首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The development of the ovule, fruit and seed of Xyris spp. was studied to assess the embryological characteristics of potential taxonomic usefulness. All of the studied species have (1) orthotropous, bitegmic and tenuinucellate ovules, with a micropyle formed by both the endostoma and exostoma; (2) a cuticle in the ovules and seeds between the nucellus/endosperm and the inner integument and between the inner and outer integuments; (3) helobial, starchy endosperm; (4) a reduced, campanulate and undifferentiated embryo; (5) a seed coat formed by a tanniferous endotegmen, endotesta with thick‐walled cells and exotesta with thin‐walled cells; and (6) a micropylar operculum formed from inner and outer integuments. The pericarp is composed of a mesocarp with cells containing starch grains and an endocarp and exocarp formed by cells with U‐shaped thickened walls. The studied species differ in the embryo sac development, which can be of the Polygonum or Allium type, and in the pericarp, which can have larger cells in either endocarp or exocarp. The Allium‐type embryo sac development was observed only in Xyris spp. within Xyridaceae. Xyris also differs from the other genera of Xyridaceae by the presence of orthotropous ovules and a seed coat formed by endotegmen, endotesta and exotesta, in agreement with the division of the family into Xyridoideae and Abolbodoideae. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 619–628.  相似文献   

2.
Abstract

Seed formation involves not only the embryo and endosperm development, but also the formation of a series of either ephemeral or non-ephemeral structures. In this article, we study several of those structures in Cytisus multiflorus and Cytisus striatus. The endosperm development is first nuclear and later cellular, except for the chalazal area, whose development is always nuclear. It generates, in the early developmental stages, a sac-like haustorium. As the seed develops, two structures seem to be closely related to nutrient mobilization to the embryo sac: on the one hand, a group of cells and a channel, located in the chalazal area and closely related between them and to the endosperm haustorium, which could be interpreted as a hypostase and on the other hand, an endothelium, derived from the inner integument, which later degenerates leaving no trace in the mature seed. All of these structures would be associated with the directionality of assimilates from ovule tissues to embryo sac. In mature seed and surrounding the embryo appears a unicellular layer of cells rich in proteins (aleurone layer), which is the origin of the outermost layer of the cellular endosperm. The seed coat is made up only of the outer integument.  相似文献   

3.
4.
Arabidopsis haiku mutants reveal new controls of seed size by endosperm   总被引:2,自引:0,他引:2  
In flowering plants, maternal seed integument encloses the embryo and the endosperm, which are both derived from double fertilization. Although the development of these three components must be coordinated, we have limited knowledge of mechanisms involved in such coordination. The endosperm may play a central role in these mechanisms as epigenetic modifications of endosperm development, via imbalance of dosage between maternal and paternal genomes, affecting both the embryo and the integument. To identify targets of such epigenetic controls, we designed a genetic screen in Arabidopsis for mutants that phenocopy the effects of dosage imbalance in the endosperm. The two mutants haiku 1 and haiku 2 produce seed of reduced size that resemble seed with maternal excess in the maternal/paternal dosage. Homozygous haiku seed develop into plants indistinguishable from wild type. Each mutation is sporophytic recessive, and double-mutant analysis suggests that both mutations affect the same genetic pathway. The endosperm of haiku mutants shows a premature arrest of increase in size that causes precocious cellularization of the syncytial endosperm. Reduction of seed size in haiku results from coordinated reduction of endosperm size, embryo proliferation, and cell elongation of the maternally derived integument. We present further evidence for a control of integument development mediated by endosperm-derived signals.  相似文献   

5.
The development of the floral bud, especially the ovule and seed coat, of Sinomanglietia glauca was observed. Floral buds were covered by eight to nine hypsophyll pieces. The hypsophyll nearest the tepal was closed completely and characterized by two arrays of densely stained cells with dense cytoplasm, which split longitudinally at flowering. The perianth consisted of 16 tepals arranged in three whorls. The gynoecium was composed of numerous apocarpous carpels; the ovule was anatropous with two integuments. Embryogenesis was of the Polygonum type, and the endosperm was nuclear. The inner integument degenerated during seed development. The seed of S. glauca had an endotestal seed coat comprised of a sclerotic layer derived from the inner adaxial epidermis of the outer integument and a sarcotesta derived mainly from the middle cells between the inner and outer epidermis of the outer integument. The embryo developed normally, so embryogenesis is not the cause of difficult regeneration.  相似文献   

