首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caspase-3 is a prototypic executioner caspase that plays a central role in apoptosis. Aza-peptide epoxides are a novel class of irreversible inhibitors that are highly specific for clan CD cysteine proteases. The five crystal structures of caspase-3-aza-peptide epoxide inhibitor complexes reported here reveal the structural basis for the mechanism of inhibition and the specificities at the S1' and the S4 subsites. Unlike the clan CA cysteine proteases, the catalytic histidine in caspase-3 plays a critical role during protonation and subsequent ring opening of the epoxide moiety and facilitates the nucleophilic attack by the active site cysteine. The nucleophilic attack takes place on the C3 carbon atom of the epoxide and results in an irreversible alkylation of the active site cysteine residue. A favorable network of hydrogen bonds involving the oxyanion hole, catalytic histidine, and the atoms in the prime site of the inhibitor enhance the binding affinity and specificity of the aza-peptide epoxide inhibitors toward caspase-3. The studies also reveal that subtle movements of the N-terminal loop of the beta-subunit occur when the P4 Asp is replaced by a P4 Ile, whereas the N-terminal loop and the safety catch Asp179 are completely disordered when the P4 Asp is replaced by P4 Cbz group.  相似文献   

2.
Agniswamy J  Fang B  Weber IT 《The FEBS journal》2007,274(18):4752-4765
Many protein substrates of caspases are cleaved at noncanonical sites in comparison to the recognition motifs reported for the three caspase subgroups. To provide insight into the specificity and aid in the design of drugs to control cell death, crystal structures of caspase-7 were determined in complexes with six peptide analogs (Ac-DMQD-Cho, Ac-DQMD-Cho, Ac-DNLD-Cho, Ac-IEPD-Cho, Ac-ESMD-Cho, Ac-WEHD-Cho) that span the major recognition motifs of the three subgroups. The crystal structures show that the S2 pocket of caspase-7 can accommodate diverse residues. Glu is not required at the P3 position because Ac-DMQD-Cho, Ac-DQMD-Cho and Ac-DNLD-Cho with varied P3 residues are almost as potent as the canonical Ac-DEVD-Cho. P4 Asp was present in the better inhibitors of caspase-7. However, the S4 pocket of executioner caspase-7 has alternate regions for binding of small branched aliphatic or polar residues similar to those of initiator caspase-8. The observed plasticity of the caspase subsites agrees very well with the reported cleavage of many proteins at noncanonical sites. The results imply that factors other than the P4-P1 sequence, such as exosites, contribute to the in vivo substrate specificity of caspases. The novel peptide binding site identified on the molecular surface of the current structures is suggested to be an exosite of caspase-7. These results should be considered in the design of selective small molecule inhibitors of this pharmacologically important protease.  相似文献   

3.
Caspase-3 recognition of various P4 residues in its numerous protein substrates was investigated by crystallography, kinetics, and calculations on model complexes. Asp is the most frequent P4 residue in peptide substrates, although a wide variety of P4 residues are found in the cellular proteins cleaved by caspase-3. The binding of peptidic inhibitors with hydrophobic P4 residues, or no P4 residue, is illustrated by crystal structures of caspase-3 complexes with Ac-IEPD-Cho, Ac-WEHD-Cho, Ac-YVAD-Cho, and Boc-D(OMe)-Fmk at resolutions of 1.9–2.6 Å. The P4 residues formed favorable hydrophobic interactions in two separate hydrophobic regions of the binding site. The side chains of P4 Ile and Tyr form hydrophobic interactions with caspase-3 residues Trp206 and Trp214 within a non-polar pocket of the S4 subsite, while P4 Trp interacts with Phe250 and Phe252 that can also form the S5 subsite. These interactions of hydrophobic P4 residues are distinct from those for polar P4 Asp, which indicates the adaptability of caspase-3 for binding diverse P4 residues. The predicted trends in peptide binding from molecular models had high correlation with experimental values for peptide inhibitors. Analysis of structural models for the binding of 20 different amino acids at P4 in the aldehyde peptide Ac-XEVD-Cho suggested that the majority of hydrophilic P4 residues interact with Phe250, while hydrophobic residues interact with Trp206, Phe250, and Trp214. Overall, the S4 pocket of caspase-3 exhibits flexible adaptation for different residues and the new structures and models, especially for hydrophobic P4 residues, will be helpful for the design of caspase-3 based drugs.  相似文献   

