首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the imminent completion of the whole genome sequence of humans, increasing attention is being focused on the annotation of cis-regulatory elements in the human genome. Comparative genomics approaches based on evolutionary conservation have proved useful in the detection of conserved cis-regulatory elements. The pufferfish, Fugu rubripes, is an attractive vertebrate model for comparative genomics, by virtue of its compact genome and maximal phylogenetic distance from mammals. Fugu has lost a large proportion of nonessential DNA, and retained single orthologs for many duplicate genes that arose in the fish lineage. Non-coding sequences conserved between fugu and mammals have been shown to be functional cis-regulatory elements. Thus, fugu is a model fish genome of choice for discovering evolutionarily conserved regulatory elements in the human genome. Such evolutionarily conserved elements are likely to be shared by all vertebrates, and related to regulatory interactions fundamental to all vertebrates. The functions of these conserved vertebrate elements can be rapidly assayed in mammalian cell lines or in transgenic systems such as zebrafish/medaka and Xenopus, followed by validation of crucial elements in transgenic rodents.  相似文献   

2.
Many conserved non-coding elements (CNEs) in vertebrate genomes have been shown to function as tissue-specific enhancers. However, the target genes of most CNEs are unknown. Here we show that the target genes of duplicated CNEs can be predicted by considering their neighbouring paralogous genes. This enables us to provide the first systematic estimate of the genomic range for distal cis-regulatory interactions in the human genome: half of CNEs are >250 kb away from their associated gene.  相似文献   

3.
4.
5.
Consequences of hoxb1 duplication in teleost fish   总被引:1,自引:0,他引:1  
Vertebrate evolution is characterized by gene and genome duplication events. There is strong evidence that a whole-genome duplication occurred in the lineage leading to the teleost fishes. We have focused on the teleost hoxb1 duplicate genes as a paradigm to investigate the consequences of gene duplication. Previous analysis of the duplicated zebrafish hoxb1 genes suggested they have subfunctionalized. The combined expression pattern of the two zebrafish hoxb1 genes recapitulates the expression pattern of the single Hoxb1 gene of tetrapods, possibly due to degenerative changes in complementary cis-regulatory elements of the duplicates. Here we have tested the hypothesis that all teleost duplicates had a similar fate post duplication, by examining hoxb1 genes in medaka and striped bass. Consistent with this theory, we found that the ancestral Hoxb1 expression pattern is subdivided between duplicate genes in a largely similar fashion in zebrafish, medaka, and striped bass. Further, our analysis of hoxb1 genes reveals that sequence changes in cis-regulatory regions may underlie subfunctionalization in all teleosts, although the specific changes vary between species. It was previously shown that zebrafish hoxb1 duplicates have also evolved different functional capacities. We used misexpression to compare the functions of hoxb1 duplicates from zebrafish, medaka and striped bass. Unexpectedly, we found that some biochemical properties, which were paralog specific in zebrafish, are conserved in both duplicates of other species. This work suggests that the fate of duplicate genes varies across the teleost group.  相似文献   

6.
Highly conserved non-coding elements (CNEs) linked to genes involved in embryonic development have been hypothesised to correspond to cis-regulatory modules due to their ability to induce tissue-specific expression patterns. However, attempts to prove their requirement for normal development or for the correct expression of the genes they are associated with have yielded conflicting results. Here, we show that CNEs at the vertebrate Sox21 locus are crucial for Sox21 expression in the embryonic lens and that loss of Sox21 function interferes with normal lens development. Using different expression assays in zebrafish we find that two CNEs linked to Sox21 in all vertebrates contain lens enhancers and that their removal from a reporter BAC abolishes lens expression. Furthermore inhibition of Sox21 function after the injection of a sox21b morpholino into zebrafish leads to defects in lens development. These findings identify a direct link between sequence conservation and genomic function of regulatory sequences. In addition to this we provide evidence that putative Sox binding sites in one of the CNEs are essential for induction of lens expression as well as enhancer function in the CNS. Our results show that CNEs identified in pufferfish-mammal whole-genome comparisons are crucial developmental enhancers and hence essential components of gene regulatory networks underlying vertebrate embryogenesis.  相似文献   

