首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The loss of sexual recombination and segregation in asexual organisms has been portrayed as an irreversible process that commits asexually reproducing lineages to reduced diversification. We test this hypothesis by estimating rates of speciation, extinction, and transition between sexuality and functional asexuality in the evening primroses. Specifically, we estimate these rates using the recently developed BiSSE (Binary State Speciation and Extinction) phylogenetic comparative method, which employs maximum likelihood and Bayesian techniques. We infer that net diversification rates (speciation minus extinction) in functionally asexual evening primrose lineages are roughly eight times faster than diversification rates in sexual lineages, largely due to higher speciation rates in asexual lineages. We further reject the hypothesis that a loss of recombination and segregation is irreversible because the transition rate from functional asexuality to sexuality is significantly greater than zero and in fact exceeded the reverse rate. These results provide the first empirical evidence in support of the alternative theoretical prediction that asexual populations should instead diversify more rapidly than sexual populations because they are free from the homogenizing effects of sexual recombination and segregation. Although asexual reproduction may often constrain adaptive evolution, our results show that the loss of recombination and segregation need not be an evolutionary dead end in terms of diversification of lineages.  相似文献   

2.
Neutral models characterize evolutionary or ecological patterns expected in the absence of specific causal processes, such as natural selection or ecological interactions. In this study, we describe and evaluate three neutral models that can, in principle, help to explain the apparent 'twigginess' of asexual lineages on phylogenetic trees without involving the negative consequences predicted for the absence of recombination and genetic exchange between individuals. Previously, such phylogenetic twiggyness of asexual lineages has been uncritically interpreted as evidence that asexuality is associated with elevated extinction rates and thus represents an evolutionary dead end. Our first model uses simple phylogenetic simulations to illustrate that, with sexual reproduction as the ancestral state, low transition rates to stable asexuality, or low rates of ascertained 'speciation' in asexuals, can generate twiggy distributions of asexuality, in the absence of high extinction rates for asexual lineages. The second model, developed by Janko et   al . (2008 ), shows that a dynamic equilibrium between origins and neutral losses of asexuals can, under some conditions, generate a relatively low mean age of asexual lineages. The third model posits that the risk of extinction for asexual lineages may be higher than that of sexuals simply because asexuals inhabit higher latitudes or altitudes, and not due to effects of their reproductive systems. Such neutral models are useful in that they allow quantitative evaluation of whether empirical data, such as phylogenetic and phylogeographic patterns of sex and asexuality, indeed support the idea that asexually reproducing lineages persist over shorter evolutionary periods than sexual lineages, due to such processes as mutation accumulation, slower rates of adaptive evolution, or relatively lower levels of genetic variability.  相似文献   

3.
The traditional group-selection model for the maintenance of sex is based upon the assumption that the long-term evolutionary benefits of sexual reproduction result in asexual lineages having a higher extinction rate than sexual species. This model is reexamined, as is a related model that incorporates the possibility that sexual and asexual lines differ in their speciation rates. In these models, the long-term advantage of sex is opposed by a strong short-term disadvantage arising from the twofold reproductive cost of producing males. It is shown that once some sexual lines become established, then group selection can act to maintain sex despite its short-term disadvantage. The short-term disadvantage is included in the model by assuming that, if asexual individuals arise by mutation within a previously completely sexual species, then the asexuals quickly displace their sexual conspecifics and the species is transformed to asexuality. The probability of this event is given by the transition rate, us. If the value of us varies between lineages, then one of the effects of group selection is to favor groups (i.e., species) with the lowest values of us. This occurs because lines that do convert to asexuality (because of a high us) are doomed to a high rate of extinction, and in the long term only those that do not convert to asexuality (because of a low us) survive. The net result of group selection is that sex is maintained because of its lower extinction rate (or higher speciation rate) and because asexual mutants only rarely arise.  相似文献   

4.
The Red Queen hypothesis (RQH) predicts that parasite‐mediated selection will maintain sexual individuals in the face of competition from asexual lineages. The prediction is that sexual individuals will be difficult targets for coevolving parasites if they give rise to more genetically diverse offspring than asexual lineages. However, increasing host genetic diversity is known to suppress parasite spread, which could provide a short‐term advantage to clonal lineages and lead to the extinction of sex. We test these ideas using a stochastic individual‐based model. We find that if parasites are readily transmissible, then sex is most likely to be maintained when host diversity is high, in agreement with the RQH. If transmission rates are lower, however, we find that sexual populations are most likely to persist for intermediate levels of diversity. Our findings thus highlight the importance of genetic diversity and its impact on epidemiological dynamics for the maintenance of sex by parasites.  相似文献   

