首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhoptries are specialized secretory organelles that are uniquely present within protozoan parasites of the phylum Apicomplexa. These obligate intracellular parasites comprise some of the most important parasites of humans and animals, including the causative agents of malaria (Plasmodium spp.) and chicken coccidiosis (Eimeria spp.). The contents of the rhoptries are released into the nascent parasitophorous vacuole during invasion into the host cell, and the resulting proteins often represent the literal interface between host and pathogen. We have developed a method for highly efficient purification of rhoptries from one of the best studied Apicomplexa, Toxoplasma gondii, and we carried out a detailed proteomic analysis using mass spectrometry that has identified 38 novel proteins. To confirm their rhoptry origin, antibodies were raised to synthetic peptides and/or recombinant protein. Eleven of 12 of these yielded antibody that showed strong rhoptry staining by immunofluorescence within the rhoptry necks and/or their bulbous base. Hemagglutinin epitope tagging confirmed one additional novel protein as from the rhoptry bulb. Previously identified rhoptry proteins from Toxoplasma and Plasmodium were unique to one or the other organism, but our elucidation of the Toxoplasma rhoptry proteome revealed homologues that are common to both. This study also identified the first Toxoplasma genes encoding rhoptry neck proteins, which we named RONs, demonstrated that toxofilin and Rab11 are rhoptry proteins, and identified novel kinases, phosphatases, and proteases that are likely to play a key role in the ability of the parasite to invade and co-opt the host cell for its own survival and growth.  相似文献   

2.
Toxoplasma is a protozoan parasite that is uniquely adapted for invading and surviving within a wide range of host cells. The parasite actively invades the cell, forming a novel vacuole that originates from the host cell plasma membrane. The vacuole membrane is rapidly modified to remove host cell proteins and this compartment subsequently resists fusion with all other host cell endocytic compartments. Shortly after invasion, the parasite secretes a variety of proteins by a process of regulation exocytosis and elaborates an extensive array of membranous tubules that form a network connecting with the vacuolar membrane. Understanding the formation and modification of this unique vacuole may reveal novel mechanisms for subverting host cell endocytic pathways that lead to intracellular survival.  相似文献   

3.
4.
The Apicomplexa are a diverse group of parasitic protozoa with very ancient phylogenetic roots. Consistent with their phylogeny, the extant species share conserved proteins and traits that were found in their apicomplexan progenitor, but at the same time they have diverged to occupy different biological niches (e.g. host-range and cell type). Characterisation of gene and protein diversity is important for distinguishing between related parasites, for determining their phylogeny, and for providing insight into factors that determine host restriction, cell preference, and virulence. The value of molecular characterisations and comparisons between species is well illustrated by the close phylogenetic relationship between Neospora caninum and Toxoplasma gondii. These two organisms have nearly identical morphology and can cause similar pathology and disease. Consequently, N. caninum has often been incorrectly identified as T. gondii, thus demonstrating the need for studies addressing the molecular and antigenic composition of Neospora. In this review, we describe the major antigenic proteins that have been characterised in N. caninum. These show homology to T. gondii proteins, yet possess unique antigenic characteristics that distinguish them from their homologues and enable their use for specific serological diagnoses and parasite identification.  相似文献   

5.
Antibodies have been indispensable tools in molecular biology, biochemistry and medical research. However, a number of issues surrounding validation, specificity and batch variation of commercially available antibodies have prompted research groups to develop novel non-antibody binding reagents. The ability to select highly specific monoclonal non-antibody binding proteins without the need for animals, the ease of production and the ability to site-directly label has enabled a wide variety of applications to be tested, including imaging. In this review, we discuss the success of a number of non-antibody reagents in imaging applications, including the recently reported Affimer.  相似文献   

