首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
1. Mixotrophs are organisms which combine phototrophy and heterotrophy; such nutritional behaviour is widespread among protists. This ability to combine multiple modes of nutrition varies between species and is not related to their taxonomic grouping. A classification of mixotrophic protists, based on their behaviour, is proposed, dividing them into four groups.
2. Group A includes protists whose primary mode of nutrition is heterotrophy and where phototrophy is employed only when prey concentrations limit heterotrophic growth. In groups B, C and D phototrophy is the dominant mode of nutrition. In group B phagotrophy supplements growth when light is limiting, therefore ingestion of prey is inversely proportional to light intensity; in group C phagotrophy provides essential substances for growth and ingestion is proportional to light intensity; and group D includes those who have very low ingestion rates, ingesting prey only, for example, for cell maintenance during prolonged dark periods.
3. This classification is aimed towards predicting the impact of any particular mixotrophic protist on the aquatic food web, and how this impact may vary depending on the environmental conditions. A model representation of the four groups is discussed.  相似文献   

2.
Many marine microbial eukaryotes combine photosynthetic with phagotrophic nutrition, but incomplete understanding of such mixotrophic protists, their functional diversity, and underlying physiological mechanisms limits the assessment and modeling of their roles in present and future ocean ecosystems. We developed an experimental system to study responses of mixotrophic protists to availability of living prey and light, and used it to characterize contrasting physiological strategies in two stramenopiles in the genus Ochromonas. We show that oceanic isolate CCMP1393 is an obligate mixotroph, requiring both light and prey as complementary resources. Interdependence of photosynthesis and heterotrophy in CCMP1393 comprises a significant role of mitochondrial respiration in photosynthetic electron transport. In contrast, coastal isolate CCMP2951 is a facultative mixotroph that can substitute photosynthesis by phagotrophy and hence grow purely heterotrophically in darkness. In contrast to CCMP1393, CCMP2951 also exhibits a marked photoprotection response that integrates non-photochemical quenching and mitochondrial respiration as electron sink for photosynthetically produced reducing equivalents. Facultative mixotrophs similar to CCMP2951 might be well adapted to variable environments, while obligate mixotrophs similar to CCMP1393 appear capable of resource efficient growth in oligotrophic ocean environments. Thus, the responses of these phylogenetically close protists to the availability of different resources reveals niche differentiation that influences impacts in food webs and leads to opposing carbon cycle roles.  相似文献   

3.
The alternative nutritional strategies in protists that were addressed during the symposium by that name at the 2010 annual meeting of the International Society of Protistologists and here in contributed papers, include a range of mechanisms that combine photosynthesis with heterotrophy in a single organism. Often called mixotrophy, these multiple trophic level combinations occur across a broad range of organisms and environments. Consequently, there is great variability in the physiological abilities and relative importance of phototrophy vs. phagotrophy and/or osmotrophy in mixotrophic protists. Recently, research papers addressing ecological questions about mixotrophy in marine systems have been more numerous than those that deal with freshwater systems, a trend that is probably partly due to a realization that many harmful algal blooms in coastal marine systems involve mixotrophic protists. After an introduction to the symposium presentations, recent studies of mixotrophy in freshwater systems are reviewed to encourage continuing research on their importance to inland waters.  相似文献   

4.
Mixotrophic Protists In Marine and Freshwater Ecosystems   总被引:4,自引:0,他引:4  
ABSTRACT Some protists from both marine and freshwater environments function at more than one trophic level by combining photosynthesis and panicle ingestion. Photosynthetic algae from several taxa (most commonly chrysomonads and dinoflagellates) have been reported to ingest living prey or nonliving particles, presumably obtaining part of their carbon and/or nutrients from phagocytosis. Conversely, some ciliates and sarcodines sequester chloroplasts after ingestion of algal prey. Plastid retention or "chloroplast symbiosis" by protists was first demonstrated < 20 years ago in a benthic foraminiferan. Although chloroplasts do not divide within these mixotrophic protists, they continue to function photosynthetically and may contribute to nutrition. Sarcodines and ciliates that harbor endosymbiotic algae could be considered mixotrophic but are not covered in detail here. the role of mixotrophy in the growth of protists and the impact of their grazing on prey populations have received increasing attention. Mixotrophic protists vary in their photosynthetic and ingestion capabilities, and thus, in the relative contribution of photosynthesis and phagotrophy to their nutrition. Abundant in both marine and freshwaters, they are potentially important predators of algae and bacteria in some systems. Mixotrophy may make a stronger link between the microbial and classic planktonic food webs by increasing trophic efficiency.  相似文献   