4.
Caspase-8 is an initiator enzyme in the Fas-mediated pathway of which the downstream executioner caspase-3 is a physiological target. Caspases are cysteine proteases that are specific for substrates with an aspartic acid residue at the P(1) position and have an optimal recognition motif that incorporates four amino acid residues N-terminal to the cleavage site. Caspase-8 has been classified as a group III caspase member because it shows a preference for a small hydrophobic residue at the P(4) substrate position. We report the X-ray crystallographic structure of caspase-8 in complex with benzyloxycarbonyl-Asp-Glu-Val-Asp-aldehyde (Z-DEVD), a specific group II caspase inhibitor. The structure shows that the inhibitor interacts favourably with the enzyme in subsite S(4). Kinetic data reveal that Z-DEVD (K(i) 2 nM) is an almost equally potent inhibitor of caspase-8 as the specific group III inhibitor Boc-IETD-aldehyde (K(i) 1 nM). In view of this finding, the original classification of caspases into three specificity groups needs to be modified, at least for caspase-8, which tolerates small hydrophobic residues as well as the acidic residue Asp in subsite S(4). We propose that the subsite S(3) must be considered as an important specificity-determining factor.  相似文献   

5.
We have developed a substrate-phage approach for examining the substrate specificities of an important group of proteases involved in apoptosis--the caspases. After establishing selection conditions with caspases-3 and caspase-8 vs control substrate-phage, we sorted X4 and X6 diversity libraries, identified consensus motifs that agree with previously defined caspase substrate motifs, confirmed the selection of active substrates using synthetic peptide rate assays under a range of buffer conditions, and compared kinetic parameters for selected substrates. The libraries produced some variations on the canonical motifs. From caspase-3 selections, a phage-derived synthetic peptide, DLVD, was hydrolyzed up to 170% faster than the canonical substrate DEVD. The P4 Asp residue was essential for good protease-sensitivity, but even substrates with substitutions at P4 were selected by phage and shown to be hydrolyzed. Caspase-8 selections, as expected, yielded predominantly clones containing a Glu at P3. In this case, the most frequent phage-derived peptide, LEVD, was cleaved at a rate of only 20% of the canonical caspase-8 substrate LETD. However, based on substitutions observed in the phage selectants at P4, a substrate peptide, AETD, was designed and shown to be hydrolyzed up to 160% faster than LETD. We consider factors that may contribute to differences in caspase substrate-phage selections vs synthetic peptide studies on the caspases, and suggest that the two approaches may offer complementary information.  相似文献   

6.
BACKGROUND: In the initial stages of Fas-mediated apoptosis the cysteine protease caspase-8 is recruited to the cell receptor as a zymogen (procaspase-8) and is incorporated into the death-signalling complex. Procaspase-8 is subsequently activated leading to a cascade of proteolytic events, one of them being the activation of caspase-3, and ultimately resulting in cell destruction. Variations in the substrate specificity of different caspases have been reported. RESULTS: We report here the crystal structure of a complex of the activated human caspase-8 (proteolytic domain) with the irreversible peptidic inhibitor Z-Glu-Val-Asp-dichloromethylketone at 2.8 A resolution. This is the first structure of a representative of the long prodomain initiator caspases and of the group III substrate specificity class. The overall protein architecture resembles the caspase-1 and caspase-3 folds, but shows distinct structural differences in regions forming the active site. In particular, differences observed in subsites S(3), S(4) and the loops involved in inhibitor interactions explain the preference of caspase-8 for substrates with the sequence (Leu/Val)-Glu-X-Asp. CONCLUSIONS: The structural differences could be correlated with the observed substrate specificities of caspase-1, caspase-3 and caspase-8, as determined from kinetic experiments. This information will help us to understand the role of the various caspases in the propagation of the apoptotic signal. The information gained from this investigation should be useful for the design of specific inhibitors.  相似文献   

