首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
3-Ethoxycarbonyl-1,4-dihydro-2,4-dimethylpyridine (EDP) was shown to lack the ferrochelatase-lowering activity of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) in chick embryo liver cells in culture. This was attributed to the inability of EDP to cause destruction of the heme moiety of cytochrome P-450 with concomitant formation of N-methylprotoporphyrin IX. EDP was less potent as a porphyrinogenic agent than DDC and caused the accumulation of uroporphyrin, heptacarboxylic porphyrin, and coproporphyrin in contrast with DDC which caused primarily protoporphyrin to accumulate. The inactivity of EDP as a ferrochelatase-lowering agent and its low porphyrinogenic potency was explained, at least in part, by its rapid transformation in aqueous solution to other nondihydropyridine products. The two ethoxycarbonyl substituents of DDC are therefore essential for N-methylprotoporphyrin formation, ferrochelatase-lowering activity, and optimal porphyrin-inducing activity.  相似文献   

2.
A variety of 1,4-dihydropyridine calcium antagonists were tested for porphyrinogenic activity in chick embryo liver cell culture. 3,5-Dimethoxycarbonyl-1,4-dihydro-2, 6-dimethyl-4-(ortho-nitrophenyl)pyridine (nifedipine) was shown to be a potent porphyrinogenic agent. This activity was shared by a number of related analogues, viz., the 4-phenyl, 4-(meta-nitrophenyl), 4-(para-nitrophenyl), 4-(ortho-methoxyphenyl), 4-(meta-trifluoromethylphenyl), and 4-(para-trifluoromethylphenyl) analogues and nitrendipine; nicardipine exhibited very weak activity. The porphyrinogenic potency of the 1,4-dihydropyridines did not parallel their calcium antagonist activity. Nifedipine did not exhibit ferrochelatase-lowering activity in chick embryo liver cell culture and uroporphyrin and heptacarboxylic acid porphyrin were the major porphyrins to accumulate. Nifedipine did not cause suicidal destruction of cytochrome P-450 in chick embryo hepatic microsomes. Because nifedipine possesses comparable porphyrinogenic activity to sodium secobarbital in chick embryo liver cell culture, caution is required if nifedipine or related drugs are administered to patients with hereditary hepatic porphyria.  相似文献   

3.
The ferrochelatase inhibitory activity of a variety of analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) was studied in chick embryo liver cells. The ferrochelatase inhibitory activity of the 4-butyl, 4-pentyl, and 4-hexyl analogues was considered to be due to catalytic activation by cytochrome P-450 leading to heme alkylation and formation of the corresponding N-alkylporphyrins. The relative ferrochelatase inhibitory activity of the DDC analogues has implications for a postulated model of the binding of porphyrins in the ferrochelatase active site. 3-[2-(2,4,6-Trimethylphenyl)thioethyl]-4-methylsydnone (TTMS) was shown to be a potent porphyrinogenic agent and to inhibit ferrochelatase in chick embryo liver cells. A related sydnone, 3-benzyl-4-phenylsydnone did not inhibit ferrochelatase activity. These results supported the idea that the porphyrinogenicity of TTMS was due to catalytic activation by cytochrome P-450 leading to heme alkylation and formation of N-vinylprotoporphyrin which inhibits ferrochelatase. Polychlorinated biphenyls, phenobarbital, nifedipine, and a large number of structurally different chemicals which are porphyrinogenic in chick embryo liver cells inhibit uroporphyrinogen decarboxylase by an unknown mechanism. Thus drug-induced porphyrin biosynthesis in chick embryo liver cell culture appears to be caused by inhibition of either ferrochelatase or uroporphyrinogen decarboxylase. The biotransformation of nitroglycerin by human red blood cells is due to a combination of a sulfhydryl-dependent enzymatic process and an interaction with reduced hemoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Various 4-alkyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6- trimethylpyridine (DDC) cause mechanism-based inactivation of cytochrome P-450 (P-450) via destruction of the heme prosthetic group. This is an important component of these compounds' porphyrinogenic mechanism. In an attempt to map the P-450 isozyme selectivities of DDC analogues, we have examined the effects of these compounds on the regioselective and stereoselective hydroxylation of androstenedione (AD) and progesterone (PG) in rat liver microsomal systems. In microsomes from phenobarbital-treated male rats, DDC analogues did not cause time-dependent inactivation of AD 7 alpha-hydroxylase, AD 16 beta-hydroxylase, and PG 21-hydroxylase, selective markers for P450IIA 1/2, IIB1, and IIC6, respectively. In contrast, DDC analogues were effective inactivators of PG 2 alpha-hydroxylase and steroid 6 beta-hydroxylases, selective markers for P450IIC11 and IIIA forms, respectively. We conclude that differences in porphyrinogenicity observed with various DDC analogues are not likely to be due to the selective destruction of different P-450 isozymes by different analogues, but rather to properties of the DDC analogues themselves. 4-Ethyl DDC was found to be capable of discriminating between P450IIIA subfamily forms. In microsomes from untreated male rats, which express P450IIIA2 but not IIIA1, 4-ethyl DDC inactivated both AD and PG 6 beta-hydroxylases. However, in microsomes from dexamethasone-treated female rats, which express P450IIIA1 but not IIIA2, no inactivation of the steroid 6 beta-hydroxylases was observed. Thus, 4-ethyl DDC appears to be a potentially valuable tool for differentiating between P450IIIA forms.  相似文献   