5.
Mixotrophic protists combine photosynthesis and phagotrophy to obtain energy and nutrients. Because mixotrophs can act as either primary producers or consumers, they have a complex role in marine food webs and biogeochemical cycles. Many mixotrophs are also phenotypically plastic and can adjust their metabolic investments in response to resource availability. Thus, a single species's ecological role may vary with environmental conditions. Here, we quantified how light and food availability impacted the growth rates, energy acquisition rates, and metabolic investment strategies of eight strains of the mixotrophic chrysophyte, Ochromonas. All eight Ochromonas strains photoacclimated by decreasing chlorophyll content as light intensity increased. Some strains were obligate phototrophs that required light for growth, while other strains showed stronger metabolic responses to prey availability. When prey availability was high, all eight strains exhibited accelerated growth rates and decreased their investments in both photosynthesis and phagotrophy. Photosynthesis and phagotrophy generally produced additive benefits: In low-prey environments, Ochromonas growth rates increased to maximum, light-saturated rates with increasing light but increased further with the addition of abundant bacterial prey. The additive benefits observed between photosynthesis and phagotrophy in Ochromonas suggest that the two metabolic modes provide nonsubstitutable resources, which may explain why a tradeoff between phagotrophic and phototrophic investments emerged in some but not all strains.  相似文献   

6.
《Harmful algae》2009,8(1):77-93
Historically most harmful algal species (HAS) have been thought to be strictly phototrophic. Mixotrophy, the use of phototrophy and heterotrophy in combination, has been emphasized as operative mainly in nutrient-poor habitats as a mechanism for augmenting nutrient supplies. Here we examine an alternate premise, that many harmful algae which thrive in eutrophic habitats are mixotrophs that respond both directly to nutrient inputs, and indirectly through high abundance of bacterial and algal prey that are stimulated by the elevated nutrients. From review and synthesis of the available data, mixotrophy occurs in all HAS examined thus far in the organic substrate- and prey-rich habitats of eutrophic estuarine and marine coastal waters. Where data are available comparing phototrophy versus mixotrophy, mixotrophy in eutrophic habitats generally is significant in nutrient acquisition and growth of HAS and, therefore, likely important in the development and maintenance of their blooms. In eutrophic habitats phagotrophic mixotrophs, in particular, have been shown to attain higher growth than when in phototrophic mode. Yet for many HAS, quantitative data about the role of mixotrophy in nutrition, growth, and blooms are lacking, especially relating laboratory information to natural field assemblages, so that the relative importance of photosynthesis, dissolved organic nutrients, and ingestion of prey largely remain unknown. Research is needed to assess simultaneously the roles of phototrophy, osmotrophy and phagotrophy in the nutritional ecology of HAS in eutrophic habitats, spanning bloom initiation, development and senescence. From these data, models that include the role of mixotrophy can be developed to gain more realistic insights about the nutritional factors that control harmful algae in eutrophic waters, and to strengthen predictive capability in predicting their blooms. An overall forecast that can be tested, as well, is that harmful mixotrophic algae will become more abundant as their food supplies increase in many estuaries and coastal waters that are sustaining chronic, increasing cultural eutrophication.  相似文献   

7.
Mixotrophic protists combine phagotrophy and phototrophy within a single cell. Greater phagotrophic activity could reinforce the bypass of carbon (C) flux through the bacteria‐mixotroph link and thus lead to a more efficient transfer of C and other nutrients to the top of the trophic web. Determining how foreseeable changes in temperature and UVR affect mixotrophic trade‐offs in favor of one or the other nutritional strategy, along the mixotrophic gradient, is key to understanding the fate of carbon and mineral nutrients in the aquatic ecosystem. Our two main hypotheses were: (i) that increased warming and UVR will divert metabolism toward phagotrophy, and (ii) that the magnitude of this shift will vary according to the organism's position along the mixotrophic gradient. To test these hypotheses, we used two protists (Isochrysis galbana and Chromulina sp.) located in different positions on the mixotrophic gradient, subjecting them to the action of temperature and of UVR and their interaction. Our results showed that the joint action of these two factors increased the primary production:bacterivory ratio and stoichiometric values (N:P ratio) close to Redfield's ratio. Therefore, temperature and UVR shifted the metabolism of both organisms toward greater phototrophy regardless of the original position of the organism on the mixotrophic gradient. Weaker phagotrophic activity could cause a less efficient transfer of C to the top of trophic webs.  相似文献   

