首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptosis or programmed cell death is a key regulator of physiological growth control and regulation of tissue homeostasis. Tipping the balance between cell death and proliferation in favor of cell survival may result in tumor formation. Moreover, current cancer therapies, e.g. chemotherapy, gamma-irradiation, immunotherapy or suicide gene therapy, primarily exert their antitumor effect by triggering an evolutionary conserved apoptosis program in cancer cells. For example, death receptor signaling has been implied to contribute to the efficacy of cancer therapy. Thus, failure to undergo apoptosis in response to anticancer therapy because of defects in death receptor pathways may result in resistance. Further insights into the mechanisms regulating apoptosis in response to anticancer therapy and how cancer cells evade cell death may provide novel opportunities for targeted therapeutics. Thus, agents designed to selectively activate death receptor pathways may enhance the efficacy of conventional therapies and may even overcome some forms of cancer resistance.  相似文献   

2.
Apoptosis and autophagy are two evolutionarily conserved processes that maintain homeostasis during stress. Although the two pathways utilize fundamentally distinct machinery, apoptosis and autophagy are highly interconnected and share many key regulators. The crosstalk between apoptosis and autophagy is complex, as autophagy can function to promote cell survival or cell death under various cellular conditions. The molecular mechanisms of crosstalk are beginning to be elucidated and have critical implications for the treatment of various diseases, such as cancer. Sphingolipids are a class of bioactive lipids that mediate many key cellular processes, including apoptosis and autophagy. By targeting several of the shared regulators, sphingolipid metabolites differentially regulate the induction of apoptosis and autophagy. Importantly, individual sphingolipid species appear to “switch” autophagy toward cell survival (e.g., sphingosine-1-phosphate) or cell death (e.g., ceramide, gangliosides). This review assesses the current understanding of sphingolipid-induced apoptosis and autophagy to address how sphingolipids mediate the “switch” between the cell survival and cell death. As sphingolipid metabolism is frequently dysregulated in cancer, sphingolipid-modulating agents, or sphingomimetics, have emerged as a novel chemotherapeutic strategy. Ultimately, a greater understanding of sphingolipid-mediated crosstalk between apoptosis and autophagy may be critical for enhancing the chemotherapeutic efficacy of these agents.  相似文献   

3.
《MABS-AUSTIN》2013,5(4):338-351
The use of monoclonal antibodies (mAbs) has become a general approach for specifically targeting and treating human disease. In oncology, the therapeutic utility of mAbs is usually evaluated in the context of treatment with standard of care, as well as other small molecule targeted therapies. Many anti-cancer antibody modalities have achieved validation, including the targeting of growth factor and angiogenesis pathways, the induction of tumor cell killing or apoptosis, and the blocking of immune inhibitory mechanisms to stimulate anti-tumor responses. But, as with other targeted therapies, few antibodies are curative because of biological complexities that underlie tumor formation and redundancies in molecular pathways that enable tumors to adapt and show resistance to treatment. This review discusses the combinations of antibody therapeutics that are emerging to improve efficacy and durability within a specific biological mechanism (e.g., immunomodulation or the inhibition of angiogenesis) and across multiple biological pathways (e.g., inhibition of tumor growth and induction of tumor cell apoptosis).  相似文献   