6.
Neospora caninum is an apicomplexan parasite identified as a major cause of abortion in cattle and neurological disease in various animal species. It is closely related to Toxoplasma gondii, sharing the ability to persist indefinitely in latent stage within the host as a tissue cyst containing slow-dividing bradyzoites. In this study, we compared different stress methods to induce in vitro bradyzoite conversion, using MARC-145 cells infected with Nc-Liverpool isolate. The tachyzoite-to-bradyzoite conversion rate was monitored at days 3, 5, and 7 after stress in a double-immunofluorescence assay using a monoclonal antibody against the tachyzoite antigen SAG1 (alphaSAG1) and a rabbit serum directed to the intracytoplasmic bradyzoite antigen BAG1 (alphaBAG1). Seven days of treatment with 70 microM sodium nitroprusside offered the highest bradyzoite transformation rate and the best yield of total parasitophorous vacuoles observed. In the present work, we introduce an alternative, simplified, and more advantageous method for bradyzoite production of N. caninum, using a reliable cell culture system easy to handle and with promising capacity of parasite purification.  相似文献   

7.
Toxoplasma gondii ME49 is an obligatory intracellular apicomplexa parasite that causes toxoplasmosis in humans, domesticated and wild animals. Waterborne outbreaks of acute toxoplasmosis worldwide reinforce the transmission of Toxoplasma gondii ME49 to humans through contaminated water and may have a greater epidemiological impact than previously believed. In the quest for drug and vaccine target identification subtractive genomics involving subtraction between the host and pathogen genome has been implemented for enlisting essential pathogen specific proteins. Using this approach, our analysis on both human and Toxoplasma gondii ME49 reveals that out of 7987 protein coding sequences of the pathogen, 950 represent essential non human-homologous proteins. Subcellular localization prediction & comparative-biochemical pathway analysis of these essential proteins gives a list of apicoplast-associated proteins having unique pathogen-specific metabolic pathway. These apicoplast-associated enzymes involved in fatty acid biosynthesis pathway of Toxoplasma gondii ME49, may be used as potential drug targets, as the pathway is vital for the protozoan's survival. Structure prediction of drug target proteins was done using fold based recognition method. Screening of the functional inhibitors against these novel targets may result in discovery of novel therapeutic compounds that can be effective against Toxoplasma gondii ME49. ABBREVIATIONS: DEG - Database of Essential Gene, KEGG - Kyoto Encyclopaedia of Genes and Genomes, KAAS - KEGG Automated Annotation Server, PFP - Protein Function Prediction, COG - Cluster of Orthologous Genes.  相似文献   

8.
Analyzing antibody specificity with whole proteome microarrays   总被引:12,自引:0,他引:12  
Although approximately 10,000 antibodies are available from commercial sources, antibody reagents are still unavailable for most proteins. Furthermore, new applications such as antibody arrays and monoclonal antibody therapeutics have increased the demand for more specific antibodies to reduce cross-reactivity and side effects. An array containing every protein for the relevant organism represents the ideal format for an assay to test antibody specificity, because it allows the simultaneous screening of thousands of proteins for possible cross-reactivity. As an initial test of this approach, we screened 11 polyclonal and monoclonal antibodies to approximately 5,000 different yeast proteins deposited on a glass slide and found that, in addition to recognizing their cognate proteins, the antibodies cross-reacted with other yeast proteins to varying degrees. Some of the interactions of the antibodies with noncognate proteins could be deduced by alignment of the primary amino acid sequences of the antigens and cross-reactive proteins; however, these interactions could not be predicted a priori. Our findings show that proteome array technology has potential to improve antibody design and selection for applications in both medicine and research.  相似文献   