8.
We describe a catalyzed reported deposition-fluorescence in situ hybridization (CARD-FISH) protocol particularly suited to assess the phagotrophy of mixotrophic protists on prokaryotes, since it maintains cell and plastid integrity, avoids cell loss and egestion of prey, and allows visualization of labeled prey against plastid autofluorescence. This protocol, which includes steps such as Lugol's-formaldehyde-thiosulfate fixation, agarose cell attachment, cell wall permeabilization with lysozyme plus achromopeptidase, and signal amplification with Alexa-Fluor 488, allowed us to detect almost 100% of planktonic prokaryotes (Bacteria and Archaea) and, for the first time, to show archaeal cells ingested by mixotrophic protists.  相似文献   

9.
We describe a catalyzed reported deposition-fluorescence in situ hybridization (CARD-FISH) protocol particularly suited to assess the phagotrophy of mixotrophic protists on prokaryotes, since it maintains cell and plastid integrity, avoids cell loss and egestion of prey, and allows visualization of labeled prey against plastid autofluorescence. This protocol, which includes steps such as Lugol's-formaldehyde-thiosulfate fixation, agarose cell attachment, cell wall permeabilization with lysozyme plus achromopeptidase, and signal amplification with Alexa-Fluor 488, allowed us to detect almost 100% of planktonic prokaryotes (Bacteria and Archaea) and, for the first time, to show archaeal cells ingested by mixotrophic protists.  相似文献   

10.
The time scales involved in the transition between phototrophic and phagotrophic modes of nutrition were examined in the mixotrophic chrysophytePoterioochromonas malhamensis. Phagotrophy began almost immediately when bacteria were added to phototrophically growing cultures of the alga, and chlorophylla concentration per cell in these cultures decreased over a 24-hour period. Chlorophyll concentrations per cell began to increase when bacteria were grazed to a density of approximately 106 ml–1, but after more than 24 hours they had not returned to the higher chlorophyll concentrations observed in the phototrophically grown cultures. Bacterivory was the dominant mode of nutrition in all cultures containing heat-killed bacteria. Photosynthesis did not contribute more than 7% of the total carbon budget of the alga when in the presence of abundant heat-killed bacteria. Bacterial density was the primary factor influencing the ability ofP. malhamensis to feed phagotrophically, while light intensity, pH, and the presence of dissolved organic matter had no effect on phagotrophy. We conclude thatP. malhamensis is capable of phagotrophy at all times. In contrast, phototrophy is inducible in the light during starvation and is a long-term survival strategy for this mixotrophic alga (i.e., it operates on time scales greater than a diel cycle).  相似文献   

11.

Background

The loss of photosynthesis has occurred often in eukaryotic evolution, even more than its acquisition, which occurred at least nine times independently and which generated the evolution of the supergroups Archaeplastida, Rhizaria, Chromalveolata and Excavata. This secondary loss of autotrophic capability is essential to explain the evolution of eukaryotes and the high diversity of protists, which has been severely underestimated until recently. However, the ecological and evolutionary scenarios behind this evolutionary “step back” are still largely unknown.

Methodology/Principal Findings

Using a dynamic model of heterotrophic and mixotrophic flagellates and two types of prey, large bacteria and ultramicrobacteria, we examine the influence of DOC concentration, mixotroph''s photosynthetic growth rate, and external limitations of photosynthesis on the coexistence of both types of flagellates. Our key premises are: large bacteria grow faster than small ones at high DOC concentrations, and vice versa; and heterotrophic flagellates are more efficient than the mixotrophs grazing small bacteria (both empirically supported). We show that differential efficiency in bacteria grazing, which strongly depends on cell size, is a key factor to explain the loss of photosynthesis in mixotrophs (which combine photosynthesis and bacterivory) leading to purely heterotrophic lineages. Further, we show in what conditions an heterotroph mutant can coexist, or even out-compete, its mixotrophic ancestor, suggesting that bacterivory and cell size reduction may have been major triggers for the diversification of eukaryotes.

