首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
BAK1 and BKK1 are two functionally redundant leucine-rich repeat receptor-like protein kinases (LRR-RLKs) involved in brassinosteroid signal transduction by their direct interactions with the BR receptor, BRI1. Recent studies from our group and others indicated that the two RLKs also play critical roles in regulating pathogen-related and pathogen-unrelated cell-death controls. Genetic data suggest that the two kinases are essential for plant survival because the double mutants show spontaneous cell-death and seedling lethality phenotypes. Physiological analyses further suggest that the cell-death of the double mutant is triggered by the light, as dark-grown seedlings do not show any cell-death symptoms. These observations indicate that BAK1 and BKK1 regulate a novel signaling pathway to detoxify or to limit the production of a yet unknown toxin/toxins produced by plants under light conditions.Key words: receptor-like kinases, cell-death, light, reactive oxygen speciesPlant receptor-like protein kinases (RLKs) are transmembrane proteins essential for cell-to-cell communications. A typical RLK is composed of a cell-surface receptor domain which can sense and perceive diversified signaling molecules within the extracellular space, a transmembrane domain anchoring the protein to the plasma membrane, and a cytoplasmic kinase domain whose activity can often be regulated by the conformation change in the receptor domain upon the binding of the signaling molecules to the receptor. The unique structure of RLKs suggests that these kinases may act as key switches in triggering many signal transduction cascades which greatly influence plant growth and development. Recent studies support this notion, as the functions of more and more RLKs have been revealed, and these RLKs indeed play critical roles in mediating many physiological processes such as steroidal hormone action, pathogenesis responses, and recognition of various peptide signals.13 There are more than 600 RLKs in the Arabidopsis genome.4,5 Based on the structure of the receptor domains, RLKs can be divided into more than 10 subfamilies. Among them, LRR-RLKs belong to the largest group consisting of at least 220 members. The functions of only a small fraction of RLKs have been revealed.BAK1 is a typical LRR-RLK, identified via an activation tagging genetic screen for suppressors of a weak BR receptor (BRI1) mutant called bri1–5, and via a yeast two-hybrid screen for BRI1 kinase domain physical interactors.6,7 Although the detailed molecular mechanisms of BAK1 in activating the BR signaling pathway is still mysterious, the in vivo interaction between BAK1 and BRI1 is clearly ligand (BR)-dependent.8 The mutual phosphorylation of the two kinases is also BR-dependent.8 BKK1, the closest homolog of BAK1, was identified as a functionally redundant protein of BAK1.9 Interestingly, the double null mutant of BAK1 and BKK1, bak1–4 bkk1-1, did not show a typical bri1 phenotype but showed a spontaneous cell-death phenotype under a normal growth condition. This unexpected result suggests that BAK1 and BKK1 may have more roles than their functions in BR signal transduction. This hypothesis is supported by the recent discovery of BAK1 in mediating pathogen-related signaling pathways in order to regulate innate immunity and cell-death control.1012 The spontaneous cell-death seen in the bak1–4 bkk1-1 double mutant, however, is not caused by the challenges from pathogens;10 it is also unlikely to be the result from the disruption of the FLS2-dependent innate immunity pathway,11,12 as overexpression or T-DNA disruption of the RLK gene, FLS2, does not show a phenotype similar to that of the bak1–4 bkk1-1 double mutant. In addition, the cell-death phenotype of the double mutant occurs even in a sterile growth condition, suggesting that the pathogens are not the key triggers of cell-death in the bak1–4 bkk1-1 double mutant. Early results indicated that the double mutant seedlings are indistinguishable from the wild-type seedlings during the first 4–5 days after germination but quickly show terminating growth and cotyledon necrosis phenotypes a week after germination.9 This observation prompted a test of whether light is a true trigger for cell-death seen in the double mutant. Both wild-type and the double mutant were planted in the dark and long-day lighting conditions. Cotyledons from eight-day-old