7.
Some members of the inhibitor of apoptosis (IAP) family suppress apoptosis by neutralizing caspases. The current model suggests that all caspase-regulatory IAPs function as direct enzyme inhibitors, blocking effector caspases by binding to their catalytically active pockets. Here we show that IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. Whereas XIAP binds directly to the active-site pockets of effector caspases, we find that regulation of effector caspases by Drosophila IAP1 (DIAP1) requires an evolutionarily conserved IAP-binding motif (IBM) at the neo-amino terminus of the large caspase subunit. Remarkably, unlike XIAP, DIAP1-sequestered effector caspases remain catalytically active, suggesting that DIAP1 does not function as a bona fide enzyme inhibitor. Moreover, we demonstrate that the mammalian IAP c-IAP1 interacts with caspase-7 in an exclusively IBM-dependent, but active site pocket-independent, manner that is mechanistically similar to DIAP1. The importance of IBM-mediated regulation of effector-caspases in vivo is substantiated by the enhanced apoptotic potency of IBM-mutant versions of drICE, DCP-1 and caspase-7.  相似文献   

8.
Mast cells play an important role in both allergy and innate immunity. Recently, we demonstrated an active interaction between human mast cells and Pseudomonas aeruginosa leading to the production of multiple cytokines. Here, we show that both primary cultured human cord blood-derived mast cells and the human mast cell line HMC-1 undergo apoptosis as determined by single-stranded DNA (ssDNA) formation after stimulation with P. aeruginosa exotoxin A (ETA), a major toxin produced by this bacterium. ETA-induced ssDNA formation was completely inhibited by Z-VAD (where Z is benzyloxycarbonyl), which blocks multiple caspases, suggesting a role for caspases in this process. Active caspase-3 formation in mast cells after an ETA challenge was detected by both Western blotting and flow cytometry analysis. ETA-induced caspase-3 activity in human mast cells was demonstrated by the detection of a characteristic 23 kDa product of D4-GDI (where GDI is guanine nucleotide dissociation inhibitor), an endogenous caspase-3 substrate. Interestingly, a specific caspase-8 inhibitor, Z-IETD-fmk (where fmk is fluoromethyl ketone), blocked ETA-induced cleavage of D4-GDI, but a caspase-9 inhibitor (Z-LEHD-fmk) did not. Treatment of mast cells with caspase-3 inhibitor Z-DEVD-fmk or caspase-8 inhibitor Z-IETD-fmk reduced the generation of ssDNA induced by ETA, suggesting a role for caspase-8 and -3 in ETA-induced mast cell apoptosis. Furthermore, treatment of mast cells with ETA induced decreases of the short form and a long form (p43) of Fas-associated death domain protein (FADD)-like interleukin-1beta-converting enzyme (FLICE) (caspase-8)-inhibitory proteins (FLIPs), which are endogenous caspase-8 inhibitors. Taken together, these results suggest that ETA-induced mast cell apoptosis involves down-regulation of antiapoptotic proteins, FLIPs, and activation of caspase-8 and -3 pathways.  相似文献   

9.
The P35 protein derived from the baculovirus Autographa californica NPV has been characterized as an inhibitor of apoptotic cell death in a great number of organisms and situations. This potential has been further mapped to the capacity of P35 to inhibit all caspases investigated. Here we show that P35 does not inhibit caspase-9 activity in a cell-free system of mammalian caspase activation. In cell extracts, cytochrome c addition led to the activation of caspase-9, -3 and -7. When cytosolic extract from cells expressing P35 was added, caspase-9-mediated maturation of caspase-3 proceeded normally but caspase-3-mediated further events were prevented, such as complete processing of caspase-3, processing of caspase-7 and the appearance of DEVD-cleaving activity. The P35 protein from Bombyx mori NPV, which has been reported to have a much weaker anti-apoptosis activity in vivo, was found also to have significant caspase-3-inhibiting activity. These data suggest that P35 evolved specifically to inhibit effector rather than initiator caspases.  相似文献   

10.
Bcl-2 oncogene expression plays a role in the establishment of persistent viral infection by blocking virus-induced apoptosis. This might be achieved by preventing virus-induced activation of caspase-3, an IL-1beta-converting enzyme (ICE)-like cysteine protease that has been implicated in the death effector phase of apoptosis. Contrary to this model, we show that three cell types highly overexpressing functional Bcl-2 displayed caspase-3 activation and underwent apoptosis in response to infection with alphaviruses Semliki Forest and Sindbis as efficiently as vector control counterparts. In all three cell types, overexpressed 26 kDa Bcl-2 was cleaved into a 23 kDa protein. Antibody epitope mapping revealed that cleavage occurred at one or two target sites for caspases within the amino acid region YEWD31 (downward arrow) AGD34 (downward arrow) A, removing the N-terminal BH4 region known to be essential for the death-protective activity of Bcl-2. Preincubation of cells with the caspase inhibitor Z-VAD prevented Bcl-2 cleavage and partially restored the protective activity of Bcl-2 against virus-induced apoptosis. Moreover, a murine Bcl-2 mutant having Asp31, Asp34 and Asp36 substituted by Glu was resistant to proteolytic cleavage and abrogated apoptosis following virus infection. These findings indicate that alphaviruses can trigger a caspase-mediated inactivation of Bcl-2 in order to evade the death protection imposed by this survival factor.  相似文献   