5.
Several diphenyl ether herbicides, such as acifluorfen methyl, have been previously shown to cause large accumulations of the heme and chlorophyll precursor, protoporphyrin, in plants. Lightinduced herbicidal damage is mediated by the photoactive porphyrin. Here we investigate whether diphenyl ether herbicides can affect porphyrin synthesis in rat and chick hepatocytes. In rat hepatocyte cultures, protoporphyrin, as well as coproporphyrin, accumulated after treatment with acifluorfen or acifluorfen methyl. Combination of acifluorfen methyl with an esterase inhibitor to prevent the conversion of acifluorfen methyl to acifluorfen resulted in a greater accumulation of porphyrins than caused by acifluorfen methyl or acifluorfen alone. In vitro enzyme studies of hepatic mitochondria isolated from rat and chick embryos demonstrated that protopor-phyrinogen oxidase, the penultimate enzyme of heme biosynthesis, was inhibited by low concentrations of acifluorfen, nitrofen, or acifluorfen methyl with the latter being the most potent inhibitor. These findings indicate that diphenyl ether treatment can cause protoporphyrin accumulation in rat hepatocyte cultures and suggest that this accumulation was associated with the inhibition of protoporphyrinogen oxidase. In cultured chick embryo hepatocytes, treatment with acifluorfen methyl plus an esterase inhibitor caused massive accumulation of uroporphyrin rather than protoporphyrin or coproporphyrin. Specific isozymes of cytochrome P450 were also induced in chick embryo hepatocytes. These effects were not observed in the absence of an esterase inhibitor. These results suggest that diphenyl ether herbicides can cause uroporphyrin accumulation similar to that induced by other cytochrome P450-inducing chemicals such as polyhalogenated aromatic hydrocarbons in the chick hepatocyte system.  相似文献   