6.
Mohan Ram , H. Y. (U. Delhi, India.) The development of the seed in Andrographis serpyllifolia. Amer. Jour. Bot. 47(3) : 215—219. Illus. 1960.–Andrographis serpyllifolia, a member of the Acanthaceae, has an embryo sac with a bifurcated chalazal part. At the time of fertilization both synergids and antipodal cells disintegrate. Early in its development the endosperm is composed of 3 distinct parts: (1) a binucleate densely cytoplasmic chalazal haustorium; (2) a large binucleate micropylar haustorium; and (3) a central chamber which develops into the endosperm proper. The divisions in the central endosperm chamber are ab initio cellular. A few of the endosperm cells elongate enormously, ramify into the integument and destroy the surrounding cells. These cells have been termed secondary haustoria. Due to the unequal destruction of the integument, the endosperm assumes a ruminate condition. The mature seed is nearly naked because the seed coat is almost completely digested. The embryo has a long suspensor. The micropylar cells of the suspensor are hypertrophied and multinucleate. Contrary to Mauritzon's (1934) belief, the course of endosperm development is markedly different from that observed in Thunbergia. So far, albuminous seeds have been reported only in the subfamily Nelsonioideae. The present investigation provides a case of its occurrence in the Acanthoideae also.  相似文献   

7.
The embryology ofStegnosperma halimifolium andS. watsonii has been studied in detail. The tapetum is of the secretory type and its cells become multinucleate. Simultaneous cytokinesis in the pollen mother cells follows meiosis. The ripe pollen grains are 3-celled. The ovule is crassinucellate, bitegmic and amphitropous, with the micropyle formed by the inner integument alone. The female archesporium is one celled, and the parietal tissue 3–5 layered. The embryo sac development conforms to thePolygonum type. A central strand, 6 or 7 cells thick, differentiates inside the nucellus and extends from the base of the embryo sac to the chalazal region. The endosperm is nuclear. The embryogeny conforms to the Caryophyllad type. The seed coat is formed by the outer epidermis of the outer integument and the inner epidermis of the inner integument. Based on this evidence and other data, the status of the genus as an independent family,Stegnospermataceae (Stegnospermaceae) is confirmed. Apparently, it forms a connecting link betweenPhytolaccaceae andCaryophyllaceae.  相似文献   

8.
Xyridaceae belongs to the xyrid clade of Poales, but the phylogenetic position of the xyrid families is only weakly supported. Xyridaceae is divided into two subfamilies and five genera, the relationships of which remain unclear. The development of the ovule, fruit and seed of Abolboda spp. was studied to identify characteristics of taxonomic and phylogenetic value. All of the studied species share anatropous, tenuinucellate and bitegmic ovules with a micropyle formed by the inner and outer integuments, megagametophyte development of the Polygonum type, seeds with a tanniferous hypostase, a helobial and starchy endosperm and an undifferentiated embryo, seed coat derived from both integuments with a tanniferous tegmen and a micropylar operculum, and fruits with a parenchymatous endocarp and mesocarp and a sclerenchymatous exocarp. Most of the ovule and seed characteristics described for Abolboda are also present in Xyris and may represent a pattern for the family. Abolboda is distinguished by the ovule type, endosperm formation and the number of layers in the seed coat, in agreement with its classification in Abolbodoideae. The following characteristics link Xyridaceae to Eriocaulaceae and Mayacaceae, supporting the xyrid clade: tenuinucellate, bitegmic ovules; seeds with a tanniferous hypostase, a starchy endosperm and an undifferentiated embryo; and a seed coat with a tanniferous tegmen. A micropylar operculum in the seeds of Abolboda is described for the first time here and may represent a synapomorphy for the xyrids. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 144–154.  相似文献   

9.
Pollen tube growth from the stigma into the ovule, and the early fruit and seed development following fertilization were examined using fluorescence microscopy, scanning electron microscopy and light microscopy inPetunia inflata. After growing intercellularly in the transmitting tract for 24–36 hr, the pollen tubes emerged into the top part of the ovary cavity and grew along the surface of the septum to reach the ovule. It grew around the furnicle and penetrated the micropyle to enter the embryo sac for fertilization. After fertilization, the endosperm nucleus divided first before the embryo, and the cell wall formation occurred following the division, exhibiting the pattern of cellular type of endosperm development. The first division of the zygote did not occur until 3 days after pollination. At 6 days after pollination, the seeds grew considerably and the endosperm has gone through multiple rounds of cell division. High starch formation in the integument, especially around the embryo sac, was also observed.  相似文献   