11.
Caspases are cysteine proteases that play a critical role in the initiation and regulation of apoptosis. These enzymes act in a cascade to promote cell death through proteolytic cleavage of intracellular proteins. Since activation of apoptosis is implicated in human diseases such as cancer and neurodegenerative disorders, caspases are targets for drugs designed to modulate their action. Active caspases are heterodimeric enzymes with two symmetrically arranged active sites at opposite ends of the molecule. A number of crystal structures of caspases with peptides or proteins bound at the active sites have defined the mechanism of action of these enzymes, but molecular information about the active sites before substrate engagement has been lacking. As part of a study of peptidyl inhibitors of caspase-3, we crystallized a complex where the inhibitor did not bind in the active site. Here we present the crystal structure of the unoccupied substrate-binding site of caspase-3. No large conformational differences were apparent when this site was compared with that in enzyme-inhibitor complexes. Instead, the 1.9 A structure reveals critical side chain movements in a hydrophobic pocket in the active site. Notably, the side chain of tyrosine204 is rotated by approximately 90 degrees so that the phenol group occupies the S2 subsite in the active site. Thus, binding of substrate or inhibitors is impeded unless rotation of this side chain opens the area. The positions of these side chains may have important implications for the directed design of inhibitors of caspase-3 or caspase-7.  相似文献   

12.
The molecular basis for the substrate specificity of human caspase-3 has been investigated using peptide analog inhibitors and substrates that vary at the P2, P3, and P5 positions. Crystal structures were determined of caspase-3 complexes with the substrate analogs at resolutions of 1.7 A to 2.3 A. Differences in the interactions of caspase-3 with the analogs are consistent with the Ki values of 1.3 nM, 6.5 nM, and 12.4 nM for Ac-DEVD-Cho, Ac-VDVAD-Cho and Ac-DMQD-Cho, respectively, and relative kcat/Km values of 100%, 37% and 17% for the corresponding peptide substrates. The bound peptide analogs show very similar interactions for the main-chain atoms and the conserved P1 Asp and P4 Asp, while interactions vary for P2 and P3. P2 lies in a hydrophobic S2 groove, consistent with the weaker inhibition of Ac-DMQD-Cho with polar P2 Gln. S3 is a surface hydrophilic site with favorable polar interactions with P3 Glu in Ac-DEVD-Cho. Ac-DMQD-Cho and Ac-VDVAD-Cho have hydrophobic P3 residues that are not optimal in the polar S3 site, consistent with their weaker inhibition. A hydrophobic S5 site was identified for caspase-3, where the side-chains of Phe250 and Phe252 interact with P5 Val of Ac-VDVAD-Cho, and enclose the substrate-binding site by conformational change. The kinetic importance of hydrophobic P5 residues was confirmed by more efficient hydrolysis of caspase-3 substrates Ac-VDVAD-pNA and Ac-LDVAD-pNA compared with Ac-DVAD-pNA. In contrast, caspase-7 showed less efficient hydrolysis of the substrates with P5 Val or Leu compared with Ac-DVAD-pNA. Caspase-3 and caspase-2 share similar hydrophobic S5 sites, while caspases 1, 7, 8 and 9 do not have structurally equivalent hydrophobic residues; these caspases are likely to differ in their selectivity for the P5 position of substrates. The distinct selectivity for P5 will help define the particular substrates and signaling pathways associated with each caspase.  相似文献   