seedlings were stained with Trypan blue to examine cell-death symptoms of the seedlings grown under different illumination conditions.13 Both the dark-grown wild-type and the double mutant seedlings showed no cell-death symptoms on their cotyledons at any time during a three-week experimental period (Fig. 1A and B). Under a long-day lighting condition, on the other hand, cotyledons from the double mutant, but not from the wild-type, exhibited severe cell-death symptoms (Fig. 1C and D). Three weeks after germination, the double mutant seedlings growing under a long-day lighting condition was completely dead, the ones under the dark condition were still healthy and showed no cell-death symptoms (data not shown).Open in a separate windowFigure 1BAK1 and BKK1 regulate a light-dependent cell-death control pathway. (A) A representative Trypan blue stained wild-type cotyledon from a dark grown seedling on a ½ MS plate; (B) A representative Trypan blue stained bak1–4 bkk1-1 cotyledon from a dark grown seedling on a ½ MS plate; (C) A representative Trypan blue stained wild-type cotyledon from a long-day light-grown seedling on a ½ MS plate; (D) A representative Trypan blue stained bak1–4 bkk1-1 cotyledon from a long-day light-grown seedling on a ½ MS plate; (E) A hypothetical model of BAK1 and BKK1 in regulating both the BR signaling pathway to promote cell growth, and a novel light-dependent cell-death control pathway to prevent plants from unnecessary cell-death. Under a light condition, plants naturally produce unknown toxins (phototoxins), whose accumulation can lead to the cell-death. BAK1 and BKK1 likely mediate a signaling pathway to constantly check and limit the levels of these toxins.Based on our current results, it is apparent that the double mutant is more vulnerable to light. It is probable that the mutant lost its capability to detoxify or to restrict the production of an unknown toxin/toxins naturally generated by plants under a light condition. The wild-type plants may also produce the toxin/toxins, but BAK1 and BKK1 can direct a signal transduction pathway to constantly check and eliminate extra amount of the toxin/toxins (Fig. 1E). Under a sterile growth condition, BAK1 and BKK1 are likely involved in both the BR signaling pathway to positively regulate cell growth and in a novel pathway to negatively control cell-death. Under normal environmental conditions (not sterile condition), BAK1 might also be recruited to participate in the innate immunity pathway via its interaction with FLS2 and other RLKs. Based on the model from the BRI1/BAK1 signal transduction, there might be another RLK which can pair with BAK1 or BKK1 in controlling the light-dependent cell-death process. An unknown “survival signal” could be an unknown metabolite or the toxin/toxins causing the cell-death. Under the current model, the “survival signal” may activate the BAK1- and BKK1-associated stress defense pathway and constantly check the levels of the light-dependent toxin/toxins in the plants. The homeostasis of the toxin/toxins is therefore strictly under control. If both BAK1 and BKK1 are removed, as in the case of the double mutant, the plant loses its capability to check the levels of the toxin/toxins. The uncontrolled accumulation of the toxin/toxins is likely the ultimate cause of the spontaneous cell-death observed in the double mutant.  相似文献   

3.
4.
5.
The plasma membrane-spanning receptor brassinosteroid insenstive 1 (BRI1) rapidly induces plant cell wall expansion in response to brassinosteroids such as brassinolide (BL). Wall expansion is accompanied by a rapid hyperpolarization of the plasma membrane, which is recordable by measuring the fluorescence lifetime (FLT) of the green fluorescent protein (GFP) fused to BRI1. For the BL induction of hyperpolarization and wall expansion, the activation of the plasma membrane P-type H+-ATPase is necessary. Furthermore, the activation of the P-ATPase requires BRI1 kinase activity and appears to be mediated by a BL-modulated association of BRI1 with the proton pump. Here, we show that BRI1 also associates with a mutant version of the Arabidopsis P-ATPase 1 (AHA1) characterized by an exchange of a well-known regulatory threonine for a non-phosphorylatable residue in the auto-inhibitory C-terminal domain. Even more important, BRI1 is still able to activate this AHA1 mutant in response to BL. This suggests a novel mechanism for the enzymatic