4.
Breast cancer (BCa) has become the leading cause of death in women worldwide. Irrespective of advancement in cancer treatments, e.g., surgery, radiation, chemotherapy, hormonal therapy, immunotherapy, and targeted therapy, recurrence leading to metastasis poses the greatest threat in BCa management. BCa receptors estrogen (ER), progesterone (PR), and human epidermal growth factor receptor-2 (HER2) hold significant reputations as prognostic and predictive biomarkers in therapeutic decision-making. Under normal physiological conditions, these receptors modulate critical biological functions, e.g., cell migration, proliferation, and apoptosis events, etc. However, aberrant expression causes deviations, triggering signaling course to adapt permanent switching “ON” mode. The later events induce rapid and unrestrained proliferation leading to cancer. As conventional ways of cancer management ultimately lead to resistance; therefore, recently targeted therapies have been extensively studied to conquer resistance. Targeting various small molecules in downstream signaling has become an area of interest in scientific society. The severity of cancer converts many folds soon after it takes on a migratory approach that eventually commences metastasis. Cancer migration comprises protrusion of cytoplasm at the leading edge of the migration forward-facing, establishing adhesions with the basic cell-matrix, disassembly of the adhesions at the back end of the cell, and actin-myosin fiber contractions to pull the bulk of the cytoplasm forward. On the other hand, metastatic progression comprises a cascade of events, including invasion, migration, and establishment of tumor microenvironment. The progression of BCa from early stage to metastatic development causes remarkable heterogeneity. Interference at any explicit level could hamper the process, and it has thus become an area of interest for scientists. Metastasis is the ultimate cause of spreading tumor cells to invade distant organs. Recently small molecule inhibitors of protein tyrosine kinases, which can cross the blood-brain barrier, have become a center point of research for investigators in developing novel treatment strategies against BCa management.  相似文献   

5.
Basic FGF (bFGF) was discovered as a typical inducer of angiogenesis and has already been studied for 3 decades. Recent evidence indicates that bFGF plays different roles and controls signaling pathways that participate in the hallmarks of cancer, underscoring bFGF an appealing target for anti-cancer therapy. However, the early clinical trials designed to block bFGF signaling showed safety without satisfiable benefits for cancer patients. In this review, we firstly discuss bFGF's canonical signaling pathways and later review newly identified bFGF's functions that contribute to the cancer hallmarks besides its typical role in angiogenesis. After, we summarize the role of bFGF as a therapeutic target in response to different cancer therapies including radiotherapy, chemotherapy, targeted therapy, immunotherapy, and highlight the difficulties we must solve regarding the design of drugs targeting specifically bFGF. We also emphasize the need, especially for natural bFGF traps, to deepen their molecular mechanisms of action considering the specific context of cancer with different FGFR status, as well as the urgence of stratifying patients for both anti-bFGF first line and second line anti-cancer therapy. Finally, a perspective on potential feed-forward oncogenic signaling pathways mediated by bFGF is made. We discuss the importance of developing additional robust biomarkers to select patients who will benefit from bFGF-targeted therapy, as well as the rationale of developing combinatory therapies targeting either bFGF and/or its intracellular (co)effectors. This would ultimately provide novel therapeutic strategies to fight cancer.  相似文献   

6.
The use of monoclonal antibodies (mAbs) has become a general approach for specifically targeting and treating human disease. In oncology, the therapeutic utility of mAbs is usually evaluated in the context of treatment with standard of care, as well as other small molecule targeted therapies. Many anti-cancer antibody modalities have achieved validation, including the targeting of growth factor and angiogenesis pathways, the induction of tumor cell killing or apoptosis and the blocking of immune inhibitory mechanisms to stimulate anti-tumor responses. But, as with other targeted therapies, few antibodies are curative because of biological complexities that underlie tumor formation and redundancies in molecular pathways that enable tumors to adapt and show resistance to treatment. This review discusses the combinations of antibody therapeutics that are emerging to improve efficacy and durability within a specific biological mechanism (e.g., immunomodulation or the inhibition of angiogenesis) and across multiple biological pathways (e.g., inhibition of tumor growth and induction of tumor cell apoptosis).Key words: antibody combination, receptor tyrosine kinase, angiogenesis, immunomodulation, apoptosis, CD20  相似文献   

7.
Simone Fulda 《Mitochondrion》2010,10(6):598-603
Mitochondria are key regulators of many forms of cell death and often altered in human malignancies. Since the inefficacy of established cancer therapies is, at least to a large extent, the result of oncogenic blockade of cell death pathways, compounds that directly affect mitochondrial functions are considered to present a promising alternative approach to eradicate chemotherapy-resistant cancer cells. Since mitochondria-targeted drugs can directly initiate mitochondrial perturbations independent of upstream signaling events, these agents may induce cell death and overcome drug resistance under circumstances, where conventional drugs fail to act because pathways upstream of mitochondria are frequently disrupted in cancer cells. A better understanding of the fundamental mechanisms that govern the complex processes of mitochondrial apoptosis is expected to open new perspectives for cancer drug development. Hopefully, this knowledge will eventually be translated into medical application for the treatment of human cancer.  相似文献   

