首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钙调神经磷酸酶在胍变性过程中活力及构象变化的比较   总被引:1,自引:0,他引:1  
钙调神经磷酸酶(CaN)在盐酸胍溶液中的内源荧光、远紫外CD谱及剩余活力的变化提示:CaN的酶活力在胍浓度为0.5mol/L左右可完全丧失,同时伴有内源荧光强度的下降,333nm最大发射峰的红移(提示了色氨酸和酪氨酸残基的暴露)。比较不同胍浓度下牛脑CaN的失活与整体构象变化,表明酶的失活先于整体构象变化。在0.6mol/L胍溶液中,内源荧光变化的动力学过程只能测出一相,而酶失活的动力学过程为快、慢两相,快相动力学速度常数比整体构象变化速度常数大1-2个数量级,慢相失活速度常数与整体构象变化速度常数相近。提示低浓度胍可引起该酶的完全失活,活性部位的空间构象比整个酶分子的构象更易受到变性剂的扰乱。  相似文献   

2.
The presence of very low concentrations of the widely used chemical denaturants, guanidinium chloride and urea, induce changes in the tertiary structure of proteins. We have presented results on such changes in four structurally unrelated proteins to show that such structural perturbations are common irrespective of their origin. Data representative of such structural changes are shown for the monomeric globular proteins such as horseradish peroxidase (HRP) from a plant, human serum albumin (HSA) and prothrombin from ovine blood serum, and for the membrane-associated, worm-like elongated protein, spectrin, from ovine erythrocytes. Structural alterations in these proteins were reflected in quenching studies of tryptophan fluorescence using the widely used quencher acrylamide. Stern-Volmer quenching constants measured in presence of the denaturants, even at concentrations below 100 mM, were higher than those measured in absence of the denaturants. Both steady-state and time-resolved fluorescence emission properties of tryptophan and of the extrinsic probe PRODAN were used for monitoring conformational changes in the proteins in presence of different low concentrations of the denaturants. These results are consistent with earlier studies from our laboratory indicating structural perturbations in proteins at the tertiary level, keeping their native-like secondary structure and their biological activity more or less intact.  相似文献   

3.
Glutathione S-transferase P (GST-P) exists as a homodimeric form and has two tryptophan residues, Trp28 and Trp38, in each subunit. In order to elucidate the role of the two tryptophan residues in catalytic function, we examined intrinsic fluorescence of tryptophan residues and effect of chemical modification by N-bromosuccinimide (NBS). The quenching of intrinsic fluorescence was observed by the addition of S-hexylglutathione, a substrate analogue, and the enzymatic activity was totally lost when single tryptophan residue was oxidized by NBS. To identify which tryptophan residue is involved in the catalytic function, each tryptophan was changed to histidine by site-directed mutagenesis. Trp28His GST-P mutant enzyme showed a comparable enzymatic activity with that of the wild type one. Trp38His mutant neither was bound to S-hexylglutathione-linked Sepharose nor exhibited any GST activity. These findings indicate that Trp38 is important for the catalytic function and substrate binding of GST-P.  相似文献   

4.
Fatty acid synthase is an important enzyme participating in energy metabolism in vivo. The inactivation and conformational changes of the multifunctional fatty acid synthase from chicken liver in SDS solutions have been studied. The results show that the denaturation of this multifunctional enzyme by SDS occurred in three stages. At low concentrations of SDS (less than 0.15 mM) the enzyme was completely inactivated with regard to the overall reaction. For each component of the enzyme, the loss of activity occurred at higher concentrations of SDS. Significant conformational changes (as indicated by the changes of the intrinsic fluorescence emission and the ultraviolet difference spectra) occurred at higher concentrations of SDS. Increasing the SDS concentration caused only slight changes of the CD spectra, indicating that SDS had no significant effect on the secondary structure of the enzyme. The results suggest that the active sites of the multifunctional fatty acid synthase display more conformational flexibility than the enzyme molecule as a whole.  相似文献   