activation of the P-ATPase by BRI1 in the plasma membrane. Furthermore, we demonstrate that the FLT of BRI1-GFP can be used as a non-invasive probe to analyze long-distance BL signaling in Arabidopsis seedlings.Key words: BRI1, fluorescence lifetime, membrane potential, P-ATPase, cell wall expansionUsing spectro-microscopic technologies, we recently started the quantitative analysis of the properties and subcellular function of GFP fusion of the plasma membrane-localized brassinosteroid (BR) receptor, BRI1, in living plant cells of Arabidopsis thaliana and tobacco (Nicotiana benthamiana) leaf cells.1,2 Brassinosteroids, such as brassinolide (BL), are involved in responses to biotic and abiotic stresses and developmental processes, including cell elongation.3 The present model of the BR response pathway includes the binding of BRs to BRI1, resulting in the autophosphorylation of the receptor and the subsequent recruitment of the co-receptor BRI1-associated receptor kinase 1 (BAK1). This association is followed by trans-phosphorylation between BRI1 and BAK1 and results in the activation of downstream BR signaling processes leading to differential gene expression and, finally, to the execution of the specific responses.4 However, the molecular events that take place in the plasma membrane immediately after the perception of BL and initiate cell elongation still have to be included in this model.5 We recently reported a rapid BRI1-GFP-dependent cell wall expansion in Arabidopsis seedlings, which is attributed to wall loosening and water incorporation into the wall, and precedes cell elongation.1,2 This expansion response was accompanied by a change in the FLT of BRI1-GFP, which reflects an alteration in the plasma membrane potential (Em).2,6 For both the FLT change in BRI1-GFP and the wall expansion, the activity of the plasma membrane P-ATPase is crucial. Notably, H+-pump activation was shown to depend on the kinase activity of BRI1.2 This suggests a fast BRI1-dependent response pathway in the plasma membrane which links BL perception via P-ATPase activation and Em hyperpolarization to wall expansion. In this report, we demonstrate that the phosphorylation of a conserved threonine in the auto-inhibitory domain of AHA1 is not required for the enzymatic activation by BRI1 suggesting a novel mechanism by which BRI1 may initiate the activation of the P-ATPase. Furthermore, we show that the FLT of BRI1-GFP is a useful and senstitive probe for the non-invasive analysis of systemic signaling processes in living plants.  相似文献   

6.
The receptors for the fungal elicitor EIX (LeEix1 and LeEix2) belong to a class of leucine-rich repeat cell-surface glycoproteins with a signal for receptor-mediated endocytosis. Both receptors are able to bind the EIX elicitor while only the LeEix2 receptor mediates defense responses. We show that LeEix1 acts as a decoy receptor and attenuates EIX induced internalization and signaling of the LeEix2 receptor. We demonstrate that BAK1 binds LeEix1 but not LeEix2. In plants where BAK1 was silenced, LeEix1 was no longer able to attenuate plant responses to EIX, indicating that BAK1 is required for this attenuation. We suggest that LeEix1 functions as a decoy receptor for LeEix2, a function which requires the kinase activity of BAK1.Key words: LRR-RLP, LeEix, Bak1, decoy receptor, endocytosisLeucine-rich-repeat receptor proteins (LRR-RLPs) have been linked with defense response signaling in plants.15 The tomato Cf genes which mediate resistance to Cladosporium fulvum encode LRR-RLPs. Additional LRR-RLPs include the tomato Verticillium (Ve) resistant proteins6,7 and the LeEix proteins.8 The Eix receptors (LeEix1 and LeEix2) contain a signal for receptor-mediated endocytosis, which we have previously shown to be essential for proper induction of defense responses.9,10 Both receptors are able to bind Eix, but only LeEix2 mediates EIX-induced defense.8 In a recent work we demonstrate that LeEix1 attenuates Eix-induced internalization and signaling, and heterodimerizes with LeEix2 upon application of Eix.11 Our work further shows that the brassinosteroid co-receptor Bri-Associated Kinase 1 (BAK1) binds LeEix1 but not LeEix2. In BAK1-silenced plants, LeEix1 was no longer able to attenuate plant responses to Eix, indicating that BAK1 is required for this attenuation and leading to the hypothesis that LeEix1 functions as a decoy receptor for LeEix2.11  相似文献   

7.
8.