5.
Why does life diversify into the more or less discrete entities we recognise as species? Two main explanations have been proposed: i) species are a consequence of adaptation to different ecological niches, ii) species are a consequence of sexual reproduction and reproductive isolation. Phylogenetic studies of case-study groups can provide insights into the relative importance of divergent selection and isolation for speciation, but it can be difficult to infer causes of speciation unambiguously. The example of North American tiger beetles from the genus Cicindela is discussed. An alternative approach is to compare diversification between related sexual and asexual taxa to infer the relative importance of the two explanations. We outline expected patterns of diversification in sexual and asexual lineages under different scenarios using coalescent theory. Whether sexuals or asexuals diversify to a greater extent depends on the balance among various stages of diversification, particularly on the effects of sexual reproduction on rates of adaptive evolution. Rotifers offer a unique system to test these ideas, allowing comparison of patterns of genetic and functional morphological diversification in sexual (bdelloid) and asexual (monogonont) clades.  相似文献   

6.
Oak gallwasps (Hymenoptera, Cynipidae, Cynipini) are one of seven major animal taxa that commonly reproduce by cyclical parthenogenesis (CP). A major question in research on CP taxa is the frequency with which lineages lose their sexual generations, and diversify as purely asexual radiations. Most oak gallwasp species are only known from an asexual generation, and secondary loss of sex has been conclusively demonstrated in several species, particularly members of the holarctic genus Andricus. This raises the possibility of widespread secondary loss of sex in the Cynipini, and of diversification within purely parthenogenetic lineages. We use two approaches based on analyses of allele frequency data to test for cryptic sexual generations in eight apparently asexual European species distributed through a major western palaearctic lineage of the gallwasp genus Andricus. All species showing adequate levels of polymorphism (7/8) showed signatures of sex compatible with cyclical parthenogenesis. We also use DNA sequence data to test the hypothesis that ignorance of these sexual generations (despite extensive study on this group) results from failure to discriminate among known but morphologically indistinguishable sexual generations. This hypothesis is supported: 35 sequences attributed by leading cynipid taxonomists to a single sexual adult morphospecies, Andricus burgundus, were found to represent the sexual generations of at least six Andricus species. We confirm cryptic sexual generations in a total of 11 Andricus species, suggesting that secondary loss of sex is rare in Andricus.  相似文献   

7.
Asexual lineages are thought to be subject to rapid extinction because they cannot generate recombinant offspring. Accordingly, extant asexual lineages are expected to be of recent derivation from sexual individuals. We examined this prediction by using mitochondrial DNA sequence data to estimate asexual lineage age in populations of a freshwater snail (Potamopyrgus antipodarum) native to New Zealand and characterized by varying frequency of sexual and asexual individuals. We found considerable variation in the amount of genetic divergence of asexual lineages from sexual relatives, pointing to a wide range of asexual lineage ages. Most asexual lineages had close genetic ties (approximately 0.1% sequence divergence) to haplotypes found in sexual representatives, indicating a recent origin from sexual progenitors. There were, however, two asexual clades that were quite genetically distinct (> 1.2% sequence divergence) from sexual lineages and may have diverged from sexual progenitors more than 500,000 years ago. These two clades were found in lakes that had a significantly lower frequency of sexual individuals than lakes without the old clades, suggesting that the conditions that favor sex might select against ancient asexuality. Our results also emphasize the need for large sample sizes and spatially representative sampling when hypotheses for the age of asexual lineages are tested to adequately deal with potential biases in age estimates.  相似文献   

8.
Sex predominates in eukaryotes, despite its short-term disadvantage when compared to asexuality. Myriad models have suggested that short-term advantages of sex may be sufficient to counterbalance its twofold costs. However, despite decades of experimental work seeking such evidence, no evolutionary mechanism has yet achieved broad recognition as explanation for the maintenance of sex. We explore here, through lineage-selection models, the conditions favouring the maintenance of sex. In the first model, we allowed the rate of transition to asexuality to evolve, to determine whether lineage selection favoured species with the strongest constraints preventing the loss of sex. In the second model, we simulated more explicitly the mechanisms underlying the higher extinction rates of asexual lineages than of their sexual counterparts. We linked extinction rates to the ecological and/or genetic features of lineages, thereby providing a formalisation of the only figure included in Darwin''s “The origin of species”. Our results reinforce the view that the long-term advantages of sex and lineage selection may provide the most satisfactory explanations for the maintenance of sex in eukaryotes, which is still poorly recognized, and provide figures and a simulation website for training and educational purposes. Short-term benefits may play a role, but it is also essential to take into account the selection of lineages for a thorough understanding of the maintenance of sex.  相似文献   