5.
pH-induced conformational states of bovine growth hormone   总被引:1,自引:0,他引:1  
The folding behavior of bovine growth hormone (bGH) is examined by chemical and pH denaturation using several spectroscopic probes of protein secondary and tertiary structure. Partially denaturing concentrations of urea eliminate the native-state quenching of intrinsic tryptophan fluorescence, from the single protein tryptophan, but the fluorescence emission spectrum is not red-shifted like the unfolded state, and the protein retains substantial secondary structure. A neutral-to-acid pH shift also eliminates tryptophan quenching; however, the loss of quenching is not accompanied by an emission red-shift. In addition, the protein undergoes a pH-dependent UV absorbance transition; the changes in absorptivity have the same midpoint as the transition associated with the change in intrinsic tryptophan fluorescence. The magnitude of the absorption transition is similar to that observed previously for urea denaturation of the protein. In a similar fashion, a pH-dependent CD transition is also observed; however, the transition occurs at a higher pH. The behavior of the various optical probes indicates that the pH-induced conformational transition produces a highly populated species in which the microenvironment surrounding the single protein tryptophan residue resembles that observed during the urea-induced unfolding/refolding transition. The pH-induced changes in tertiary structure occur at a lower pH than the changes associated with a portion of the secondary structure. Proton NMR of the low-pH intermediate indicates that the three His and six Tyr resonances are indistinguishable from the unfolded state. The intermediate(s) observed by either chemical or pH-induced denaturation resemble(s) a molten globule state which contains significant secondary structure. The residual secondary structure present in the intermediate could be nonnative.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A folding study of creatine kinase from Pelodiscus sinensis has not yet been reported. To gain more insight into structural and folding mechanisms of P. sinensis CK (PSCK), denaturants such as SDS, guanidine HCl, and urea were applied in this study. We purified PSCK from the muscle of P. sinensis and conducted inhibition kinetics with structural unfolding studies under various conditions. The results revealed that PSCK was completely inactivated at 1.8 mM SDS, 1.05 M guanidine HCl, and 7.5 M urea. The kinetics via time-interval measurements showed that the inactivation by SDS, guanidine HCl, and urea were all first-order reactions with kinetic processes shifting from monophase to biphase at increasing concentrations. With respect to tertiary structural changes, PSCK was unfolded in different ways; SDS increased the hydrophobicity but retained the most tertiary structural conformation, while guanidine HCl and urea induced conspicuous changes in tertiary structures and initiated kinetic unfolding mechanisms. Our study provides information regarding PSCK and enhances our knowledge of the reptile-derived enzyme folding.  相似文献   

7.
Upon exposure of rabbit muscle creatine kinase (ATP: creatine N-phosphotransferase, EC 2.7.3.2) that has been dansylated at the two reactive lysines to 8 M urea, the maximum emission of the extrinsic fluorophore shifts 4 nm towards the blue, this being accompanied by a small decrease in intensity. The fluorescence emission and excitation spectra of the reassembled and native proteins are the same. Denaturation is accompanied by a rapid decrease in fluorescence which is complete in 10 s. This suggests that denaturation is accompanied by an early disorganization at the catalytic center, where the reactive lysines are located. Reassembly is associated with a rapid increase in dansyl fluorescence followed by a slower decrease that is complete in 6 min. Since reactivation is not complete until 20 min, minor additional structural changes are needed for the reacquisition of catalytic activity. The intrinsic protein fluorescence (eight tryptophans per dimer) of dansylated creatine kinase is approximately 60% less than that of the unlabelled enzyme, which may be attributed to resonance energy transfer, indicating that the reactive lysine is located near one or more of the tryptophans. A more limited quenching of intrinsic fluorescence is observed when dansylated creatine kinase is exposed to 8 M urea. Reassembly, monitored by a decrease in intrinsic fluorescence, reveals that the dansylated protein achieves its final fluorescence after 18 min of renaturation compared with 30 min for unlabelled enzyme. The powerful quenching by the dansyl group may limit the ability to monitor changes in the tryptophan environment. Kinetics of fluorescence polarization changes during denaturation are consistent with a mechanism involving rapid dissociation, followed by a subunit disorganization and possible aggregation. Reassembly would appear to involve first a refolding of the disorganized monomers and subsequent association. These results correspond to our previous observations that subunit renaturation precedes dimerization.  相似文献   