8.
9.
In principle, targeted therapies have optimal activity against a specific subset of tumors that depend upon the targeted molecule or pathway for growth, survival, or metastasis. Consequently, it is important in drug development and clinical practice to have predictive biomarkers that can reliably identify patients who will benefit from a given therapy. We analyzed tumor cell-line secretomes (conditioned cell media) to look for predictive biomarkers; secretomes represent a potential source for potential biomarkers that are expressed in intracellular signaling and therefore may reflect changes induced by targeted therapy. Using Gene Ontology, we classified by function the secretome proteins of 12 tumor cell lines of different histotypes. Representations and hierarchical relationships among the functional groups differed among the cell lines. Using bioinformatics tools, we identified proteins involved in intracellular signaling pathways. For example, we found that secretome proteins related to TGF-beta signaling in thyroid cancer cells, such as vasorin, CD109, and βIG-H3 (TGFBI), were sensitive to RPI-1 and dasatinib treatments, which have been previously demonstrated to be effective in blocking cell proliferation. The secretome may be a valuable source of potential biomarkers for detecting cancer and measuring the effectiveness of cancer therapies.  相似文献   

10.
Long non‐coding RNAs (lncRNAs) are important regulators of many cellular processes, and their aberrant expression and/or function is associated with many different diseases, including cancer. However, the identification of functional lncRNAs in gastric cancer is still a challenge. In this study, we describe a novel functional lncRNA, linc00483, that is upregulated and associated with tumorigenesis, tumour size, metastasis and poor prognosis in gastric cancer. In our study, linc00483 promoted gastric cancer cell proliferation, invasiveness and metastasis in vitro and in vivo. Mechanistically, upregulated expression of linc00483 in gastric cancer acts as a sponge to absorb endogenous tumour suppressor miR‐30a‐3p. Furthermore, it restores SPAG9 expression, which is negatively regulated by miR‐30a‐3p, and actives MAPK signaling pathway in gastric cancer cells. Thus, linc00483 is an oncogenic lncRNA in gastric cancer and targeting linc00483 or its pathway can potentially be useful in development of targeted therapies for patients with gastric cancer. Our results show that linc00483 is an important regulator in carcinogenesis and may be a useful biomarker to predict prognosis of gastric cancer patients. We believe our findings are novel and will be of interest to scientists working in many areas related to biomarkers in cancer.  相似文献   

11.
Targeting apoptotic cell death pathways provides wide-ranging opportunities for the discovery and development of novel drugs. Some targeted therapies that selectively induce apoptosis in cancer cells are already marketed, and numerous pro-apoptotic drugs for treating cancer are currently being developed. The anti-apoptotic drugs that are most advanced in development are targeting acute disease indications such as stroke, myocardial infarction and sepsis, in which the role of apoptosis has been best defined and inhibitors of the apoptotic pathway have shown activity in various animal models. In the future, novel drugs might also result from an understanding of apoptotic pathways in chronic disorders.  相似文献   

12.
Cardiovascular diseases are a major cause of human death worldwide. Excessive proliferation of vascular smooth muscle cells contributes to the etiology of such diseases, including atherosclerosis, restenosis, and pulmonary hypertension. The control of vascular cell proliferation is complex and encompasses interactions of many regulatory molecules and signaling pathways. Herein, we recapitulated the importance of signaling cascades relevant for the regulation of vascular cell proliferation. Detailed understanding of the mechanism underlying this process is essential for the identification of new lead compounds (e.g., natural products) for vascular therapies.  相似文献   