6.
Summary The final step in heme synthesis is catalyzed by the mitochondrial enzyme, ferrochelatase. Characterization of this enzyme has been complicated by a number of factors including the dependence of enzyme activity on lipids. Purification of ferrochelatase from rat and bovine sources has been achieved only relatively recently using blue Sepharose CL-6B chromatography. When 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) is given to animals, it produces a hepatic porphyria resembling human variegate porphyria thus providing an experimental system in which to study this disease. DDC has been found to cause the accumulation of a green pigment, identified as N-methyl protoporphyrin IX (N-MePP), which is a potent inhibitor of ferrochelatase. The source of the N-methyl substituent of N-MePP was found to be the 4-methyl group of DDC. Considerable evidence indicates that the protoporphyrin IX moiety of N-MePP originates from the heme moiety of cytochrome P-450 and that DDC is a suicide substrate for this hemoprotein. Some studies suggest that cytochrome P-450 isozymes differ in their susceptibility to destruction by DDC and its 4-alkyl analogues. Griseofulvin has also been reported to inhibit hepatic ferrochelatase in rodents but not in the 17-day old chick embryo nor in hepatocyte culture systems. Thus, the mechanism by which griseofulvin produces an experimental porphyria in chick embryo liver cell culture is different from that for rodents.  相似文献   

7.
Cytochrome P450- and heme-destructive effects of the 4-nonyl and 4-dodecyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) were determined using hepatic microsomal preparations obtained from untreated, beta-naphthoflavone-treated, and phenobarbital-treated chick embryos. The 4-nonyl analogue of DDC was less efficacious than 4-ethyl DDC and 4-hexyl DDC, but more efficacious than 4-dodecyl DDC with respect to cytochrome P450-destructive activity. In all hepatic microsomal preparations, cytochrome P450 destruction by 4-nonyl DDC was accompanied by loss of microsomal heme. In contrast, 4-dodecyl DDC caused loss of heme only in hepatic microsomal preparations obtained from phenobarbital-treated chick embryos. The ability of 4-nonyl DDC and 4-dodecyl DDC to lower ferrochelatase activity was compared with that of 4-ethyl DDC and 4-hexyl DDC in cultured chick embryo hepatocytes. As the length of the 4-alkyl group was increased, the ferrochelatase-lowering efficacy and potency of the DDC analogue decreased. The 4-dodecyl DDC analogue was unable to lower ferrochelatase activity, which accorded with the finding that the administration of 4-dodecyl DDC to phenobarbital-treated rats did not lead to the accumulation of an N-alkylprotoporphyrin. The ability of 4-nonyl DDC to lower ferrochelatase activity was attributed to the formation of N-nonylprotoporphyrin IX following the administration of 4-nonyl DDC to phenobarbital-treated rats.  相似文献   

8.
The effects of single large doses of the porphyrin-heme precursor ?d-aminolevulinic acid on tissue porphyrins and on δ-aminolevulinate synthase and heme oxygenase, the rate-living enzymes of liver heme synthesis and degradation respectively, were studied in the chick embryo in ovo, in the mouse and in the rat. δ-Aminolevulinic acid treatment produced a distinctive pattern characterized by extensive tissue porphyrin accumulation and alterations in these rate-limiting enzymes in the liver. Repression of basal or allylisopropylacetamide-induced liver δ-aminolevulinate synthase was observed and, in the mouse and the rat, induction of liver heme oxygenase after δ-aminolevulinic acid treatment, in a manner similar to the known effects of hemin on these enzymes. In the chick embryo liver in ovo heme oxygenase was substantially higher than in rat and mouse liver, and was not significantly induced by δ-aminolevulinic acid or other compounds, including hemin, CS2 and CoCl2. Levulinic acid, an analogue of δ-aminolevulinic acid, did not induce heme oxygenase in mouse liver. δ-Aminolevunilic acid treatment did not impair ferrochelatase activity but was associated with slight and variable decreases in liver cytochrome P-450. Treatment of chick embryos with a small ‘priming’ dose of 1,4-dihydro-3,5-dicarbethoxycollidine, which impairs liver ferrochelatase activity, accentuated porphyrin accumulation after δ-aminolevulinic acid in the liver. These observations indicate that exogenous δ-aminolevulinic acid is metabolized to porphyrins in a number of tissues and, at least in the liver, to a physiologically significant amount of heme, thereby producing an increase in the size of one or more of the heme pools that regulate both heme systhesis and degradation. It is also possible than when δ-aminolevulinic acid is markedly overproduced in vivo it may be transported to many tissues and re-enter the heme pathway and alter porphyrin-heme metabolism in cells and tissues other than those in which its overproduction primarily occurs.  相似文献   