10.
Studies on embryology and seed morphology are complementary to molecular phylogenetics and of special value at the genus level. This paper discusses the delimitation and evolutionary relationships of genera within the tribe Hydrophylleae of the Boraginaceae. The seven Nemophila species characterized by a conspicuous seed appendage are similar in embryology and seed structure. The ovule is tenuinucellate and unitegmic with a meristematic tapetum. The embryo sac penetrating the nucellar apex is of the Polygonum type, has short-lived antipodal cells, and an embryo sac haustorium. The endosperm is cellular, producing two terminal endosperm haustoria, of which the chalazal has a lateral branch. Embryogeny is of the Chenopodiad type (as in Pholistoma). The seed coat is formed from the small-celled inner epidermis of the integument. The large-celled outer epidermis of the integument disintegrates into scattered cells. Seed pits evolve from irregularly placed inner epidermal cells of the integument. The chalazal part of the ovule produces a cucullus, that functions as an ant-attracting elaiosome. Those species of Nemophila with a conspicuous cucullus form a natural genus. Nemophila is most closely related to Pholistoma. The integumentary seed pits of Nemophila might have evolved from ovular seed pits similar to those in Pholistoma.  相似文献   

11.
Pre-embryonic and embryonic stages and seed developments were studied in the diploids Hylocereus monacanthus and Hylocereus undatus and the tetraploid Hylocereus megalanthus. Ovule morphology was similar among species except for micropyle entrance. H. monacanthus had the thickest and most robust suspensor. Embryo developmental time, measured from fertilization to maturity, was significantly more prolonged in H. megalanthus. Typical to Cactaceae, the seed coat was formed by one layer of sclerenchymatous cells, but was more lignified in H. megalanthus. Morphological features common to all species included (1) cellular type endosperm with independent patterns of development in the chalazal and micropylar zones, forming a haustorium layer from the chalazal zone to the embryo; (2) an endothelial layer surrounding the embryo sac almost complete; (3) a nucellar summit growing into the micropyle; and (4) a placental obturator and a funicle connecting the ovarian tissue to the ovule. Seed development was typically endospermic (exendospermic orthodox seeds). Anomalies included two egg cells in the same embryo sac, two embryos developing in the same ovule, and embryos developing from the chalazal pole region. Total seed number and seed viability were significantly lower in H. megalanthus than in the other two taxa. Embryos at different developmental stages were observed in aborted H. megalanthus seeds.  相似文献   

12.
Many biologists studying environmentally induced parental effects have indirectly suggested that the parental environment alters seed mass by altering the amount of endosperm or embryo tissue in the seed. We tested this hypothesis by measuring the effects of parental temperature on total seed mass, seed coat mass, and embryo/endosperm mass in offspring of Plantago lanceolata. Parental temperature significantly affected total seed and coat mass but not endosperm/embryo mass. Thus, larger seeds do not contain more resources in the embryo or endosperm than do small seeds. Rather they have more coat mass, which probably strongly influences germination. These results suggest caution when making assumptions about the pathways by which environmentally induced parental effects are transmitted in plant species. We also observed that controlled crosses differed significantly in their response to parental temperature, which provides evidence for genetic variation in environmentally induced parental effects, i.e., intergenerational phenotypic plasticity, in natural populations of P. lanceolata.  相似文献   

13.
The evolution of seeds is a major reason why flowering plants are a dominant life form on Earth. The developing seed is composed of two fertilization products, the embryo and endosperm, which are surrounded by a maternally derived seed coat. Accumulating evidence indicates that efficient communication among all three seed components is required to ensure coordinated seed development. Cell communication within plant seeds has drawn much attention in recent years. In this study, we review current knowledge of cross-talk among the endosperm, embryo, and seed coat during seed development, and highlight recent advances in this field.  相似文献   