13.
14.
Cancer remains a major health issue in the world and the effectiveness of current therapies is limited resulting in disease recurrence and resistance to therapy. Therefore to overcome disease recurrence and have improved treatment efficacy there is a continued effort to develop and test new anticancer drugs that are natural or synthetic - (conventional chemotherapeutics, small molecule inhibitors) and biologic (antibody, tumor suppressor genes, oligonucleotide) product. In parallel, efforts for identifying molecular targets and signaling pathways to which cancer cells are “addicted” are underway. By inhibiting critical signaling pathways that is crucial for cancer cell survival, it is expected that the cancer cells will undergo a withdrawal symptom akin to “de-addiction” resulting in cell death. Thus, the key for having an improved and greater control on tumor growth and metastasis is to develop a therapeutic that is able to kill tumor cells efficiently by modulating critical signaling pathways on which cancer cells rely for their survival.Currently several small molecule inhibitors targeted towards unique molecular signaling pathways have been developed and tested in the clinic. Few of these inhibitors have shown efficacy while others have failed. Thus, targeting a single molecule or pathway may be insufficient to completely block cancer cell proliferation and survival. It is therefore important to identify and test an anticancer drug that can inhibit multiple signaling pathways in a cancer cell, control growth of both primary and metastatic tumors and is safe.One biologic agent that has the characteristics of serving as a potent anticancer drug is interleukin (IL)-24. IL-24 suppresses multiple signaling pathways in a broad-spectrum of human cancer cells leading to tumor cell death, inhibition of tumor angiogenesis and metastasis. Additionally, combining IL-24 with other therapies demonstrated additive to synergistic antitumor activity. Clinical testing of IL-24 as a gene-based therapeutic for the treatment of solid tumors demonstrated that IL-24 is efficacious and is safe. The unique features of IL-24 support its further development as an anticancer drug for cancer treatment.In this review we summarize the current understanding on the molecular targets and signaling pathways regulated by IL-24 in mediating its anticancer activity.  相似文献   

15.
16.
The microtubule and microfilament cytoskeletal systems as well as cell-to-cell contacts and cell–matrix interactions are critical regulators of cell structure and function. Alterations in cell shape profoundly influence signaling events and gene expression programs that impact a spectrum of biological responses including cell growth, migration and apoptosis. These same pathways also contribute to the progression of several important pathologic conditions (e.g., arteriosclerosis, vascular fibrosis, and endothelial dysfunction). Indeed, hemodynamic forces in the vascular compartment are established modifiers of endothelial and smooth muscle cell cytoarchitecture and orchestrate complex genetic and biological responses in concert with contributions from the extracellular matrix (ECM), growth factors (e.g., EGF, and TGF-β) and cell adhesion receptors (e.g., integrins, and cadherins). The profibrotic matricellular proteins plasminogen activator inhibitor-1 (PAI-1) and connective tissue growth factor (CTGF) are prominent members of a subset of genes the expression of which is highly responsive to cell shape-altering stimuli (i.e., disruption of the actin-based and microtubule networks, shear strain and cyclic stretch). Since both PAI-1 and CTGF are major mediators of cardiovascular fibrotic disease, understanding cell structure-linked signaling cascades provides potential avenues for focused therapy. It is increasingly evident that growth factor receptors (EGFR) are activated by changes in cytoarchitecture and that the “repressive state” of certain signaling proteins (e.g., SMAD, and Rho-GEFs) is maintained by sequestration on cell structural networks. Functional repression can be relieved by cytoskeletal perturbations (e.g., in response to treatment with network-specific drugs) resulting in activation of signaling cascades (e.g., Rho, and MAPK) with associated changes in gene reprogramming. Recent studies document a complex network of both similar and unique signaling control elements leading to the induction of PAI-1 and CTGF in response to modifications in cell shape. The purpose of this review is to highlight our current understanding of “cell deformation”-responsive signaling cascades focusing on the potential value of targeting such pathways, and their model response genes (e.g., PAI-1, and CTGF), as a therapeutic option for the treatment of fibrotic diseases.  相似文献   