9.
Diversification in sexual and asexual organisms   总被引:4,自引:0,他引:4  
Abstract Sexual reproduction has long been proposed as a major factor explaining the existence of species and species diversity. Yet, the importance of sex for diversification remains obscure because of a lack of critical theory, difficulties of applying universal concepts of species and speciation, and above all the scarcity of empirical tests. Here, we use genealogical theory to compare the relative tendency of strictly sexual and asexual organisms to diversify into discrete genotypic and morphological clusters. We conclude that asexuals are expected to display discrete clusters similar to those found in sexual organisms. Whether sexuals or asexuals display stronger clustering depends on a number of factors, but in at least some scenarios asexuals should display a stronger pattern. Confounding factors aside, the only explanation we identify for stronger patterns of diversification in sexuals than asexuals is if the faster rates of adaptive change conferred by sexual reproduction promote greater clustering. Quantitative comparisons of diversification in related sexual and asexual taxa are needed to resolve this issue. The answer should shed light not only on the importance of the different stages leading to diversification, but also on the adaptive consequences of sex, still largely unexplored from a macroevolutionary perspective.  相似文献   

10.
Dolgin ES  Charlesworth B 《Genetics》2006,174(2):817-827
Sexual reproduction and recombination are important for maintaining a stable copy number of transposable elements (TEs). In sexual populations, elements can be contained by purifying selection against host carriers with higher element copy numbers; however, in the absence of sex and recombination, asexual populations could be driven to extinction by an unchecked proliferation of TEs. Here we provide a theoretical framework for analyzing TE dynamics under asexual reproduction. Analytic results show that, in an infinite asexual population, an equilibrium in copy number is achieved if no element excision is possible, but that all TEs are eliminated if there is some excision. In a finite population, computer simulations demonstrate that small populations are driven to extinction by a Muller's ratchet-like process of element accumulation, but that large populations can be cured of vertically transmitted TEs, even with excision rates well below transposition rates. These results may have important consequences for newly arisen asexual lineages and may account for the lack of deleterious retrotransposons in the putatively ancient asexual bdelloid rotifers.  相似文献   

11.
Evolutionary lineages differ greatly in their net diversification rates, implying differences in rates of extinction and speciation. Lineages with a large average range size are commonly thought to have reduced extinction risk (although linking low extinction to high diversification has proved elusive). However, climate change cycles can dramatically reduce the geographic range size of even widespread species, and so most species may be periodically reduced to a few populations in small, isolated remnants of their range. This implies a high and synchronous extinction risk for the remaining populations, and so for the species as a whole. Species will only survive through these periods if their individual populations are “threat tolerant,” somehow able to persist in spite of the high extinction risk. Threat tolerance is conceptually different from classic extinction resistance, and could theoretically have a stronger relationship with diversification rates than classic resistance. I demonstrate that relationship using primates as a model. I also show that narrowly distributed species have higher threat tolerance than widespread ones, confirming that tolerance is an unusual form of resistance. Extinction resistance may therefore operate by different rules during periods of adverse global environmental change than in more benign periods.  相似文献   

12.
Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of such shifts toward asexuality remain largely unknown. We addressed this issue in an aphid species where both sexual and obligate asexual lineages coexist in natural populations. These sexual and asexual lineages may occasionally interbreed because some asexual lineages maintain a residual production of males potentially able to mate with the females produced by sexual lineages. Hence, this species is an ideal model to study the genetic basis of the loss of sexual reproduction with quantitative genetic and population genomic approaches. Our analysis of the co-segregation of ∼300 molecular markers and reproductive phenotype in experimental crosses pinpointed an X-linked region controlling obligate asexuality, this state of character being recessive. A population genetic analysis (>400-marker genome scan) on wild sexual and asexual genotypes from geographically distant populations under divergent selection for reproductive strategies detected a strong signature of divergent selection in the genomic region identified by the experimental crosses. These population genetic data confirm the implication of the candidate region in the control of reproductive mode in wild populations originating from 700 km apart. Patterns of genetic differentiation along chromosomes suggest bidirectional gene flow between populations with distinct reproductive modes, supporting contagious asexuality as a prevailing route to permanent parthenogenesis in pea aphids. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual aphid lineages.  相似文献   