8.
The absorbance and fluorescence spectral properties of mitochondrial F1-ATPase confirm that this protein does not contain tryptophan residues and therefore its fluorescence is due to tyrosines. The 36% increase in the fluorescence and the almost 100% increase in quantum yield upon denaturation of the protein suggest that a considerable number of tyrosyl residues have a very low quantum yield in the native enzyme. Quenching experiments using iodide indicate that all of the fluorophores are quenched and also all of them with the same quenching constant. These observations are interpreted as confirmatory of what has been found with several other proteins whose fluorescence originates from tyrosyl residues, where the buried tyrosines fluoresce with a much lower quantum yield than those which are exposed. ATP added to F1 previously depleted of loosely bound nucleotides changes the quenching constant of iodide and the quantum yield and this is interpreted to be due to a conformational change induced by the binding of the nucleotide to the enzyme. Addition of 2-mercaptoethanol decreases, although slightly, the polarization of the fluorescence. However, SDS addition gives a much bigger decrease. Hence disulphide bridges are less important for the tertiary structure of the protein than hydrophobic interactions, hydrogen bonding or other forces. Nevertheless the conformational change induced by reduction of disulphide bridges is detected in iodide quenching experiments and the change of the quantum yield of the enzyme.  相似文献   

9.
Previous studies have predicted five disulfide bonds in Aspergillus niger phytase (phy A). To investigate the role of disulfide bonds, intrinsic fluorescence spectra, far-ultraviolet circular dichroism (CD) spectra, and an enzyme activity assay were used to compare the differences of catalytic activity and conformational stability of phytase during denaturation in urea in the presence and absence of dithiothreitol (DTT). In the presence of 2 mM DTT, the inactivation and unfolding were greatly enhanced at the same concentration of denaturant. The fluorescence emission maximum red shift and decreases of ellipticity at 222 nm were in accord with the changes of catalytic activity. The kinetics of the unfolding courses were a biphasic process consisting of two first-order reactions in the absence of DTT and a monophasic process of a first-order reaction in the presence of DTT. The results suggested that the loss of enzymatic activity was most likely because of a conformational change, and that disulfide bonds played an important role in three-dimensional structure and catalytic activity.  相似文献   

10.
The denaturation behavior of phaseolin in urea, guanidine hydrochloride, and sodium dodecyl sulfate solutions was examined by monitoring changes in the intrinsic fluorescence of tryptophan and tyrosyl residues. Changes in various fluorescence parameters, such as quantum yield, emission maximum, spectral half-width, fluorescence depolarization, and fluorescence quenching by acrylamide, have indicated that while phaseolin is relatively stable up to 8 M urea, it is completely destabilized in 6 M guanidine hydrochloride and 6 mM sodium dodecyl sulfate. Furthermore, while the denaturation of phaseolin in urea solutions followed a two-step process, that in guanidine hydrochloride and sodium dodecyl sulfate followed a single-step process. While the accessibility of tryptophan residues to the nonionic acrylamide quencher is almost 100% in 6 M guanidine hydrochloride and 6 mM sodium dodecyl sulfate, only about 72% was accessible in 8 M urea compared to 52% in native phaseolin. The results presented here suggest that the protomeric structure of phaseolin is quite stable to changes in the environment. This structural stability may be partly responsible for its resistance to proteolysis by various proteinases.  相似文献   

11.
The aspartate (Asp)-induced unfolding and the salt-induced folding of creatine kinase (CK) have been studied by measuring enzyme activity, fluorescence emission spectra, circular dichroism (CD) spectra, native polyacrylamide gel electrophoresis and ultraviolet difference spectra. The results showed that Asp caused inactivation and unfolding of CK, with no aggregation during CK denaturation. The kinetics of CK unfolding followed a one phase process. At higher concentrations of Asp (>2.5mM), the CK dimers were partially dissociated. Inactivation occurred before noticeable conformational change during CK denaturation. Asp denatured CK was mostly reactivated and refolded by dilution. KCl induced the molten globule state with compact structure after CK was denatured with 10mM Asp. These results suggest that the effect of Asp differed from that of other denaturants such as guanidine, HCl or urea during CK unfolding. Asp is a reversible protein denaturant and the molten globule state indicates that intermediates exist during CK folding.  相似文献   