13.
Several caspases have been implicated in the pathogenesis of Huntington's disease (HD); however, existing caspase inhibitors lack the selectivity required to investigate the specific involvement of individual caspases in the neuronal cell death associated with HD. In order to explore the potential role played by caspase-2, the potent but non-selective canonical Ac-VDVAD-CHO caspase-2 inhibitor 1 was rationally modified at the P(2) residue in an attempt to decrease its activity against caspase-3. With the aid of structural information on the caspase-2, and -3 active sites and molecular modeling, a 3-(S)-substituted-l-proline along with four additional scaffold variants were selected as P(2) elements for their predicted ability to clash sterically with a residue of the caspase-3 S(2) pocket. These elements were then incorporated by solid-phase synthesis into pentapeptide aldehydes 33a-v. Proline-based compound 33h bearing a bulky 3-(S)-substituent displayed advantageous characteristics in biochemical and cellular assays with 20- to 60-fold increased selectivity for caspase-2 and ~200-fold decreased caspase-3 potency compared to the reference inhibitor 1. Further optimization of this prototype compound may lead to the discovery of valuable pharmacological tools for the study of caspase-2 mediated cell death, particularly as it relates to HD.  相似文献   

14.
Activation of the caspase family of cysteine proteases results in the deregulation of cellular homeostasis and apoptosis. This deregulation is a key factor in the development of Alzheimer's disease, Parkinson's disease, and cancer. Thus, the caspases are important drug targets for the therapeutic intervention of a number of pathological states involving inflammation and apoptosis. In this article, we report the results of inhibition kinetics and binding studies utilizing fluorescence spectroscopy and isothermal titration calorimetry to characterize the mechanism of interaction of caspase-3 with three different classes of inhibitors: peptidomimetics, isatins, and pyrimidoindolones. The peptidomimetics and pyrimidoindolones bind to both active sites of the caspase-3 homodimer with equal affinity and favorable enthalpic and entropic binding contributions. Enzyme activity is abolished when both active sites are occupied with the above inhibitors. In contrast, the isatins bind to caspase-3 with significant heat release (-12 kcal/mol) and negative entropy. In addition, enzyme activity is abolished upon isatin binding to one active site of the homodimer resulting in half-site reactivity. Our studies provide important mechanistic insight into inhibitor interactions with caspase-3 and a way to characterize inhibitor interactions that may not be readily apparent from the crystal structure.  相似文献   

15.
Caspase-mediated apoptosis has important roles in normal cell differentiation and aging and in many diseases including cancer, neuromuscular disorders and neurodegenerative diseases. Therefore, modulation of caspase activity and conformational states is of therapeutic importance. We report crystal structures of a new unliganded conformation of caspase-7 and the inhibited caspase-7 with the tetrapeptide Ac-YVAD-Cho. Different conformational states and mechanisms for substrate recognition have been proposed based on unliganded structures of the redundant apoptotic executioner caspase-3 and -7. The current study shows that the executioner caspase-3 and -7 have similar conformations for the unliganded active site as well as the inhibitor-bound active site. The new unliganded caspase-7 structure exhibits the tyrosine flipping mechanism in which the Tyr230 has rotated to block entry to the S2 binding site similar to the active site conformation of unliganded caspase-3. The inhibited structure of caspase-7/YVAD shows that the P4 Tyr binds the S4 region specific to polar residues at the expense of a main chain hydrogen bond between the P4 amide and carbonyl oxygen of caspase-7 Gln 276, which is similar to the caspase-3 complex. This new knowledge of the structures and conformational states of unliganded and inhibited caspases will be important for the design of drugs to modulate caspase activity and apoptosis.  相似文献   

16.
Caspases, Asp-specific cysteine protease, cleave proteins upon apoptosis. To identify and characterize new caspase substrate in the nucleus, the proteome of the rat liver extracts was analyzed after the treatment with caspases. One of the identified proteins was KSRP/FBP2 that is preferentially cleaved by caspase-3 and 7 at two sites after Asp102 and Asp183. The second site was cleaved only in the protein produced in cells, but not in in vitro translated protein. These results indicate that more than the primary sequence may be important for the recognition by caspases.  相似文献   

17.
The cell death protease caspase-2 has recently been recognized as the most apical caspase in the apoptotic cascade ignited during cell stress signaling. Cytotoxic stress, such as that caused by cancer therapies, leads to activation of caspase-2, which acts as a direct effector of the mitochondrion-dependent apoptotic pathway resulting in programmed cell death. Here we report the x-ray structure of caspase-2 in complex with the inhibitor acetyl-Leu-Asp-Glu-Ser-Asp-aldehyde at 1.65-A resolution. Compared with other caspases, significant structural differences prevail in the active site region and the dimer interface. The structure reveals the hydrophobic properties of the S5 specificity pocket, which is unique to caspase-2, and provides the details of the inhibitor-protein interactions in subsites S1-S4. These features form the basis of caspase-2 specificity and allow the design of caspase-2-directed ligands for medical and analytical use. Another unique feature of caspase-2 is a disulfide bridge at the dimer interface, which covalently links the two monomers. Consistent with this finding, caspase-2 exists as a (p19/p12)2 dimer in solution, even in the absence of substrates or inhibitors. The intersubunit disulfide bridge stabilizes the dimeric form of caspase-2, whereas all other long prodomain caspases exist as monomers in solution, and dimer formation is driven by ligand binding. Therefore, the central disulfide bridge appears to represent a novel way of dimer stabilization in caspases.  相似文献   