9.
Toxoplasma gondii is a ubiquitous, unicellular, eukaryotic parasite with a complex intracellular life cycle capable of invading and chronically infecting a wide variety of vertebrate host species, including man. Although normally opportunistic in healthy adults, it is a lethal pathogen in immunocompromised humans, particularly in AIDS patients. We present the application of a genomic phage display as a tool for the direct identification of antigens with potential value in diagnosis and/or as subunit vaccine components. Using a polycosmid cloning strategy, we constructed a large phagemid display library (>10(9) independent clones) of mixed short genomic restriction fragments (< or = 500 bp) of T. gondii genomic DNA (80 Mbp genome size) fused to gene III of the filamentous phage M13. Biopanning of the library with monoclonal Toxoplasma antibodies resulted in the isolation and identification of an epitope of GRA3, an antigen located in the dense granules of T. gondii tachyzoites. The reactivity of the phage displaying the GRA3 epitope with the monoclonal antibody was confirmed by an enzyme-linked immunosorbent assay. These results demonstrate the accessibility of midsized eukaryotic genomes to display technology and the feasibility to screen these whole genome display libraries with antibodies for isolating novel antigenic determinants.  相似文献   

10.
MS‐based analysis of the acetylproteome has highlighted a role for acetylation in a wide array of biological processes including gene regulation, metabolism, and cellular signaling. To date, anti‐acetyllysine antibodies have been used as the predominant affinity reagent for enrichment of acetyllysine‐containing peptides and proteins; however, these reagents suffer from high nonspecific binding and lot‐to‐lot variability. Bromodomains represent potential affinity reagents for acetylated proteins and peptides, given their natural role in recognition of acetylated sequence motifs in vivo. To evaluate their efficacy, we generated recombinant proteins representing all known yeast bromodomains. Bromodomain specificity for acetylated peptides was determined using degenerate peptide arrays, leading to the observation that different bromodomains display a wide array of binding specificities. Despite their relatively weak affinity, we demonstrate the ability of selected bromodomains to enrich acetylated peptides from a complex biological mixture prior to mass spectrometric analysis. Finally, we demonstrate a method for improving the utility of bromodomain enrichment for MS through engineering novel affinity reagents using combinatorial tandem bromodomain pairs.  相似文献   

11.
The obligate intracellular parasite Toxoplasma gondii secretes a vast variety of effector molecules from organelles known as rhoptries (ROPs) and dense granules (GRAs). ROP proteins are released into the cytosol of the host cell where they are directed to the cell nucleus or to the parasitophorous vacuole (PV) membrane. ROPs secrete proteins that enable host cell penetration and vacuole formation by the parasites, as well as hijacking host-immune responses. After invading host cells, T. gondii multiplies within a PV that is maintained by the parasite proteins secreted from GRAs. Most GRA proteins remain within the PV, but some are known to access the host cytosol across the PV membrane, and a few are able to traffic into the host-cell nucleus. These effectors bind to host cell proteins and affect host cell signaling pathways to favor the parasite. Studies on host–pathogen interactions have identified many infection-altered host signal transductions. Notably, the relationship between individual parasite effector molecules and the specific targeting of host-signaling pathways is being elucidated through the advent of forward and reverse genetic strategies. Understanding the complex nature of the host–pathogen interactions underlying how the host-signaling pathway is manipulated by parasite effectors may lead to new molecular biological knowledge and novel therapeutic methods for toxoplasmosis. In this review, we discuss how T. gondii modulates cell signaling pathways in the host to favor its survival.  相似文献   

12.
Toxoplasma gondii: the model apicomplexan   总被引:6,自引:0,他引:6  
Toxoplasma gondii is an obligate intracellular protozoan parasite which is a significant human and veterinary pathogen. Other members of the phylum Apicomplexa are also important pathogens including Plasmodium species (i.e. malaria), Eimeria species, Neospora, Babesia, Theileria and Cryptosporidium. Unlike most of these organisms, T. gondii is readily amenable to genetic manipulation in the laboratory. Cell biology studies are more readily performed in T. gondii due to the high efficiency of transient and stable transfection, the availability of many cell markers, and the relative ease with which the parasite can be studied using advanced microscopic techniques. Thus, for many experimental questions, T. gondii remains the best model system to study the biology of the Apicomplexa. Our understanding of the mechanisms of drug resistance, the biology of the apicoplast, and the process of host cell invasion has been advanced by studies in T. gondii. Heterologous expression of apicomplexan proteins in T. gondii has frequently facilitated further characterisation of proteins that could not be easily studied. Recent studies of Apicomplexa have been complemented by genome sequencing projects that have facilitated discovery of surprising differences in cell biology and metabolism between Apicomplexa. While results in T. gondii will not always be applicable to other Apicomplexa, T. gondii remains an important model system for understanding the biology of apicomplexan parasites.  相似文献   