The membrane-bound BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1) is a common coreceptor in plants and regulates distinct cellular programs ranging from growth and development to defense against pathogens. BAK1 functions through binding to ligand-stimulated transmembrane receptors and activating their kinase domains via transphosphorylation. In the absence of microbes, BAK1 activity may be suppressed by different mechanisms, like interaction with the regulatory BIR (for BAK1-INTERACTING RECEPTOR-LIKE KINASE) proteins. Here, we demonstrated that BAK1 overexpression in Arabidopsis (Arabidopsis thaliana) could cause detrimental effects on plant development, including growth arrest, leaf necrosis, and reduced seed production. Further analysis using an inducible expression system showed that BAK1 accumulation quickly stimulated immune responses, even under axenic conditions, and led to increased resistance to pathogenic Pseudomonas syringae pv tomato DC3000. Intriguingly, our study also revealed that the plasma membrane-associated BAK1 ectodomain was sufficient to induce autoimmunity, indicating a novel mode of action for BAK1 in immunity control. We postulate that an excess of BAK1 or its ectodomain could trigger immune receptor activation in the absence of microbes through unbalancing regulatory interactions, including those with BIRs. Consistently, mutation of SUPPRESSOR OF BIR1-1, which encodes an emerging positive regulator of transmembrane receptors in plants, suppressed the effects of BAK1 overexpression. In conclusion, our findings unravel a new role for the BAK1 ectodomain in the tight regulation of Arabidopsis immune receptors necessary to avoid inappropriate activation of immunity.Plants rely on their innate immune system to detect microbes and mount an active defense against pathogens. The plant immune system is traditionally considered to be composed of two layers (Jones and Dangl, 2006). The first one is based on the activity of pattern-recognition receptors (PRRs) that can detect microbe-associated molecular patterns (MAMPs) and trigger what is termed pattern-triggered immunity (PTI; Boller and Felix, 2009). Many plant pathogens can suppress this basal defense response using virulence factors termed effectors. In a second layer of defense, plants can make use of resistance (R) proteins to recognize the presence of pathogen effectors resulting in effector-triggered immunity (ETI), which resembles an accelerated and amplified PTI response (Jones and Dangl, 2006).Plants utilize plasma membrane-associated receptor-like proteins (RLPs) or receptor-like kinases (RLKs) as PRRs to sense specific signals through their ectodomains (Böhm et al., 2014). RLPs and RLKs require the function of additional RLKs to form active receptor complexes and transfer the external signal to the inside of the cells (Zhang and Thomma, 2013; Cao et al., 2014; Liebrand et al., 2014). The best-known coreceptor is the leucine-rich repeat (LRR)-RLK BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1), which was originally identified as a positive regulator and partner for the brassinosteroid (BR) receptor BRASSINOSTEROID INSENSITIVE1 (BRI1; Li et al., 2002; Nam and Li, 2002). BRs refer to phytohormones that promote plant growth and development (Fujioka and Yokota, 2003). Thus, loss-of-function mutations in BAK1 negatively impact Arabidopsis (Arabidopsis thaliana) growth due to improper cell elongation. In short, bak1 mutants display compact rosettes with round-shaped leaves and shorter petioles and phenocopy weak bri1 mutations (Li et al., 2002; Nam and Li, 2002). Conversely, certain mutants affected in the BAK1 ectodomain show increased activity in the BR signaling pathway and share phenotypic similarities with BRI1-overexpressing lines (Wang et al., 2001), including elongated hypocotyls, petioles, and leaf blades and an overall increase in height (Jaillais et al., 2011; Chung et al., 2012).Furthermore, BAK1 is involved in the containment of cell death, independently of its function in BR signaling. Arabidopsis bak1 knockout mutants exhibit extensive cell death spreading after microbial infection (Kemmerling et al., 2007). In addition, spontaneous cell death develops in Arabidopsis double mutant plants lacking both BAK1 (also named SOMATIC EMBRYOGENESIS RECEPTOR KINASE3 [SERK3]) and its closest homolog BAK1-LIKE1 (BKK1)/SERK4, causing seedling lethality even in the absence of microbes (He et al., 2007). Similar phenotypes are observed in Arabidopsis, rice (Oryza sativa), and Nicotiana benthamiana by lowering the expression of BAK1 and its homologs (Heese et al., 2007; Jeong et al., 2010; Park et al., 2011). Interestingly, typical defense responses, like the production of reactive oxygen species and constitutive callose deposition, are also detected in those plants, although the basis for this phenomenon remains poorly understood (He et al., 2007; Kemmerling et al., 2007; Park et al., 2011; Gao et al., 2013).On the other