genetic drift) and the Ornstein–Uhlenbeck process (stabilizing selection), whose likelihood functions are mathematically tractable. More complicated models of evolutionary modes, such as branch‐specific directional selection, have not been used because calculations of likelihood and parameter estimates in the maximum‐likelihood framework are not straightforward. To solve this problem, we introduced a population genetics framework into a PCM, and here, we present a flexible and comprehensive framework for estimating evolutionary parameters through simulation‐based likelihood computations. The method does not require analytic likelihood computations, and evolutionary models can be used as long as simulation is possible. Our approach has many advantages: it incorporates different evolutionary modes for phenotypes into phylogeny, it takes intraspecific variation into account, it evaluates full likelihood instead of using summary statistics, and it can be used to estimate ancestral traits. We present a successful application of the method to the evolution of brain size in primates. Our method can be easily implemented in more computationally effective frameworks such as approximate Bayesian computation (ABC), which will enhance the use of computationally intensive methods in the study of phenotypic evolution.  相似文献   

18.
Complex organismal structures are organized into modules, suites of traits that develop, function, and vary in a coordinated fashion. By limiting or directing covariation among component traits, modules are expected to represent evolutionary building blocks and to play an important role in morphological diversification. But how stable are patterns of modularity over macroevolutionary timescales? Comparative analyses are needed to address the macroevolutionary effect of modularity, but to date few have been conducted. We describe patterns of skull diversity and modularity in Caribbean Anolis lizards. We first diagnose the primary axes of variation in skull shape and then examine whether diversification of skull shape is concentrated to changes within modules or whether changes arose across the structure as a whole. We find no support for the hypothesis that cranial modules are conserved as species diversify in overall skull shape. Instead we find that anole skull shape and modularity patterns independently converge. In anoles, skull modularity is evolutionarily labile and may reflect the functional demands of unique skull shapes. Our results suggest that constraints have played little role in limiting or directing the diversification of head shape in Anolis lizards.  相似文献   

19.
The striking morphological convergence of hair-like integumentary derivatives of lizards and arthropods (spiders and insects) demonstrates the importance of such features for enhancing purchase on the locomotor substrate. These pilose structures are responsible for the unique tractive abilities of these groups of animals, enabling them to move with seeming ease on overhanging and inverted surfaces, and to traverse inclined smooth substrates. Three groups of lizards are well known for bearing adhesion-promoting setae on their digits: geckos, anoles and skinks. Similar features are also found on the ventral subdigital and distal caudal skin of chameleons. These have only recently been described in any detail, and structurally and functionally are much less well understood than are the setae of geckos and anoles. The seta-like structures of chameleons are not branched (a characteristic of many geckos), nor do they terminate in spatulate tips (which is characteristic of geckos, anoles and skinks). They are densely packed and have attenuated blunt, globose tips or broad, blade-like shafts that are flattened for much of their length. Using a force transducer, we tested the hypothesis that these structures enhance friction and demonstrate that the pilose skin has a greater frictional coefficient than does the smooth skin of these animals. Our results are consistent with friction being generated as a result of side contact of the integumentary filaments. We discuss the evolutionary and functional implications of these seta-like structures in comparison with those typical of other lizard groups and with the properties of seta-mimicking synthetic structures.  相似文献   

20.
The evolution of body mass is a fundamental topic in evolutionary biology, because it is closely linked to manifold life history and ecological traits and is readily estimable for many extinct taxa. In this study, we examine patterns of body mass evolution in Felidae (Placentalia, Carnivora) to assess the effects of phylogeny, mode of evolution, and the relationship between body mass and prey choice in this charismatic mammalian clade. Our data set includes 39 extant and 26 extinct taxa, with published body mass data supplemented by estimates based on condylobasal length. These data were run through ‘SURFACE’ and ‘bayou’ to test for patterns of body mass evolution and convergence between taxa. Body masses of felids are significantly different among prey choice groupings (small, mixed and large). We find that body mass evolution in cats is strongly influenced by phylogeny, but different patterns emerged depending on inclusion of extinct taxa and assumptions about branch lengths. A single Ornstein–Uhlenbeck optimum best explains the distribution of body masses when first‐occurrence data were used for the fossil taxa. However, when mean occurrence dates or last known occurrence dates were used, two selective optima for felid body mass were recovered in most analyses: a small optimum around 5 kg and a large one around 100 kg. Across living and extinct cats, we infer repeated evolutionary convergences towards both of these optima, but, likely due to biased extinction of large taxa, our results shift to supporting a Brownian motion model when only extant taxa are included in analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号