Conclusions/Significance

Our results suggest that, provided the mixotroph''s photosynthetic advantage is not too large, the (small) heterotroph will also dominate in nutrient-poor environments and will readily invade a community of mixotrophs and bacteria, due to its higher efficiency exploiting the ultramicrobacteria. As carbon-limited conditions were presumably widespread throughout Earth history, such a scenario may explain the numerous transitions from phototrophy to mixotrophy and further to heterotrophy within virtually all major algal lineages. We challenge prevailing concepts that affiliated the evolution of phagotrophy with eutrophic or strongly light-limited environments only.  相似文献   

12.
The growth and grazing characteristics of Poterioochromonas malhamensis (Pringsheim) Peterfi (= Ochromonas malhamensis Pringsheim) (ca. 8 μm) feeding on phytoplankton, including the cyanobacteria Synechococcus sp. (ca. 2 μm) and Microcystis viridis (A. Brown) Lemmermann (ca. 6 μm) and the green alga Chlorella pyrenoidosa Chick (ca. 13 μm), were investigated in laboratory experiments involving the following treatments: (1) light without added algal prey (autotrophy), (2) light with added algal prey (mixotrophy), and (3) dark with added algal prey (phagotrophy). There were significantly higher cell numbers under mixotrophic and phagotrophic growth than under autotrophic growth. With phytoplankton as food, growth rates under both mixotrophy and phagotrophy were about two or three times higher than those under autotrophy, indicating that the algal diets were readily able to support the population growth of P. malhamensis. There were no significant differences in growth rate between mixotrophic and phagotrophic cultures during exponential growth. The ingestion rate of P. malhamensis with algal prey was also similar under both continuous light and dark. Poterioochromonas malhamensis ingested on average 0.27 M. viridis cells·flagellate− 1 ·h− 1 and 0.18 C. pyrenoidosa cells·flagellate− 1 ·h− 1 in continuous light and 0.25 M. viridis cells·flagellate− 1 ·h− 1 and 0.18 C. pyrenoidosa cells·flagellate− 1 ·h− 1 in continuous dark during exponential growth. The results showed that light had no effect on the growth and ingestion rates of P. malhamensis for phagotrophy during exponential growth. However, phagotrophic populations of P. malhamensis were incapable of growth in continuous darkness for longer than 5 days. Populations of P. malhamensis showed no increase when prey was added again after 4 days in continuous darkness, indicating that light is necessary for sustained phagotrophic growth of P. malhamensis. The study suggests that P. malhamensis, which has strong tolerance for light, is light dependent for phagotrophy.  相似文献   

13.
Mixotrophy, used herein for the combination of phototrophy and phagotrophy, is widespread among dinoflagellates. It occurs among most, perhaps all, of the extant orders, including the Prorocentrales, Dinophysiales. Gymnodiniales, Noctilucales, Gonyaulacales, Peridiniales, Blastodiniales. Phytodiniales, and Dinamoebales. Many cases of mixotrophy among dinoflagellates are probably undocumented. Primarily photosynthetic dinoflagellates with their “own” plastids can often supplement their nutrition by preying on other cells. Some primarily phagotrophic species are photosynthetic due to the presence of kleptochloroplasts or algal endosymbionts. Some parasitic dinoflagellates have plastids and are probably mixotrophic. For most mixotrophic dinoflagellates, the relative importance of photosynthesis, uptake of dissolved inorganic nutrients, and feeding are unknown. However, it is apparent that mixotrophy has different functions in different physiological types of dinoflagellates. Data on the simultaneous regulation of photosynthesis, assimilation of dissolved inorganic and organic nutrients, and phagotophy by environmental parameters (irradiance. availablity of dissolved nutrients, availability of prey) and by life history events are needed in order to understand the diverse roles of mixotrophy in dinoflagellates.  相似文献   