7.
后生动物非编码保守元件   总被引:1,自引:0,他引:1  
冯俊  李光  王义权 《遗传》2013,35(1):35-44
生物体基因组中除了编码序列之外, 还存在大量的非编码调控序列。比较基因组学研究发现:脊椎动物、尾索动物、头索动物、果蝇、线虫等基因组中存在保守的非编码调控序列。这些非编码保守元件通常分布在与转录调控发育相关的基因上下游区域, 作为基因调控网络核心的一部分, 常常在基因表达过程中扮演转录增强子的角色。文章总结了近年来有关后生动物非编码保守元件的发现和主要特点, 并进一步就非编码保守元件在大规模基因组倍增之后的演化及其在生物躯体图式进化过程中的影响进行了综述。  相似文献   

8.
Goode DK  Snell P  Smith SF  Cooke JE  Elgar G 《Genomics》2005,86(2):172-181
Comparative genomic analysis reveals an exceptionally large section of conserved shared synteny between the human 7q36 chromosomal region and the pufferfish (Fugu rubripes) genome. Remarkably, this conservation extends not only to gene order across 16 genes, but also to the position and orientation of a number of prominent conserved noncoding elements (CNEs). A functional assay using zebrafish has shown that most of the CNEs have reproducible and specific enhancer activity. This enhancer activity is often detected in a subset of tissues which reflect the endogenous expression pattern of a proximal gene, though some CNEs may act over a long range. We propose that the distribution of CNEs, and their probable association with a number of genes throughout the region, imposes a critical constraint on genome architecture, resulting in the maintenance of such a large section of conserved synteny across the vertebrate lineage.  相似文献   

9.
Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA.  相似文献   

10.
Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes. This pattern has been explained by a neutral process of subfunctionalization and more recently, dosage balance selection. However, much about the relationship between environmental change, WGD and adaptation remains unknown. Here, we study the duplicate retention pattern postWGD, by letting virtual cells adapt to environmental changes. The virtual cells have structured genomes that encode a regulatory network and simple metabolism. Populations are under selection for homeostasis and evolve by point mutations, small indels and WGD. After populations had initially adapted fully to fluctuating resource conditions re-adaptation to a broad range of novel environments was studied by tracking mutations in the line of descent. WGD was established in a minority (≈30%) of lineages, yet, these were significantly more successful at re-adaptation. Unexpectedly, WGD lineages conserved more seemingly redundant genes, yet had higher per gene mutation rates. While WGD duplicates of all functional classes were significantly over-retained compared to a model of neutral losses, duplicate retention was clearly biased towards highly connected TFs. Importantly, no subfunctionalization occurred in conserved pairs, strongly suggesting that dosage balance shaped retention. Meanwhile, singles diverged significantly. WGD, therefore, is a powerful mechanism to cope with environmental change, allowing conservation of a core machinery, while adapting the peripheral network to accommodate change.  相似文献   

11.
12.
Sox21 is thought to function as a counteracting partner of SoxB1 (Sox1, 2, 3) genes and is involved in cell fate determination. In this study, we comparatively analyzed the expression patterns and conserved cis-regulatory elements of the duplicated sox21 genes in zebrafish. In embryogenesis, sox21b is predominantly expressed in the telencephalon, hypothalamus, mesencephalon and lens, and sox21a is solely expressed in the midbrain-hindbrain boundary, olfactory placode and lateral line, while both genes are expressed in the hindbrain, spinal cord and ear. In adult, sox21a is expressed in the brain, skin, ovary and intestine, while sox21b is expressed in the brain and testis. Interestingly, all 16 pan-vertebrate conserved non-coding elements (CNEs) are asymmetrically preserved in the sox21b locus, whereas two fish-specific elements are kept in the sox21a locus, and this is correlated with increased evolutionary rate of the sox21a protein sequence. Transient transgenic reporter analysis revealed that six sox21b CNEs and two sox21a CNEs drove green fluorescent protein (GFP) expression in tissues correlated with the partitioning of expression in two orthologues. These results indicate that sox21a and sox21b have reciprocally lost expression domains of the ancestral gene reflected by degeneration of certain CNEs in their genomic loci and provide clear evidence for evolution of the duplicated sox21 genes by subfunctionalization. In addition, our data suggest that some CNEs-based regulatory pathways have been predominantly preserved in the sox21b locus.  相似文献   