hand, BAK1 is widely studied as a key component of immune signaling pathways due to its known association with different PRRs, including RLKs and RLPs (Kim et al., 2013; Böhm et al., 2014). Upon MAMP perception, PRRs induce signaling and physiological defense responses like mitogen-activated protein kinase (MAPK) activation, reactive oxygen species and ethylene production, and modifications in gene expression, all of which contribute to PTI. Among the best-studied examples of BAK1-regulated PRRs are two LRR-receptor kinases, ELONGATION FACTOR Tu RECEPTOR (EFR), which senses the active epitope elf18 of the bacterial elongation factor Tu, and the flagellin receptor FLAGELLIN SENSING2 (FLS2), which senses the active epitope flg22 of bacterial flagellin (Gómez-Gómez and Boller, 2000; Chinchilla et al., 2006; Zipfel et al., 2006). Immediately after flg22 binding to its LRR ectodomain, FLS2 forms a tight complex with BAK1 (Chinchilla et al., 2007; Sun et al., 2013). This heteromerization step may bring the two kinase domains closer and thereby induce, within seconds, the phosphorylation of BAK1 and FLS2 (Schulze et al., 2010; Schwessinger et al., 2011). These steps are sufficient to initiate the immune signaling pathway, even if the ectodomains and kinase domains are switched between FLS2 and BAK1 (Albert et al., 2013).While PRRs, such as FLS2 and EFR, are extremely sensitive to even subnanomolar concentrations of their ligands, a tight control of these receptors is expected, since constitutive activation of defense responses in plants dramatically impairs fitness and growth (Tian et al., 2003; Korves and Bergelson, 2004). However, the mechanisms that underlie the attenuation of PRR activation or prevent these receptors from signaling constitutively remain largely unknown (Macho and Zipfel, 2014). Several independent observations indicate that BAK1 and FLS2 are present in close spatial proximity in preformed complexes at the plasma membrane (Chinchilla et al., 2007; Schulze et al., 2010; Roux et al., 2011). Negative regulation of immune signaling prior to ligand perception could happen within the PRR complex and depend on conformational changes following the association of FLS2 with flg22 (Meindl et al., 2000; Schulze et al., 2010; Mueller et al., 2012). Additionally, other partners might prevent the constitutive interaction of BAK1 with FLS2. Such could be the case for the LRR-RLK BAK1-INTERACTING RECEPTOR-LIKE KINASEs (BIRs): BIR2 was recently discovered as a substrate and negative regulator for BAK1, while the absence of BIR1 leads to the activation of defense induction and strong dwarfism (Gao et al., 2009; Halter et al., 2014b). Furthermore, MAMP signaling may be constrained by phosphatases, as suggested in earlier studies (Felix et al., 1994; Gómez-Gómez et al., 2001) and recently shown for the protein phosphatase 2A, which controls PRR activation likely by modulating the BAK1 phosphostatus (Segonzac et al., 2014). These examples illustrate the variety of mechanisms that may tightly control BAK1 activity.In this work, we show that regulation of BAK1 accumulation is crucial for Arabidopsis fitness, as its overexpression leads to dwarfism and premature death. The phenotype differs from BR mutants and is very reminiscent of or even identical to the autoimmune phenotype of plants showing constitutive activation of R proteins (Oldroyd and Staskawicz, 1998; Bendahmane et al., 2002; Zhang et al., 2003). BAK1 overexpression is associated with constitutive activation of defense pathway(s) involving the general coregulator of RLPs, SUPPRESSOR OF BIR1-1 (SOBIR1; Liebrand et al., 2013, 2014). To our knowledge, this is the first report and comprehensive characterization of such an autoimmunity phenotype for Arabidopsis plants overexpressing BAK1, and it highlights the importance of the regulation of PTI overactivation.  相似文献   

9.
Systemin is a wound signaling peptide from tomato that is important for plant defenses against herbivory. The systemin receptor was initially identified as the tomato homolog of the brassinosteroid receptor BRI1, but genetic evidence argued against this finding. However, we found that BRI1 may function as an inappropriate systemin binding protein that does not activate the systemin signaling pathway. Here we provide evidence that systemin perception is localized in a tissue-type specific manner. Mesophyll protoplasts were not sensitive to systemin, while they responded to other elicitors. We hypothesize that the elusive systemin receptor is a protein with high similarity to BRI1 which is specifically localized in vascular tissue like the systemin precursor prosystemin. Binding of systemin to BRI1 may be an artifact of transgenic BRI1-overexpressing plants, but does not take place in wild type tomato cells.Key words: systemin, systemin receptor, brassinosteroids, BRI1, BRL, protoplastsSystemin is thought to be processed from its precursor prosystemin upon insect attack and wounding of tomato