9.
L-Alanine: 4,5-dioxovalerate transaminase (ADT) was determined in liver homogenates of rats treated by either inducers of porphyrin synthesis or the repressor, hemin. ADT activity was not induced by the porphyrinogenic agents nor reduced by hemin, indicating that ADT probably has no regulatory role in the heme synthesis pathway. The same conclusion was drawn from similar experiments performed in monolayers of chick embryo liver cells.  相似文献   

10.
Several porphyrinogenic xenobiotics cause mechanism-based inactivation of cytochrome P450 (P450) isozymes with concomitant formation of a mixture of four N-alkylprotoporphyrin IX (N-alkylPP) regioisomers, which have ferrochelatase inhibitory properties. To isolate the four regioisomers of N-methylprotoporphyrin IX (N-methylPP), 3,5-diethoxycarbonyl, 1-4-dihydro-2,4,6-trimethylpyridine (DDC) was administered to untreated, beta-naphthoflavone-, phenobarbital-, and glutethimide-pretreated 18-day-old chick embryos. Separation of the N-methylPP regioisomers by high pressure liquid chromatography (HPLC) revealed no marked difference in the regioisomer pattern among the different treatments. After administration of griseofulvin, allylisopropylacetamide (AIA), or 1-[4-(3-acetyl-2,4,6-triemethylphenyl)-2,6-cyclohexanedionyl]-O-ethyl propionaldehyde oxime (ATMP) to untreated and glutethimide-pretreated 18-day-old chick embryos, an N-alkylPP was isolated after AIA administration only. This finding strengthened previous reports of the species specificity of N-alkylPP formation with griseofulvin and ATMP. A series of dihydropyridines, namely 4-ethylDDC, 4-hexylDDC, and 4-isobutylDDC were administered to untreated and glutethimide-pretreated 18-day-old chick embryos and hepatic N-alkylPPs were isolated and separated by HPLC into regioisomers. The regioisomer patterns obtained did not support a previous proposal of masked regions above both rings B and C in the heme moieties of the P450 isozymes responsible for N-alkylPP formation. However, the data support the hypothesis of a partially masked region above ring B alone. The regioisomer patterns were in agreement with results previously obtained in rats showing that the percentage of Nc and (or) ND regioisomers in the regioisomer mixture increases as the length and bulk of the 4-alkyl substituent of a DDC analogue increase. Differences in the regioselectivity of heme N-alkylation may be due to intrinsic chemical features of DDC analogues themselves or to differences in the P450 isozymes inactivated.  相似文献   

11.
3-[2-(2,4,6-Trimethylphenyl)thioethyl]-4-methylsydnone was shown to be a potent porphyrinogenic agent in chick embryo liver cells. The accumulation of protoporphyrin IX was consistent with the finding that ferrochelatase activity was inhibited. 3-Benzyl-4-phenylsydnone did not inhibit ferrochelatase activity and protoporphyrin IX was found to constitute only a minor fraction of the prophyrins. These results support the idea that the porphyrinogenicity of 3-[2-(2,4,6-trimethylphenyl)thioethyl]-4-methylsydnone is due to its catalytic activation by cytochrome P-450 leading to heme alkylation and formation of N-vinylprotoprophyrin IX which inhibits ferrochelatase.  相似文献   

12.
When CCl4 was incubated with rat liver microsomes from phenobarbital-treated rats in an aerobic or anaerobic atmosphere, over 69% of the heme moiety of cytochrome P-450 was destroyed. At least 45% of the degraded heme under both reaction conditions was accounted for as heme-derived products irreversibly bound to microsomal proteins. Furthermore, 33% of the irreversibly bound products were bound specifically to a 54-kDa form of cytochrome P-450. A structurally different compound, 2-isopropyl-4-pentenamide, also destroyed the heme moiety of cytochrome P-450 and produced heme-derived adducts of microsomal proteins that accounted for 28% of the destroyed heme. These results represent a novel mechanism for the destruction of cytochromes P-450 by xenobiotics.  相似文献   