13.
Asexual lineages can grow at a faster rate than sexual lineages. Why then is sexual reproduction so widespread? Much empirical evidence supports the Red Queen hypothesis. Under this hypothesis, coevolving parasites favour sexual reproduction by adapting to infect common asexual clones and driving them down in frequency. One limitation, however, seems to challenge the generality of the Red Queen: in theoretical models, parasites must be very virulent to maintain sex. Moreover, experiments show virulence to be unstable, readily shifting in response to environmental conditions. Does variation in virulence further limit the ability of coevolving parasites to maintain sex? To address this question, we simulated temporal variation in virulence and evaluated the outcome of competition between sexual and asexual females. We found that variation in virulence did not limit the ability of coevolving parasites to maintain sex. In fact, relatively high variation in virulence promoted parasite‐mediated maintenance of sex. With sufficient variation, sexual females persisted even when mean virulence fell well below the threshold virulence required to maintain sex under constant conditions. We conclude that natural variation in virulence does not limit the relevance of the Red Queen hypothesis for natural populations; on the contrary, it could expand the range of conditions over which coevolving parasites can maintain sex.  相似文献   

14.
Sexual selection may facilitate genetic isolation among populations and result in increased rates of diversification. As a mechanism driving diversification, sexual selection has been invoked and upheld in numerous empirical studies across disparate taxa, including birds, plants and spiders. In this study, we investigate the potential impact of sexual selection on the tempo and mode of ponyfish evolution. Ponyfishes (Leiognathidae) are bioluminescent marine fishes that exhibit sexually dimorphic features of their unique light-organ system (LOS). Although sexual selection is widely considered to be the driving force behind ponyfish speciation, this hypothesis has never been formally tested. Given that some leiognathid species have a sexually dimorphic LOS, whereas others do not, this family provides an excellent system within which to study the potential role of sexual selection in diversification and morphological differentiation. In this study, we estimate the phylogenetic relationships and divergence times for Leiognathidae, investigate the tempo and mode of ponyfish diversification, and explore morphological shape disparity among leiognathid clades. We recover strong support for a monophyletic Leiognathidae and estimate that all major ponyfish lineages evolved during the Paleogene. Our studies of ponyfish diversification demonstrate that there is no conclusive evidence that sexually dimorphic clades are significantly more species rich than nonsexually dimorphic lineages and that evidence is lacking to support any significant diversification rate increases within ponyfishes. Further, we detected a lineage-through-time signal indicating that ponyfishes have continuously diversified through time, which is in contrast to many recent diversification studies that identify lineage-through-time patterns that support mechanisms of density-dependent speciation. Additionally, there is no evidence of sexual selection hindering morphological diversity, as sexually dimorphic taxa are shown to be more disparate in overall shape morphology than nonsexually dimorphic taxa. Our results suggest that if sexual selection is occurring in ponyfish evolution, it is likely acting only as a genetic isolating mechanism that has allowed ponyfishes to continuously diversify over time, with no overall impact on increases in diversification rate or morphological disparity.  相似文献   

15.
1. Sexual populations are expected to perform better in fluctuating environments than asexuals because recombination provides the potential to adapt to changing environments due to increased genetic variation. Nevertheless, some asexual species show comparably high levels of genotypic diversity. Such diversity might be achieved through gene flow between coexisting sexual and asexual populations or through sexual events within asexual populations. 2. Evidence for occasional sex in the flatworm Schmidtea polychroa was previously found at one specific site that is inhabited by parthenogenetic forms. There, varying rates of sex between subpopulations, reaching up to 12%, were observed. Past recurrent sexual processes left a significant genetic signature in the population genetic structure of this population. In the present study, we examined the population genetic structure of six independent metapopulations (lakes) of the freshwater planarian flatworm S. polychroa, to confirm the presence of occasional sex and that its population genetic consequences can be generalised. 3. Using microsatellites, we found varying rates of occasional sex among subpopulations. Metapopulations showed medium to high levels of genotypic diversity that correlated with the rate of sex. 4. We conclude that occasional sex has considerable consequences for population genetic structure of parthenogenetic species and promotes diversity that might allow response to the particular type of selection that is usually predicted to favour sexual reproduction. This reproductive strategy provides genetic characteristics required for selection to act on, and might, therefore, explain the success of this parthenogenetic species.  相似文献   