leaves. Strong evidence has been gathered for an important role of (pro-)systemin in the activation of defenses against insects, and the underlying signaling pathway has been studied in detail.1 However, the perception of systemin is controversial. Meindl et al.2 and Scheer and Ryan3 identified high affinity, saturable, reversible and specific cell surface binding sites on Solanum peruvianum suspension-cultured cells which are known to be highly sensitive to systemin.4 A purification approach using a photoaffinity systemin analog identified a 160 kDa protein as the systemin receptor (SR160).5 Follow-up studies showed that overexpression of tomato 35S::SR160 in systemin-insensitive tobacco plants conferred systemin sensitivity to tobacco.6 Surprisingly, SR160 turned out to be the tomato homolog of the brassinosteroid receptor BRI1,7 which raised many questions as to the functionality of a receptor for two structurally and functionally diverse ligands. It was then shown in two independent papers that a null mutant for tomato BRI1, cu-3, exhibited a normal response to systemin.8,9 This was strong evidence that SR160/BRI1 does not represent the functional systemin receptor. Our recent data added a peculiar twist to this story. We found that overexpression of tomato BRI1 in tobacco suspension-cultured cells resulted in binding of a fluorescently labeled systemin to the plasma membranes of the transgenic tobacco cells, but not to wild type cells. Surprisingly, this did not result in BRI1-dependent signal transduction and activation of a defense response, although we detected weak BRI1-independent signaling responses to systemin.10 Together with the identification of BRI1 as the systemin receptor by Scheer and Ryan,5 the simplest explanation for this phenomenon is that BRI1 is a systemin binding protein, but not the physiological systemin receptor.Therefore and for other reasons, we suggested that the true systemin receptor may be a protein with very similar properties as BRI1, e.g., a homolog of the BRI1-like (BRL) proteins. The purification strategy employed by Scheer and Ryan5 may have resulted in binding of a photoaffinity-systemin derivative to BRI1 and one or more BRL proteins. Since BRLs and BRI1 have a very similar MW, multiple bands on a SDS-PAGE would not be detectable.Here, we would like to add another aspect of systemin perception. We provide evidence for tissue-specific systemin sensitivity and discuss how this may affect systemin binding to BRI1 and the elusive systemin receptor. Prosystemin is only present in phloem parenchyma cells.11 It can be surmised that the systemin receptor is located close to these cells. Systemin perception results in JA synthesis in companion cells of vascular bundles.12 Since JA or a JA derivative is the most likely phloem-mobile candidate for a systemic long-distance wound signal, it is thought that JA is moving from companion cells into sieve cells to reach distant parts of the plant for upregulation of wound response genes in leaf cells, including mesophyll cells.1315Here, we tested the hypothesis that mesophyll cells lack systemin perception. We generated mesophyll protoplasts from tomato leaf material as well as protoplasts from S. peruvianum suspension-cultured cells, the same cell line that had been used for the purification of SR160/BRI1 and is known to be highly sensitive to systemin. Mesophyll protoplasts showed increased phosphorylation of MAP kinases (MPKs) in response to the elicitors flg22 and chitosan, bacterial and fungal MAMPs, respectively. However, they did not respond to systemin. In contrast, the S. peruvianum protoplasts did respond to systemin and to flg22, demonstrating that the protoplasting procedure did not compromise the systemin perception mechanism (Fig. 1). Immunocomplex kinase assays with specific antibodies against tomato MPK2 produced similar results (data not shown). Since flg22, chitosan and systemin activated the same MPKs (Fig. 1), our data indicate that systemin perception is absent in mesophyll protoplasts. Our leaf protoplasting protocol is a modification of the protocol by Yoo et al. which results in the generation of mesophyll protoplasts.16 In contrast, suspension-cultured cells do not normally represent specific cell types and it is not known why the S. peruvianum cells are highly sensitive to systemin.Open in a separate windowFigure 1Absence of systemin-induced MPK phosphorylation in mesophyll cells. Protoplasts were generated (protocol available upon request) from S. peruvianum suspension-cultured cells and from S. lycopersicum cv. MicroTom leaves. After a 1.5 hour recovery phase on ice, protoplasts were resuspended in WI medium (0.5 M mannitol, 5 mM ME S pH 5.7, 20 mM KCl), recovered for 1 hour in non-stick tubes with constant rotation on a rotary shaker at room temperature, and then treated with either water (con), 10 nM systemin (sys), 100 nM flg22, or 2.5 µg/ml chitosan (from crab shells—chi) for 10 min at room temperature. Protoplasts