13.
Several porphyrinogenic xenobiotics elicit mechanism-based inactivation of cytochrome P450 (CYP) isozymes, leading to the formation of N-alkylprotoporphyrin IX (N-alkylPP), a potent inhibitor of ferrochelatase, the terminal enzyme in heme biosynthesis. Recognizing their role in experimental porphyria, our long term objective is the establishment of an appropriate in vitro system for the detection and quantification of N-alkylPPs, formed in human liver after the administration of potential porphyrinogenic compounds. In a previous study, we used a combination of thin-layer chromatography and UV-visible spectrophotometry to isolate and identify N-alkylPPs after incubating porphyrinogenic compounds with rat liver microsomes. However, the overall yield of N-alkylPPs was low, and it was concluded that in vitro systems, such as human lymphoblastoid microsomal preparations containing single cDNA-expressed human cytochrome P450 (CYP) isozymes, do not contain sufficient CYP for in vitro studies designed to isolate N-alkylPP. In the present study we demonstrate that purified recombinant human ferrochelatase (FC) provides an extremely sensitive bioassay system for N-alkylPPs and is capable of detecting N-alkylPP in the 10(-6) nmol range. Therefore, we propose that this bioassay system might allow the use of human lymphoblastoid microsomal preparations containing single cDNA-expressed human CYP isozymes to detect N-alkylPP produced after mechanism-based (catalysis-based) CYP inactivation. If this is found to be correct it will facilitate identification of potentially porphyrinogenic drugs prior to administration to humans.  相似文献   

14.
Various rat liver cytochrome P-450 (P-450) isozymes are targets for mechanism-based inactivation by 3,5-diethoxycarbonyl-2,6-dimethyl-4-ethyl-1,4- dihydropyridine (4-ethyl DDC). Unlike rat liver, which contains multiple P-450 isozymes, rabbit lung contains only three major isozymes referred to as forms 2, 5, and 6. We have examined the ability of 4-ethyl DDC to destroy P-450 heme in hepatic and pulmonary microsomes from untreated and beta-naphthoflavone (beta NF)-treated rabbits. This compound destroyed 31% of the P-450 in either hepatic microsomal preparation, but was ineffective at lowering P-450 and heme levels in pulmonary microsomes when examined at a range of concentrations (0.45-5.0 mM). These data suggest that rabbit pulmonary P-450 forms 2, 5, and 6 are not targets for destruction by 4-ethyl DDC, despite the ability of this compound to inactivate rat liver P-450c, the orthologue of rabbit lung form 6.  相似文献   

15.
1. The porphyrinogenic ability of several antineoplastics used in the therapy of the different cancers was evaluated. The action of cyclophosphamide, busulfan and 5-fluorouracil on the amount and nature of the accumulated hepatic porphyrins and on the activity of delta-aminolaevulinate synthase (ALA-S), were estimated at different doses and times of drug treatment in 17-day-old chick embryos. 2. It was observed that cyclophosphamide produces a significant increase in the accumulation of hepatic porphyrins at different doses as well as in the activity of the ALA-S, at all the incubation times. Cyclophosphamide alters the pattern of porphyrins accumulated in the liver, where a coproporphyrin: protoporphyrin ratio higher than in the controls can be observed. 3. Busulfan increased the hepatic porphyrins accumulated in the liver but to a lesser degree than cyclophosphamide. 4. 5-Fluorouracil did not modify the hepatic porphyrin content when it was administered at doses up to 40 mg/embryo. 5. When the embryos were injected with busulfan or 5-fluorouracil no significant differences were observed in the activity of ALA-S up to 11 hr of incubation. 6. These results indicate that cyclophosphamide has a remarkable porphyrinogenic capacity in chick embryo while busulfan, notwithstanding the fact that it alters the haem pathway, it does so to a degree that does not impair the regulation of ALA-S activity. Fluorouracil seems to be non porphyrinogenic in this system, up to 40 mg/embryo.  相似文献   