18.
We have previously reported the activation of procalpain mu (precursor for low-calcium-requiring calpain) in apoptotic cells using a cleavage-site-directed antibody specific to active calpain [Kikuchi, H. and Imajoh-Ohmi, S. (1995) Cell Death Differ. 2, 195-199]. In this study, calpastatin, the endogenous inhibitor protein for calpain, was cleaved to a 90-kDa polypeptide during apoptosis in human Jurkat T cells. The limited proteolysis of calpastatin preceded the autolytic activation of procalpain. Inhibitors for caspases rescued the cells from apoptosis and simultaneously inhibited the cleavage of calpastatin. The full-length recombinant calpastatin was also cleaved by caspase-3 or caspase-7 at Asp-233 into the same size fragment. Cys-241 was also targeted by these caspases in vitro but not in apoptotic cells. Caspase-digested calpastatin lost its amino-terminal inhibitory unit, and inhibited three moles of calpain per mole. Our findings suggest that caspases trigger the decontrol of calpain activity suppression by degrading calpastatin.  相似文献   

19.
Apoptosis, or programmed cell death, plays a central role in the development and homeostasis of an organism. The breakdown of cellular proteins in apoptosis is mediated by caspases, which comprise a highly conserved family of cysteine proteases with specificity for aspartic acid residues at the P1 positions of their substrates. Multiple lines of evidence show that caspase-9 is critical for an apoptosis pathway mediated via the mitochondria. In this study, the three-dimensional structure of the catalytic domain of caspase-9 and its interaction with the inhibitor acetyl-Asp-Val-Ala-Asp fluoromethyl ketone (Ac-DVAD-fmk) have been predicted by a segment matching modeling procedure. As expected, the predicted caspase-9 structure shows both a high similarity in the overall folding topology and remarkable differences in the surface loop regions as compared to other caspase family members such as caspase-1, -3 and -8, for which crystal structures have been determined. This kind of comparative analysis reflects the convergence-divergence duality among the caspases. Moreover, some subtle differences have been observed between caspase-9 and caspase-3 in the subsite contacts with the covalently linked inhibitor Ac-DVAD-fmk. Based on the X-ray structural analysis of caspase-8, a main chain carbonyl oxygen appears to be involved in a catalytic triad with the active site Cys and His residues. The corresponding carbonyl oxygen in caspase-9, together with other expected features of the catalytic apparatus, appears in our model. The predicted structure of caspase-9 can serve as a reference for subsite analysis relative to rational design of highly selective caspase inhibitors for therapeutic application.  相似文献   

20.
Direct IAP binding protein with low pI/second mitochondrial activator of caspases, HtrA2/Omi and GstPT/eRF3 are mammalian proteins that bind via N-terminal inhibitor of apoptosis protein (IAP) binding motifs (IBMs) to the baculoviral IAP repeat (BIR) domains of IAPs. These interactions can prevent IAPs from inhibiting caspases, or displace active caspases, thereby promoting cell death. We have identified several additional potential IAP antagonists, including glutamate dehydrogenase (GdH), Nipsnap 3 and 4, CLPX, leucine-rich pentatricopeptide repeat motif-containing protein and 3-hydroxyisobutyrate dehydrogenase. All are mitochondrial proteins from which N-terminal import sequences are removed generating N-terminal IBMs. Whereas most of these proteins have alanine at the N-terminal position, as observed for previously described antagonists, GdH has an N-terminal serine residue that is essential for X-linked IAP (XIAP) interaction. These newly described IAP binding proteins interact with XIAP mainly via BIR2, with binding eliminated or significantly reduced by a single point mutation (D214S) within this domain. Through this interaction, many are able to antagonise XIAP inhibition of caspase 3 in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号