14.
The roles of temperature and light on grazing and photosynthesis were examined for Dinobryon sociale, a common freshwater mixotrophic alga. Photosynthetic rate was determined for D. sociale adapted to temperatures of 8, 12, 16, and 20°C under photosynthetically active radiation light irradiances of 25, 66, and 130 μmol photons · m?2 · s?1, with concurrent measurement of bacterial ingestion at all temperatures under medium and high light (66 and 130 μmol photons · m?2 · s?1). Rates of ingestion and photosynthesis increased with temperature to a maximum at 16°C under the two higher light regimes, and declined at 20°C. Although both light and temperature had a marked effect on photosynthesis, there was no significant difference in bacterivory at medium and high irradiances at any given temperature. At the lowest light condition (25 μmol photons · m?2 · s?1), photosynthesis remained low and relatively stable at all temperatures. D. sociale acquired the majority of carbon from photosynthesis, although the low photosynthetic rate without a concurrent decline in feeding rate at 8°C suggested 20%–30% of the carbon budget could be attributed to bacterivory at low temperatures. Grazing experiments in nutrient‐modified media revealed that this mixotroph had increased ingestion rates when either dissolved nitrogen or phosphorus was decreased. This work increases our understanding of environmental effects on mixotrophic nutrition. Although the influence of abiotic factors on phagotrophy and phototrophy in pure heterotrophs and phototrophs has been well studied, much less is known for mixotrophic organisms.  相似文献   

15.
在微囊藻的大量培养过程中分离到一株能够快速吞噬微囊藻的鞭毛虫-金藻Poterioochromonas sp.,其具有混和营养的特点。研究以人工培养的铜绿微囊藻(Microcystis aeruginosa FACHB469)为饵料,研究了起始饵料浓度、光强、温度和pH等环境因子对Poterioochromonas sp.生长和吞噬饵料速率的影响。结果显示:当无饵料时,金藻的自养生长与光强和温度相关,而与pH无相关性。喂食饵料能显著促进金藻的生长,其吞噬速率和生长速率与起始饵料浓度相关性强,可分别用Michaelis-Menten方程和Monod方程拟合。提供相同量的饵料时,金藻的生长与光强相关性显著,而与温度和pH的相关性不显著;其吞噬速率与pH呈现负相关关系,而与光强和温度相关性不显著。除了在不同pH下的生长外,混合营养时金藻的生长速率与吞噬速率之间存在显著的正相关关系。实验表明适于Poterioochromonas sp.生存并吞噬微囊藻的环境条件较广,这也是进一步探索利用Poterioochromonas sp.控制微囊藻水华的前提。    相似文献   

16.
Prorocentrum minimum is a neritic dinoflagellate that forms seasonal blooms and red tides in estuarine ecosystems. While known to be mixotrophic, previous attempts to document feeding on algal prey have yielded low grazing rates. In this study, growth and ingestion rates of P. minimum were measured as a function of nitrogen (‐N) and phosphorous (‐P) starvation. A P. minimum isolate from Chesapeake Bay was found to ingest cryptophyte prey when in stationary phase and when starved of N or P. Prorocentrum minimum ingested two strains of Teleaulax amphioxeia at higher rates than six other cryptophyte species. In all cases ‐P treatments resulted in the highest grazing. Ingestion rates of ‐P cells on T. amphioxeia saturated at ~5 prey per predator per day, while ingestion by ‐N cells saturated at 1 prey per predator per day. In the presence of prey, ‐P treated cells reached a maximum mixotrophic growth rate (μmax) of 0.5 d?1, while ‐N cells had a μmax of 0.18 d?1. Calculations of ingested C, N, and P due to feeding on T. amphioxeia revealed that phagotrophy can be an important source of all three elements. While P. minimum is a proficient phototroph, inducible phagotrophy is an important nutritional source for this dinoflagellate.  相似文献   