16.
Zhu Y  Silverman RB 《Biochemistry》2008,47(8):2231-2243
Despite the essential biological importance of reactions that involve heme, mechanisms of heme reactions in enzymes like nitric oxide synthase (NOS), heme oxygenase (HO), and cytochrome P450s (CYP450s) are still not well-understood. This Perspective on NOS, HO, and CYP450 mechanisms is written from the point of view of the heme chemistry. Steps in the classical heme catalytic cycle are discussed based on the specific environment within each of these enzymes. Elucidation of the mechanisms of NOS inactivation by some substrate analogues provides important mechanistic clues to the NOS catalytic mechanism. On the basis of mechanistic studies of NOS inactivation by amidine analogues of l-arginine and other previous mechanistic results, a new mechanism for NOS-catalyzed l-arginine NG-hydroxylation (the first half of the catalytic reaction) is proposed in this Perspective. The key step in the second half of the NOS catalytic reaction, the internal electron transfer between the substrate and heme, is discussed on the basis of mechanistic results of NOS inactivation by NG-allyl-l-arginine and the structures of the substrate intermediates. Elucidation of the mechanism of NOS inactivation by amidines, which leads to heme degradation, also provides important mechanistic implications for heme oxygenase-catalyzed heme catabolism. Focusing on the meso-hydroxylation step during inactivation of NOS by amidines as well as the HO-catalyzed reaction, the essential nature of the heme-oxygen species responsible for porphyrin meso-hydroxylation is discussed. Finally, on the basis of the proposed heme degradation mechanism during NOS inactivation and the HO-catalyzed reaction, the mechanism for the formation of the monooxygenated heme species in P450-catalyzed reactions is discussed.  相似文献   

17.
Step III and Step IV erythropoieten derived from sheep plasma stimulated the accumulation of porphyrins in cultured chick embryo liver cells. Increased porphyrin accumulation occurred within hepatocytes. It was not accompanied by increased hemoglobin formation. Stimulation of porphyrin accumulation was inhibited by hematin but was unimpaired by heating erythropoietin to 60°C for 10 min or preincubating it with trypsin. A more highly purified preparation of erythropoietin from human urine had no effect on porphyrin accumulation. The data indicate that a component in partially purified sheep erythropoietin can increase levels of a heme precursor in non-erythroid tissue. The participation of such a component should be considered when interpreting biochemical effects observed with crude erythropoietin preparations, other than 59Fe incorporation into red cells or heme.  相似文献   

18.
The mechanism of the inactivation of the major phenobarbital-inducible isozyme of rat liver cytochrome P-450 (P-450 PB-B2) by chloramphenicol has been investigated. Preparations of the enzyme from animals treated in vivo with chloramphenicol (CAP PB-B2) have been isolated, and their catalytic, spectral, and physical properties have been compared with those of the native PB-B2. The CAP PB-B2 exhibited: 1) a 60-70% loss in the rate of NADPH-supported monooxygenase activity with the substrates benzphetamine, 7-ethoxycoumarin, and p-nitroanisole; 2) a 60% decrease in the extent of enzymatic P-450 reduction catalyzed by NADPH-cytochrome P-450 reductase under both aerobic and anaerobic conditions; 3) a 60% decrease in the steady-state level of the ferrous dioxygen complex in the presence of substrates; 4) a 60% decrease in the magnitude of the type I spectral change induced by benzphetamine; and 5) a shift in the wavelength maximum for the chemically reduced ferrous-carbonyl complex from 450 to 451.5 nm. On the other hand, the ability of the CAP PB-B2 to catalyze the iodosobenzene-supported metabolism of 7-ethoxycoumarin and p-nitroanisole was unaltered. The results are consistent with a scheme whereby the binding of metabolites of chloramphenicol to amino acid residues in the PB-B2 close to the heme moiety blocks electron transport from NADPH-cytochrome P-450 reductase, thereby leading to a loss of monooxygenase activity.  相似文献   