13.
Toxoplasma gondii is a protozoan parasite that infects a wide variety of warm-blooded animals and humans, in which it causes opportunistic disease. As an obligate intracellular parasite, T. gondii must invade a host cell to survive and replicate during infection. Recent studies suggest that T. gondii secretes a variety of proteins that appear to function during invasion or intracellular replication. These proteins originate from three distinct regulated secretory organelles called micronemes, rhoptries and dense granules. By discharging the contents of its secretory organelles at precise steps in invasion, T. gondii appears to timely deploy secretory proteins to their correct target destinations. Based on the timing of secretion and the characteristics of secretory proteins, an emerging theme is that T. gondii compartmentalizes its secretory proteins according to general function. Thus, it appears that micronemal proteins may function during parasite attachment to host cells, rhoptry proteins may facilitate parasite vacuole formation and host organellar association, and dense granule proteins likely promote intracellular replication, possibly by transporting and processing nutrients from the host cell. However, as more T. gondii secretory proteins are identified and characterized, it is likely that additional functions will be ascribed to each class of proteins secreted- by this fascinating invasive parasite.  相似文献   

14.
Intracellular pathogens have evolved a wide array of mechanisms to invade and co-opt their host cells for intracellular survival. Apicomplexan parasites such as Toxoplasma gondii employ the action of unique secretory organelles named rhoptries for internalization of the parasite and formation of a specialized niche within the host cell. We demonstrate that Toxoplasma gondii also uses secretion from the rhoptries during invasion to deliver a parasite-derived protein phosphatase 2C (PP2C-hn) into the host cell and direct it to the host nucleus. Delivery to the host nucleus does not require completion of invasion, as evidenced by the fact that parasites blocked in the initial stages of invasion with cytochalasin D are able to target PP2C-hn to the host nucleus. We have disrupted the gene encoding PP2C-hn and shown that PP2C-hn-knockout parasites exhibit a mild growth defect that can be rescued by complementation with the wild-type gene. The delivery of parasite effector proteins via the rhoptries provides a novel mechanism for Toxoplasma to directly access the command center of its host cell during infection by the parasite.  相似文献   

15.
Members of the phylum Apicomplexa are important protozoan parasites that cause some of the most serious, and in some cases, deadly diseases in humans and animals. They include species from the genus Plasmodium, Toxoplasma, Eimeria, Neospora, Cryptosporidium, Babesia and Theileria. The medical, veterinary and economic impact of these pathogens on a global scale is enormous. Although chemo- and immuno-prophylactic strategies are available to control some of these parasites, they are inadequate. Currently, there is an urgent need to design new vaccines or chemotherapeutics for apicomplexan diseases. High-throughput global protein expression analyses using gel or non-gel based protein separation technologies coupled with mass spectrometry and bioinformatics provide a means to identify new drug and vaccine targets in these pathogens. Protein identification based proteomic projects in apicomplexan parasites is currently underway, with the most significant progress made in the malaria parasite, Plasmodium falciparum. More recently, preliminary two-dimensional gel electrophoresis maps of Toxoplasma gondii and Neospora caninum tachyzoites and Eimeria tenella sporozoites, have been produced, as well as for micronemes in E. tenella. In this review, the status of proteomics in the analysis of global protein expression in apicomplexan parasites will be compared and the challenges associated with these investigations discussed.  相似文献   