were analyzed for MPK phosphorylation by immunoblotting using an anti-phospho-ER K antibody (phospho-p44/42 MA PK (Erk1/2) (Thr202/Tyr204); D13.14.4E; Cell Signaling Technology) at a dilution of 1:2,000. This antibody recognizes MPKs that are phosphorylated on either the Thr and Tyr or on only the Thr within the TE Y phosphorylation motif which is conserved among plant and metazoan MPKs. It is known to recognize the tobacco MPKs SIPK and WIPK21 and Arabidopsis MPK6 and MPK3,22 the orthologs of tomato MPK1/2 and MPK3.23 Bands were visualized as described.10 Proteins on membranes were stained with Ponceau S to demonstrate equal loading.Intriguingly, BRL1, BRL2 and BRL3 are expressed in the vasculature and function in vascular pattern formation in Arabidopsis, while BRI1 is ubiquitously expressed in dividing and elongating cells. BRL3 is even specifically expressed in phloem cells.17 This matches the highly specific localization of prosystemin in the phloem parenchyma cells.11,18 The highest BRI1 expression is found in growing parts of young leaves17,19 while prosystemin is specifically present in the phloem parenchyma cells throughout all developmental stages.11 In this context, it is also interesting to note that application of systemin to tomato plants via the cut stem results in rapid and strong MPK activation. In this assay, systemin is delivered to leaf cells via the transpiration stream and therefore present in vascular tissue.20Based on the combined evidence, we propose that the true systemin receptor is a BRL or similar protein which is expressed in phloem cells in the vicinity of the parenchyma cells that express prosystemin, but not in mesophyll cells. Because of the similarity between BRLs and BRI1, BRI1 was erroneously identified as the systemin receptor. Inappropriate binding of systemin to BRI1 is consistent with the high similarity between BRI1 and BRLs. However, because of the tissue-specificity of the systemin signaling pathway, inappropriate binding of systemin to BRI1 may rarely occur in wild type plants and may not pose an interference problem for either systemin or brassinosteroid signaling.  相似文献   

10.
In young Arabidopsis seedlings, retrograde signaling from plastids regulates the expression of photosynthesis-associated nuclear genes in response to the developmental and functional state of the chloroplasts. The chloroplast-located PPR protein GUN1 is required for signalling following disruption of plastid protein synthesis early in seedling development before full photosynthetic competence has been achieved. Recently we showed that sucrose repression and the correct temporal expression of LHCB1, encoding a light-harvesting chlorophyll protein associated with photosystem II, are perturbed in gun1 mutant seedlings.1 Additionally, we demonstrated that in gun1 seedlings anthocyanin accumulation and the expression of the “early” anthocyanin-biosynthesis genes is perturbed. Early seedling development, predominantly at the stage of hypocotyl elongation and cotyledon expansion, is also affected in gun1 seedlings in response to sucrose, ABA and disruption of plastid protein synthesis by lincomycin. These findings indicate a central role for GUN1 in plastid, sucrose and ABA signalling in early seedling development.Key words: ABA, ABI4, anthocyanin, chloroplast, GUN1, retrograde signalling, sucroseArabidopsis seedlings develop in response to light and other environmental cues. In young seedlings, development is fuelled by mobilization of lipid reserves until chloroplast biogenesis is complete and the seedlings can make the transition to phototrophic growth. The majority of proteins with functions related to photosynthesis are encoded by the nuclear genome, and their expression is coordinated with the expression of genes in the chloroplast genome. In developing seedlings, retrograde signaling from chloroplasts to the nucleus regulates the expression of these nuclear genes and is dependent on the developmental and functional status of the chloroplast. Two classes of gun (genomes uncoupled) mutants defective in retrograde signalling have been identified in Arabidopsis: the first, which comprises gun2–gun5, involves mutations in genes encoding components of tetrapyrrole biosynthesis.2,3 The other comprises gun1, which has mutations in a nuclear gene encoding a plastid-located pentatricopeptide repeat (PPR) protein with an SMR (small MutS-related) domain near the C-terminus.4,5 PPR proteins are known to have roles in RNA processing6 and the SMR domain of GUN1 has been shown to bind DNA,4 but the specific functions of these domains in GUN1 are not yet established. However, GUN1 has been shown to be involved in plastid gene expression-dependent,7 redox,4 ABA1,4 and sucrose signaling,1,4,8 as well as light quality and intensity sensing pathways.911 In addition, GUN1 has been shown to influence anthocyanin biosynthesis, hypocotyl extension and cotyledon expansion.1,11  相似文献   

11.
12.
13.
14.
15.
16.
17.