14.
Summary A pea vicilin promoter-diphtheria toxin A (DTx-A) chain gene fusion was introduced into Arabidopsis and tobacco. The chimeric Dtx-A gene behaves as a dominant, seed-lethal, Mendelian factor, and the segregation ratios are consistent with the numbers of integrated copies as revealed by Southern blotting. Germination deficiency results from distinct developmental abnormalities, thus allowing genetic dissection of seed development. The endosperm is affected first in both species. In Arabidopsis, full cellularization of the initially syncytial endosperm does not take place, which results in shrinkage and a shriveled appearance of the mature dry seed. The embryo, which appears structurally normal and lacks visible lesions, ceases to develop at the partially recurved cotyledon stage and does not use the remaining endosperm. In tobacco, peripheral degeneration and premature termination of cellular endosperm development occurs at the cotyledon initiation stage. Lesions appear in the cotyledons at the advanced cotyledon stage, but the embryo continues to grow and attains nearly the same size and level of differentiation as mature wild-type embryos before degeneration and intracellular disintegration take place throughout. Accumulation of protein bodies and other cytoplasmic inclusions is very limited and occurs only in few cells. The timing and distribution of lesions follow a pattern typical for accumulation of protein bodies in wild-type seeds. These observations are consistent with expression of the vicilin promoter in the enlargement phase of cell differentiation. A novel tissue interaction arises, when the embryo uses up all the arrested endosperm: the embryo proves to be capable of absorbing the parenchyma layers of the integument, which are normally obliterated by, and incorporated into, the endosperm. The mature seed thus consists of a seed coat of one rigid cell layer, and a degenerated embryo. The genetic ablation technique has thus contributed to the establishment of the sequence of events and elucidation of the role of different cell lineages and tissues in seed development.  相似文献   

15.
Cytological and histological studies on postfertilization development of ovules were carried out in six facultatively apomictic Citrus cultivars. At the time of anthesis, adventive embryo initial cells (AEICs) were detected mainly in the cell layers of the nucellus around the chalazal half of the embryo sac. During the approximately 40 days rest period of the AEICs after fertilization, rapid cell division and enlargement in the endosperm and the chalazal half of the nucellus resulted in the split of AEICs into several separated areas forming the micropylar, lateral and chalazal islands surrounding the enlarging embryo sac. Both in diploid seeds with triploid endosperm and triploid seeds with pentaploid endosperm, the AEICs located in the micropylar half successfully developed into adventive embryos. In diploid seeds, almost all AEICs located in the chalazal half did not develop beyond the initial-celled stage, while in the triploid seeds, those located in the chalazal half occasionally developed into cotyledonary embryos. In seeds with aborted endosperm, the AEICs located in the chalazal half often developed into cotyledonary embryos. The chalazal expiants from normal seeds produced a large number of embryos in vitro. Four results can be summarized from these studies on adventive embryogenesis as follows: 1) All AEICs are initiated prior to anthesis. 2) Whether or not the AEICs successfully developed into adventive embryos is dependent upon their position in the seed. 3) The farther the AEICs are located from the micropylar end, the more adventive embryogenesis is suppressed by endosperm. 4) The degree of adventive embryogenesis in the chalazal half is affected by time and extent of malfunction of the endosperm. Under natural conditions, these regulatory systems of adventive embryogenesis contribute to high production of zygotic seedlings in apomictic Citrus species and cultivars.  相似文献   

16.
InMicrocarpaea muscosa gametogenesis, embryo sac development (Polygonum type), endosperm development (cellular), embryogeny (Onagrad type), and seed structure are described. The different modes of endosperm development withinGratioleae are compared.  相似文献   

17.
Winter , Dorothy M. (Iowa State U., Ames.) The development of the seed of Abutilon theophrasti. II. Seat coat. Amer. Jour. Bot. 47(3) : 157—162. Illus. 1960.–The integuments of Abutilon theophrasti Medic. undergo a rapid increase in size, predominantly by anticlinal cell divisions during the first 3 days after fertilization. Within 7 days, the outer epidermis of the inner integument becomes thick walled. At maturity this compact, lignified, and cutinized palisade layer accounts for more than half the thickness of the seed coat. During early growth, the palisade cells form a continuous layer in the micropylar region. In the chalazal region the palisade layer is discontinuous in a slit-shaped region, 60 × 740 microns. The shape of this discontinuity constitutes a major difference between dormant-seeded Abutilon and non-dormant Gossypium seeds. Exterior to the palisade layer is the outer integument which consists of a small-celled layer and a large-celled layer sparsely covered with unicellular, lignified hairs. Interior to the palisade is the thick mesophyll of the inner integument which is largely digested during seed growth and leaves only 2 pigmented cell layers in most regions at maturity. The inner epidermis is small-celled, pigmented and cutinized and adheres tightly to the endosperm. Seed coat impermeability increases with seed maturity. Even immature seeds will germinate, if scarified, indicating a lack of embryo dormancy.  相似文献   