16.
17.
Herein, we report the biochemical and functional characterization of a novel Ca(2+)-activated nucleoside diphosphatase (apyrase), CApy, of the intracellular gut pathogen Cryptosporidium. The purified recombinant CApy protein displayed activity, substrate specificity and calcium dependency strikingly similar to the previously described human apyrase, SCAN-1 (soluble calcium-activated nucleotidase 1). CApy was found to be expressed in both Cryptosporidium parvum oocysts and sporozoites, and displayed a polar localization in the latter, suggesting a possible co-localization with the apical complex of the parasite. In vitro binding experiments revealed that CApy interacts with the host cell in a dose-dependent fashion, implying the presence of an interacting partner on the surface of the host cell. Antibodies directed against CApy block Cryptosporidium parvum sporozoite invasion of HCT-8 cells, suggesting that CApy may play an active role during the early stages of parasite invasion. Sequence analyses revealed that the capy gene shares a high degree of homology with apyrases identified in other organisms, including parasites, insects and humans. Phylogenetic analysis argues that the capy gene is most likely an ancestral feature that has been lost from most apicomplexan genomes except Cryptosporidium, Neospora and Toxoplasma.  相似文献   

18.
19.
Neospora caninum, a coccidian parasite closely related to Toxoplasma gondii, can infect a broad host range and is regarded as an important cause of bovine abortion worldwide. In the present study, four antigens of N. caninum were partially characterized using monoclonal antibodies. Immunofluorescence of viable tachyzoites as well as the immunoprecipitation of antigens extracted from tachyzoites previously labeled by surface biotinylation revealed that three of these antigens with apparent molecular weights of 40, 38, and 19 kDa are located in the outer surface membrane of this parasite stage. Further evidence for the surface localization of the 38-kDa antigen was obtained by immunoelectron microscopy. In addition to the surface molecules, an antigen located in dense granules and in the tubular network of the parasitophorous vacuole was detected by another monoclonal antibody. When tachyzoite antigens separated under nonreducing conditions were probed on Western blots, this antibody reacted mainly with a 33-kDa antigen. Immunohistochemical analysis of infected tissue sections indicated that the 33-kDa dense granule antigen is present in both tachyzoites and bradyzoites, while the 38-kDa surface antigen from tachyzoites seems to be absent in bradyzoites.  相似文献   

20.
Hoff, E. F., Cook, S. H., Sherman, G. D., Harper, J. M., Ferguson, D. J. P., Dubremetz, J. F., and Carruthers, V. B. 2001. Toxoplasma gondii: Molecular cloning and characterization of a novel 18-kDa secretory antigen, TgMIC10. Experimental Parasitology, 97, 77-88. During host cell invasion, Toxoplasma gondii secretes proteins from specialized organelles (micronemes and rhoptries) located at the apical end of the parasite. The contents of the micronemes appear to be crucial to T. gondii invasion, as inhibition of microneme secretion prevents parasite entry into host cells. Here we describe a new T. gondii microneme protein, TgMIC10. Molecular characterization of a full-length TgMIC10 cDNA revealed that TgMIC10 lacks homology to any previously characterized proteins, although a homologue, NcMIC10, was identified in a closely related parasite, Neospora caninum. TgMIC10 has an unusually long secretory leader sequence of 58 amino acids; the mature TgMIC10 is 18 kDa, possesses nine diglutamic acid repeats and an imperfect repeat sequence (RK(R/Y)HEEL), and is entirely devoid of cysteines. Antibodies raised against recombinant TgMIC10 recognized the native TgMIC10 and localized the protein to the micronemes in indirect immunofluorescence and immunoEM experiments. Comparison of immunofluorescence images indicates that TgMIC10 expression is higher in T. gondii tachyzoites, which are responsible for active infection, than in bradyzoites, which are responsible for latent infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号