17.
Mixotrophy in planktonic protists: an overview   总被引:9,自引:0,他引:9  
1. An overview is provided of the role of mixotrophic protists in plankton communities. Consideration of the importance of phagotrophy in the evolution of photosynthetic eucaryotes suggests that mixotrophy as a nutritional strategy can arise rather readily.
2. Mixotrophic protists actually present a spectrum of nutritional strategies. However, recognition of distinct groups of mixotrophs based on nutritional behaviour facilitates consideration of their functional role and of competitive interactions with other types of planktonic protists.
3. Consideration of the costs and benefits of mixotrophy as a nutritional strategy allows the development of several empirical predictions about the probable outcome of resource competition between mixotrophs and obligate phototrophs or phagotrophs. Existing results from laboratory and field experiments allow some of these predictions to be evaluated.
4. These results indicate that, under specified conditions, mixotrophs should represent an important link in the flux of materials through planktonic food webs. However, quantifying these fluxes remains a challenge for the future.  相似文献   

18.
Significance of predation by protists in aquatic microbial food webs   总被引:31,自引:0,他引:31  
Predation in aquatic microbial food webs is dominated by phagotrophic protists, yet these microorganisms are still understudied compared to bacteria and phytoplankton. In pelagic ecosystems, predaceous protists are ubiquitous, range in size from 2 μm flagellates to >100 μm ciliates and dinoflagellates, and exhibit a wide array of feeding strategies. Their trophic states run the gamut from strictly phagotrophic, to mixotrophic: partly autotrophic and partly phagotrophic, to primarily autotrophic but capable of phagotrophy. Protists are a major source of mortality for both heterotrophic and autotrophic bacteria. They compete with herbivorous meso- and macro-zooplankton for all size classes of phytoplankton. Protist grazing may affect the rate of organic sinking flux from the euphotic zone. Protist excretions are an important source of remineralized nutrients, and of colloidal and dissolved trace metals such as iron, in aquatic systems. Work on predation by protists is being facilitated by methodological advances, e.g., molecular genetic analysis of protistan diversity and application of flow cytometry to study population growth and feeding rates. Examples of new research areas are studies of impact of protistan predation on the community structure of prey assemblages and of chemical communication between predator and prey in microbial food webs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Mixotrophy is the ability to combine autotrophic and heterotrophic modes of nutrition. It is widely spread in a variety of microorganisms including such important plankton groups as dinoflagellates and cyanobacteria. In marine ecosystems, mixotrophy complicates our concept of the flow of materials and energy and therefore has been thoroughly studied for recent decades. Nevertheless, the exact data on the auto/heterotrophy balance during mixotrophic growth are still lacking, mainly due to insufficient knowledge of physiological and molecular grounds of this phenomenon. In this review, we address the ecological and cytophysiological aspects of the problem of mixotrophy in microorganisms as well as discuss possible causes of the relatively slow progress in this field.  相似文献   

20.
Many non-photosynthetic species of protists and metazoans are capable of hosting viable algal endosymbionts or their organelles through adaptations of phagocytic pathways. A form of mixotrophy combining phototrophy and heterotrophy, acquired phototrophy (AcPh) encompasses a suite of endosymbiotic and organelle retention interactions, that range from facultative to obligate. AcPh is a common phenomenon in aquatic ecosystems, with endosymbiotic associations generally more prevalent in nutrient poor environments, and organelle retention typically associated with more productive ones. All AcPhs benefit from enhanced growth due to access to photosynthetic products; however, the degree of metabolic integration and dependency in the host varies widely. AcPh is found in at least four of the major eukaryotic supergroups, and is the driving force in the evolution of secondary and tertiary plastid acquisitions. Mutualistic resource partitioning characterizes most algal endosymbiotic interactions, while organelle retention is a form of predation, characterized by nutrient flow (i.e., growth) in one direction. AcPh involves adaptations to recognize specific prey or endosymbionts and to house organelles or endosymbionts within the endomembrane system but free from digestion. In many cases, hosts depend upon AcPh for the production of essential nutrients, many of which remain obscure. The practice of AcPh has led to multiple independent secondary and tertiary plastid acquisition events among several eukaryote lineages, giving rise to the diverse array of algae found in modern aquatic ecosystems. This article highlights those AcPhs that are model research organisms for both metazoans and protists. Much of the basic biology of AcPhs remains enigmatic, particularly (1) which essential nutrients or factors make certain forms of AcPh obligatory, (2) how hosts regulate and manipulate endosymbionts or sequestered organelles, and (3) what genomic imprint, if any, AcPh leaves on non-photosynthetic host species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号