13.
14.
Vertebrate genomes contain thousands of conserved noncoding elements (CNEs) that often function as tissue-specific enhancers. In this study, we have identified CNEs in human, dog, chicken, Xenopus, and four teleost fishes (zebrafish, stickleback, medaka, and fugu) using elephant shark, a cartilaginous vertebrate, as the base genome and investigated the evolution of these ancient vertebrate CNEs (aCNEs) in bony vertebrate lineages. Our analysis shows that aCNEs have been evolving at different rates in different bony vertebrate lineages. Although 78-83% of CNEs have diverged beyond recognition ("lost") in different teleost fishes, only 24% and 40% have been lost in the chicken and mammalian lineages, respectively. Relative rate tests of substitution rates in CNEs revealed that the teleost fish CNEs have been evolving at a significantly higher rate than those in other bony vertebrates. In the ray-finned fish lineage, 68% of aCNEs were lost before the divergence of the four teleosts. This implicates the "fish-specific" whole-genome duplication in the accelerated evolution and the loss of a large number of both copies of duplicated CNEs in teleost fishes. The aCNEs are rich in tissue-specific enhancers and thus many of them are likely to be evolutionarily constrained cis-regulatory elements. The rapid evolution of aCNEs might have affected the expression patterns driven by them. Transgenic zebrafish assay of some human CNE enhancers that have been lost in teleosts has indicated instances of conservation or changes in trans-acting factors between mammals and fishes.  相似文献   

15.
The origin of the vertebrates was a major event in the evolution of morphological diversity and the genetic mechanisms responsible for this diversity, once purely theoretical, can now be approached experimentally in the genome era. With a prototypical chordate genome, vertebrate-like development and simple morphology, amphioxus provides the appropriate model for investigating the origin of the vertebrates. Comparative genomics is revealing that both conservation and divergence of genes and cis-regulatory elements involved in developmental regulatory networks are required to shape different animal body plans. This article reviews the cis-regulatory studies performed in amphioxus, the discovery of conserved non-coding elements (CNEs) across the metazoans and the examination of amphioxus CNEs. Emerging ideas on the evolution of CNEs after large-scale genome duplication events and the state of cephalochordate genomics are also discussed.  相似文献   

16.
17.
Sequence analysis of epsilon and gamma genes and encoded globins and high-pressure liquid chromatography analysis of globin compositions in blood hemolysates obtained from embryos, fetuses and adults show that the prosimian primate Galago crassicaudatus expresses its epsilon and gamma genes only embryonically. Since rabbit, mouse and galago all have embryonic gamma genes but simian primates have fetal gamma genes, we conclude that gamma E evolved into gamma F in stem-simians. An elevated non-synonymous substitution rate characterizes this transition. The alignment of epsilon and gamma nucleotide sequences and the parsimoniously reconstructed evolutionary history of these sequences identify several anciently conserved cis-regulatory elements (phylogenetic footprints) important for gamma expression in primates and also cis-mutations which may have been involved in the recruitment of the gamma gene to a fetal program in simian primates.  相似文献   

18.
Conant GC  Wolfe KH 《Genetics》2008,179(3):1681-1692
Identification of orthologous genes across species becomes challenging in the presence of a whole-genome duplication (WGD). We present a probabilistic method for identifying orthologs that considers all possible orthology/paralogy assignments for a set of genomes with a shared WGD (here five yeast species). This approach allows us to estimate how confident we can be in the orthology assignments in each genomic region. Two inferences produced by this model are indicative of purifying selection acting to prevent duplicate gene loss. First, our model suggests that there are significant differences (up to a factor of seven) in duplicate gene half-life. Second, we observe differences between the genes that the model infers to have been lost soon after WGD and those lost more recently. Gene losses soon after WGD appear uncorrelated with gene expression level and knockout fitness defect. However, later losses are biased toward genes whose paralogs have high expression and large knockout fitness defects, as well as showing biases toward certain functional groups such as ribosomal proteins. We suggest that while duplicate copies of some genes may be lost neutrally after WGD, another set of genes may be initially preserved in duplicate by natural selection for reasons including dosage.  相似文献   

19.
20.
There are thousands of strongly conserved non-coding elements (CNEs) in vertebrate genomes, and their functions remain largely unknown. However, without biologically relevant criteria for prioritizing them, selecting a particular CNE sequences to study can be haphazard. To address this problem, we present cneViewer-a database and webtool that systematizes information on conserved non-coding DNA elements in zebrafish. A key feature here is the ability to search for CNEs that may be relevant to tissue-specific gene regulation, based on known developmental expression patterns of nearby genes. cneViewer provides this and other organizing features that significantly facilitate experimental design and CNE analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号