16.
A life-history transition to asexuality is typically viewed as leading to a heightened extinction risk, and a number of studies have evaluated this claim by examining the relative ages of asexual versus closely related sexual lineages. Surprisingly, a rigorous assessment of the age of an asexual plant lineage has never been published, although asexuality is extraordinarily common among plants. Here, we estimate the ages of sexual diploids and asexual polyploids in the fern genus Astrolepis using a well-supported plastid phylogeny and a relaxed-clock dating approach. The 50 asexual polyploid samples we included were conservatively estimated to comprise 19 distinct lineages, including a variety of auto- and allopolyploid genomic combinations. All were either the same age or younger than the crown group comprising their maternal sexual-diploid parents based simply on their phylogenetic position. Node ages estimated with the relaxed-clock approach indicated that the average maximum age of asexual lineages was 0.4 My, and individual lineages were on average 7 to 47 times younger than the crown- and total-ages of their sexual parents. Although the confounding association between asexuality and polyploidy precludes definite conclusions regarding the effect of asexuality, our results suggest that asexuality limits evolutionary potential in Astrolepis.  相似文献   

17.
Sexual reproduction is a mysterious phenomenon. Most animals and plants invest in sexual reproduction, even though it is more costly than asexual reproduction. Theoretical studies suggest that occasional or conditional use of sexual reproduction, involving facultative switching between sexual and asexual reproduction, is the optimal reproductive strategy. However, obligate sexual reproduction is common in nature. Recent studies suggest that the evolution of facultative sexual reproduction is prevented by males that coerce females into sexual fertilization; thus, sexual reproduction has the potential to enforce costs on a given species. Here, the effect of sex on biodiversity is explored by evaluating the reproductive costs arising from sex. Sex provides atypical selection pressure that favors traits that increase fertilization success, even at the expense of population growth rates, that is, sexual selection. The strength of sexual selection depends on the density of a given species. Sexual selection often causes strong negative effects on the population growth rates of species that occur at high density. Conversely, a species that reduces its density is released from this negative effect, and so increases its growth rate. Thus, this negative density-dependent effect on population growth that arises from sexual selection could be used to rescue endangered species from extinction, prevent the overgrowth of common species and promote the coexistence of competitive species. Recent publications on sexual reproduction provide several predictions related to the evolution of reproductive strategies, which is an important step toward integrating evolutionary dynamics, demographic dynamics and community dynamics.  相似文献   

18.
Many clades that span the marine–freshwater boundary are disproportionately more diverse in the younger, shorter lived, and scarcer freshwater environments than they are in the marine realm. This disparity is thought to be related to differences in diversification rates between marine and freshwater lineages. However, marine and freshwaters are not ecologically homogeneous, so the study of diversification across the salinity divide should also account for other potentially interacting variables. In diatoms, freshwater and substrate‐associated (benthic) lineages are several‐fold more diverse than their marine and suspended (planktonic) counterparts. These imbalances provide an excellent system to understand whether these variables interact with diversification. Using multistate hidden‐state speciation and extinction models, we found that freshwater lineages diversify faster than marine lineages regardless of whether they inhabit the plankton or the benthos. Freshwater lineages also had higher turnover rates (speciation + extinction), suggesting that habitat transitions impact speciation and extinction rates jointly. The plankton–benthos contrast was also consistent with state‐dependent diversification, but with modest differences in diversification and turnover rates. Asymmetric and bidirectional transitions rejected hypotheses about the plankton and freshwaters as absorbing, inescapable habitats. Our results further suggest that the high turnover rate of freshwater diatoms is related to high turnover of freshwater systems themselves.  相似文献   

19.
The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within‐lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra‐ and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations.  相似文献   

20.
Diversification rates within four conspicuous coral reef fish families (Labridae, Chaetodontidae, Pomacentridae and Apogonidae) were estimated using Bayesian inference. Lineage through time plots revealed a possible late Eocene/early Oligocene cryptic extinction event coinciding with the collapse of the ancestral Tethyan/Arabian hotspot. Rates of diversification analysis revealed elevated cladogenesis in all families in the Oligocene/Miocene. Throughout the Miocene, lineages with a high percentage of coral reef-associated taxa display significantly higher net diversification rates than expected. The development of a complex mosaic of reef habitats in the Indo-Australian Archipelago (IAA) during the Oligocene/Miocene appears to have been a significant driver of cladogenesis. Patterns of diversification suggest that coral reefs acted as a refuge from high extinction, as reef taxa are able to sustain diversification at high extinction rates. The IAA appears to support both cladogenesis and survival in associated lineages, laying the foundation for the recent IAA marine biodiversity hotspot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号