19.
The induction of cytochrome P450 in chick embryo liver has been studied using three different porphyrinogenic drugs, 2-allyl-2-isopropylacetamide, 3,5-diethoxycarbonyl-1,4-dihydrocollidine and phenobarbital. Pulse-labelling studies have shown that for each drug the cytochrome P450 synthesized either in ovo or in a wheat germ translation system reacted immunologically with antibody raised against the purified 2-allyl-2-isopropylacetamide-induced enzyme (Mr = 50000). To investigate whether this is due to the three drugs inducing the same protein or different proteins with common immunological determinants, nucleic acid hybridization studies have been carried out using a recently characterised 2-allyl-2-isopropylacetamide-induced cytochrome P450 cloned cDNA probe [Brooker, J. D. et al. (1982) Eur. J. Biochem. 129, 325-333]. It has been shown that the mRNA induced by each drug hybridizes with this probe and all are of similar size. The melting profile of the mRNA . cDNA hybrids indicates that the mRNAs induced by the three drugs have at least 98% homology with the cDNA probe. Restriction endonuclease digestions of total chick embryo genomal DNA and a chick cytochrome P450 genomal clone indicates that the cytochrome P450 gene homologous with the cDNA probe is represented in the genome only once. These results strongly suggest that the three drugs cause increased levels of the same cytochrome P450 mRNA, possibly due to enhanced expression of the same gene. Results are also presented which show that other cytochrome-P450-inducing drugs, 3-methylcholanthrene, beta-naphthoflavone or pregnenolone-16 alpha-carbonitrile do not increase the level of the 2-allyl-2-isopropylacetamide-inducible mRNA but rather reduce it to a level which was lower than that of the untreated controls.  相似文献   

20.
Suicide inactivation of hepatic cytochrome P450 (P450) enzymes 2C11, 2C6, and 3A1/A2 by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine (DDEP) in intact rats results in prosthetic heme destruction, albeit by apparently distinct mechanisms. Such heme destruction is now shown to be associated with the loss of immunochemically detectable apoprotein of P450s 2C11 and 3A but with little of that of P450 2C6, in spite of their comparable DDEP-mediated functional inactivation. The loss of a approximately 50-kDa hepatic microsomal protein band along with the immunoreactive P450 3A loss strengthens the concept that such an in vivo loss indeed reflects proteolysis of the DDEP-inactivated P450. Furthermore, this propensity of DDEP-inactivated P450s 3A for proteolysis appears to correlate with the relative degree of prosthetic heme alkylation of their apoprotein rather than their functional inactivation per se. Thus, rapid degradation of apoP450s 3A was seen after DDEP treatment, which promoted extensive irreversible heme binding to apoP450s 3A, but not after exposure to allylisopropylacetamide (AIA), which inactivates these isozymes comparably, but induced minimal apoP450 3A heme alkylation. In addition, differences were observed in the relative sensitivities of proteolysis of DDEP-inactivated P450s 2C11 and 3A to hemin, which largely prevented the DDEP-induced proteolytic loss of P450 2C11 but apparently failed to prevent the loss of DDEP-inactivated P450s 3A, when coadministered with DDEP. This differential hemin sensitivity of the proteolysis of DDEP-inactivated P450 2C11, coupled with the observation that immunochemically detectable P450 2C11 loss occurs after its inactivation by both AIA and DDEP, provides compelling support for the existence of distinct proteolytic pathways for individual suicidally inactivated P450s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号