17.
Melanoma is an often fatal form of skin cancer which is remarkably resistant against radio- and chemotherapy. Even new strategies that target RAS/RAF signaling and display unprecedented efficacy are characterized by resistance mechanisms. The targeting of survival pathways would be an attractive alternative strategy, if tumor-specific cell death can be achieved. Bcl-2 proteins play a central role in regulating survival of tumor cells. In this study, we systematically investigated the relevance of antiapoptotic Bcl-2 proteins, i.e., Bcl-2, Bcl-xL, Bcl-w, Mcl-1, and A1, in melanoma cell lines and non-malignant cells using RNAi. We found that melanoma cells required the presence of specific antiapoptotic Bcl-2 proteins: Inhibition of Mcl-1 and A1 strongly induced cell death in some melanoma cell lines, whereas non-malignant cells, i.e., primary human fibroblasts or keratinocytes were not affected. This specific sensitivity of melanoma cells was further enhanced by the combined inhibition of Mcl-1 and A1 and resulted in 60% to 80% cell death in all melanoma cell lines tested. This treatment was successfully combined with chemotherapy, which killed a substantial proportion of cells that survived Mcl-1 and A1 inhibition. Together, these results identify antiapoptotic proteins on which specifically melanoma cells rely on and, thus, provide a basis for the development of new Bcl-2 protein-targeting therapies.  相似文献   

18.
Globally, breast cancer is the most common type of cancer in females and is one of the leading causes of cancer death in women. The advancement in the targeted therapies and the slight understanding of the molecular cascades of the disease have led to small improvement in the rate of survival of breast cancer patients. However, metastasis and resistance to the current drugs still remain as challenges in the management of breast cancer patients. Metastasis, potentially, leads to failure of the available treatment, and thereby, makes the research on metastatic suppressors a high priority. Tumor metastasis suppressors are several genes and their protein products that have the capability of arresting the metastatic process without affecting the tumor formation. The metastasis suppressors KAI1 (also known as CD82) has been found to inhibit tumor metastasis in various types of solid cancers, including breast cancer. KAI1 was identified as a metastasis suppressor that inhibits the process of metastasis by regulating several mechanisms, including cell motility and invasion, induction of cell senescence, cell–cell adhesion and apoptosis. KAI1 is a member of tetraspanin membrane protein family. It interacts with other tetraspanins, chemokines and integrins to control diverse signaling pathways, which are crucial for protein trafficking and intracellular communication. It follows that better understanding of the molecular events of such genes is needed to develop prognostic biomarkers, and to identify specific therapies for breast cancer patients. This review aims to discuss the role of KAI1/CD82 as a prognosticator in breast cancer.  相似文献   

19.
Contemporary advancements have had little impact on the treatment of gastric cancer (GC), the world??s second highest cause of cancer death. Agents targeting human epidermal growth factor receptor mediated pathways have been a common topic of contemporary cancer research, including monoclonal antibodies (mAbs) and receptor tyrosine kinase inhibitors (TKIs). Trastuzumab is the first target agent evidencing improvements in overall survival in HER2-positive (human epidermal growth factor receptor 2) gastric cancer patients. Agents targeting vascular epithelial growth factor (VEGF), mammalian target of rapamycin (mTOR), and other biological pathways are also undergoing clinical trials, with some marginally positive results. Effective targeted therapy requires patient selection based on predictive molecular biomarkers. Most phase III clinical trials are carried out without patient selection; therefore, it is hard to achieve personalized treatment and to monitor patient outcome individually. The trend for future clinical trials requires patient selection methods based on current understanding of GC biology with the application of biomarkers.  相似文献   

20.
Rho GTPases are major regulators of signal transduction pathways and play key roles in processes including actin dynamics, cell cycle progression, cell survival and gene expression, whose deregulation may lead to tumorigenesis. A growing number of in vitro and in vivo studies using tumor-derived cell lines, primary tumors and animal cancer models strongly suggest that altered Rho GTPase signaling plays an important role in the initiation as well as in the progression of hepatocellular carcinoma (HCC), one of the deadliest human cancers in the world. These alterations can occur at the level of the GTPases themselves or of one of their regulators or effectors. The participation into the tumorigenic process can occur either through the over-expression of one of these components which presents an oncogenic activity as illustrated with RhoA and C or through the attenuation of the expression of a component presenting tumor suppressor activity as for Cdc42 or the RhoGAP, DLC-1. Consequently, these observations reflect the heterogeneity and the complexity of liver carcinogenesis. Recently, pharmacological approaches targeting Rho GTPase signaling have been used in HCC-derived models with relative success but remain to be validated in more physiologically relevant systems. Therefore, therapeutic approaches targeting Rho GTPase signaling may provide a novel alternative for anti-HCC therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号