VERNALIZATION INSENSITIVE 3 (VIN3) encodes a PHD domain chromatin remodelling protein that is induced in response to cold and is required for the establishment of the vernalization response in Arabidopsis thaliana.1 Vernalization is the acquisition of the competence to flower after exposure to prolonged low temperatures, which in Arabidopsis is associated with the epigenetic repression of the floral repressor FLOWERING LOCUS C (FLC).2,3 During vernalization VIN3 binds to the chromatin of the FLC locus,1 and interacts with conserved components of Polycomb-group Repressive Complex 2 (PRC2).4,5 This complex catalyses the tri-methylation of histone H3 lysine 27 (H3K27me3),4,6,7 a repressive chromatin mark that increases at the FLC locus as a result of vernalization.4,710 In our recent paper11 we found that VIN3 is also induced by hypoxic conditions, and as is the case with low temperatures, induction occurs in a quantitative manner. Our experiments indicated that VIN3 is required for the survival of Arabidopsis seedlings exposed to low oxygen conditions. We suggested that the function of VIN3 during low oxygen conditions is likely to involve the mediation of chromatin modifications at certain loci that help the survival of Arabidopsis in response to prolonged hypoxia. Here we discuss the implications of our observations and hypotheses in terms of epigenetic mechanisms controlling gene regulation in response to hypoxia.Key words: arabidopsis, VIN3, FLC, hypoxia, vernalization, chromatin remodelling, survival  相似文献   

18.
19.
20.
Here we announce the complete genome sequence of Croceibacter atlanticus HTCC2559T, which was isolated by high-throughput dilution-to-extinction culturing from the Bermuda Atlantic Time Series station in the Western Sargasso Sea. Strain HTCC2559T contained genes for carotenoid biosynthesis, flavonoid biosynthesis, and several macromolecule-degrading enzymes. The genome confirmed physiological observations of cultivated Croceibacter atlanticus strain HTCC2559T, which identified it as an obligate chemoheterotroph.The phylum Bacteroidetes comprises 6 to ∼30% of total bacterial communities in the ocean by fluorescence in situ hybridization (8-10). Most marine Bacteroidetes are in the family Flavobacteriaceae, most of which are aerobic respiratory heterotrophs that form a well-defined clade by 16S rRNA phylogenetic analyses (4). The members of this family are well known for degrading macromolecules, including chitin, DNA, cellulose, starch, and pectin (17), suggesting their environmental roles as detritus decomposers in the ocean (6). Marine Polaribacter and Dokdonia species in the Flavobacteriaceae have also shown to have photoheterotrophic metabolism mediated by proteorhodopsins (11, 12).Several strains of the family Flavobacteriaceae were isolated from the Sargasso Sea and Oregon coast, using high-throughput culturing approaches (7). Croceibacter atlanticus HTCC2559T was cultivated from seawater collected at a depth of 250 m from the Sargasso Sea and was identified as a new genus in the family Flavobacteriaceae based on its 16S rRNA gene sequence similarities (6). Strain HTCC2559T met the minimal standards for genera of the family Flavobacteriaceae (3) on the basis of phenotypic characteristics (6).Here we report the complete genome sequence of Croceibacter atlanticus HTCC2559T. The genome sequencing was initiated by the J. Craig Venter Institute as a part of the Moore Foundation Microbial Genome Sequencing Project and completed in the current announcement. Gaps among contigs were closed by Genotech Co., Ltd. (Daejeon, Korea), using direct sequencing of combinatorial PCR products (16). The HTCC2559T genome was analyzed with a genome annotation system based on GenDB (14) at Oregon State University and with the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (15, 16).The HTCC2559T genome is 2,952,962 bp long, with 33.9 mol% G+C content, and there was no evidence of plasmids. The number of protein-coding genes was 2,715; there were two copies of the 16S-23S-5S rRNA operon and 36 tRNA genes. The HTCC2559T genome contained genes for a complete tricarboxylic acid cycle, glycolysis, and a pentose phosphate pathway. The genome also contained sets of genes for metabolic enzymes involved in carotenoid biosynthesis and also a serine/glycine hydroxymethyltransferase, which is often associated with the assimilatory serine cycle (13). The potential for HTCC2559T to use bacterial type III polyketide synthase (PKS) needs to be confirmed because this organism had a naringenin-chalcone synthase (CHS) or chalcone synthase (EC 2.3.1.74), a key enzyme in flavonoid biosynthesis. CHS initiates the addition of three molecules of malonyl coenzyme A (malonyl-CoA) to a starter CoA ester (e.g., 4-coumaroyl-CoA) (1) and takes part in a few bacterial type III polyketide synthase systems (1, 2, 5, 18).The complete genome sequence confirmed that strain HTCC2559T is an obligate chemoheterotroph because no genes for phototrophy were found. As expected from physiological characteristics (6), the HTCC2559T genome contained a set of genes coding for enzymes required to degrade high-molecular-weight compounds, including peptidases, metallo-/serine proteases, pectinase, alginate lyases, and α-amylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号