18.
Cotton is the most important textile crop as a result of its long cellulose-enriched mature fibers. These single-celled hairs initiate at anthesis from the ovule epidermis. To date, genes proven to be critical for fiber development have not been identified. Here, we examined the role of the sucrose synthase gene (Sus) in cotton fiber and seed by transforming cotton with Sus suppression constructs. We focused our analysis on 0 to 3 days after anthesis (DAA) for early fiber development and 25 DAA, when the fiber and seed are maximal in size. Suppression of Sus activity by 70% or more in the ovule epidermis led to a fiberless phenotype. The fiber initials in those ovules were fewer and shrunken or collapsed. The level of Sus suppression correlated strongly with the degree of inhibition of fiber initiation and elongation, probably as a result of the reduction of hexoses. By 25 DAA, a portion of the seeds in the fruit showed Sus suppression only in the seed coat fibers and transfer cells but not in the endosperm and embryo. These transgenic seeds were identical to wild-type seeds except for much reduced fiber growth. However, the remaining seeds in the fruit showed Sus suppression both in the seed coat and in the endosperm and embryo. These seeds were shrunken with loss of the transfer cells and were <5% of wild-type seed weight. These results demonstrate that Sus plays a rate-limiting role in the initiation and elongation of the single-celled fibers. These analyses also show that suppression of Sus only in the maternal seed tissue represses fiber development without affecting embryo development and seed size. Additional suppression in the endosperm and embryo inhibits their own development, which blocks the formation of adjacent seed coat transfer cells and arrests seed development entirely.  相似文献   

19.
Microsporogenesis and embryology of the monotypic Zippelia (Z. begoniaefolia) Blume (Piperaceae) is described for the first time to assess its systematic relationships. The formation of the anther wall is of Basic Type such that the anther wall, consisting of an endothecium with fibrous thickenings, two middle layers, and a glandular septum with 2‐nucleate cells, is derived from a primary parietal layer. Simultaneous cytokinesis follows meiosis of the microspore mother cell thence forming a tetrahedral tetrad of microspores. The single basal ovule is orthotropous, crassinucellate and bitegmic but only the inner integument forms the micropyle. The sporogenous cell of the nucellus functions directly as a megaspore mother cell. A coenocyte with four nuclei forms after meiosis of the megaspore mother cell. The formation of the embryo sac is tetrasporic ab initio and is of, or similar to, the Drusa Type of embryo sac in which the nuclei of the coenocyte undergo two successive mitoses and forms a 16‐celled or 16‐nucleate embryo sac that is ovoid in shape. The embryo sac has an egg apparatus consisting of an egg cell and two synergids (but one of the latter is less discernable). Two polar cells occur just beneath the egg apparatus and 11 antipodal cells or nuclei are arranged along the lower part of the inner wall of the embryo sac. They are linked by threads of cytoplasm. The two polar cells are separated or fused before fertilization. A large primary endosperm nucleus with many nucleoli, which resulted from the fertilized polar cells and with the participation of antipodal cells, divides into a free nuclei stage. The free nuclei are arranged along the lower part of the inner wall of the embryo sac or rarely assemble at the central part. The development of endosperm is thus of the Nuclear Type. The zygote remains undivided and fails to develop even when the seed is nearly mature. Frequently, the zygote and the endosperm abort later and leave an empty chamber in the top part of the seed. Most of the seed content is starchy perisperm. Only the inner integument forms the seed coat and the pericarp develops glochidiate hairs (anchor‐like hairs) when the endosperm begins to develop. By comparison with the other piperaceous taxa using embryological and botanical features, Zippelia is referred to as a basal taxon and a more isolated evolutionary line or a blind branch in the Piperaceae. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 140 , 49–64.  相似文献   

20.
《Aquatic Botany》2007,86(2):148-156
The embryology and the seed development of Syngonanthus caulescens are presented. This species possesses: a bithecous and tetrasporangiate anther, with a four-layered wall, a conspicuous endothecium of the baseplate type, a secretory tapetum formed by uninucleate cells, successive microsporogenesis resulting in isobilateral microspore tetrads, spiraperturate and binucleate pollen grains, an orthotropous, pendulous, bitegmic and tenuinucellate ovule, with a micropyle formed only by the inner integument, a megagametophyte of the Polygonum type, with formation of an antipodal cyst, free-nuclear and starchy endosperm, a broad and bell-shaped embryo, operculate and endotestal seeds, a seed coat derived from the inner layers of both integuments, and tanniniferous endotegmen. These embryological aspects are characteristic not only for Syngonanthus, but for the whole family, with few differences between genera. Furthermore, the pollen grain of the spiraperturate type and the cystic arrangement of the antipodals in the megagametophyte are peculiar and very distinctive features of Eriocaulaceae within the other Poales (commelinids).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号