12.
A recombinant 19-kDa human fibroblast collagenase catalytic fragment modeled on a naturally occurring proteolytic product was purified from E. coli inclusion bodies. Following renaturation in the presence of zinc and calcium, the fragment demonstrated catalytic activity with the same primary sequence specificity against small synthetic substrates as the full-length collagenase. Unlike the parent enzyme, it rapidly cleaved casein and gelatin but not native type I collagen. Intrinsic fluorescence of the three tryptophan residues was used to monitor the conformational state of the enzyme, which underwent a 24-nm red shift in emission upon denaturation accompanied by quenching of the fluorescence and loss of catalytic activity. Low concentrations of denaturant unfolded the fragment while the full-length enzyme displayed a shallow extended denaturation curve. Calcium remarkably stabilized the 19-kDa fragment, zinc less so, while together they were synergistically stabilizing. Among divalent cations, calcium was the most effective stabilizer, EC50 approximately 60 microM, and similar amounts were required for substrate hydrolysis. Catalytic activity was more sensitive to denaturation than was tryptophan fluorescence. Least sensitive was the polypeptide backbone secondary structure assessed by CD. These observations suggest that the folding of the 19-kDa collagenase fragment is a multistep process stabilized by calcium.  相似文献   

13.
Malate dehydrogenase from bovine adrenal cortex has been purified to homogeneity, using affinity chromatography on 2',5'-ADP-Sepharose 4B. The kinetic data do not contradict the consecutive mechanism of the reaction with the ordered addition of substrates: NADP binds first, then malate. The enzyme conformation initiated by NADP and malate binding is less thermostable. Malate dehydrogenase has intrinsic tryptophan fluorescence with the spectrum maximum at 335 +/- 1 nm, half-width of 50 +/- 1 nm and quantum yield of 0.08. The tryptophan residues belonging to class 1 (75%) and class 2 (25%) make the main contribution to the intrinsic fluorescence of malate. The binding of cofactors and substrates results in the quenching of enzyme fluorescence. The values of dissociation constants for malate dehydrogenase complexes with NADP (4 microM), with NADP . H (8 microM) and with pyruvate (2.5 mM) correlate with the corresponding values of Km. The shifts in pH of the medium induce changes in the fluorescence parameters which are probably related to conformational changes in the enzyme molecule. The changes in the fluorescence parameters correlate with the alterations of the malate dehydrogenase enzymatic activity.  相似文献   

14.
Low concentrations of urea (1.2 M) stimulated the activity of endo-xylanase from Chainia by 30%. Subtle structural changes in the monomeric protein were reflected in the secondary and tertiary structure of the enzyme as monitored by fluorescence and circular dichroism. Changes in lambda(max) of emission, the fluorescence intensity and the Stern-Volmer quenching constants for acrylamide, measured in the presence of urea, indicated changes in the microenvironment of the Trp residues, suggesting alterations in tertiary structure. The ellipticity changes at 220 nm and Selcon analysis reflected changes in the content of beta-sheet while both the near- and far-UV CD spectra indicated alterations in the secondary and tertiary structure of the protein in presence of urea. The dissociation constant values (K(d)) show very little change in the affinity of the enzyme for the substrate while the k(cat) values suggest enhanced turnover of the substrate in presence of urea. We suggest that low urea concentrations perturb the conformational state of xylanase leading to an open and a more flexible structure, resulting in enhanced catalytic rates.  相似文献   

15.
Human butyrylcholinesterase is a nonspecific enzyme of clinical, pharmacological and toxicological significance. Although the enzyme is relatively stable, its activity is affected by numerous factors, including pressure. In this work, hydrostatic pressure dependence of the intrinsic tryptophan fluorescence in native and salted human butyrylcholinesterase was studied up to the maximum pressure at ambient temperature of about 1200 MPa. A correlated large shift toward long wavelengths and broadening observed at pressures between 200 and 700 MPa was interpreted as due to high pressure-induced denaturation of the protein, leading to an enhanced exposure of tryptophan residues into polar solvent environment. This transient process in native butyrylcholinesterase presumably involves conformational changes of the enzyme at both tertiary and secondary structure levels. Pressure-induced mixing of emitting local indole electronic transitions with quenching charge transfer states likely describes the accompanying fluorescence quenching that reveals different course from spectral changes. All the pressure-induced changes turned irreversible after passing a mid-point pressure of about 400 ± 50 MPa. Addition of either 0.1 M ammonium sulphate (a kosmotropic salt) or 0.1 M lithium thiocyanate (a chaotropic salt) to native enzyme similarly destabilized its structure.  相似文献   

16.
Kinetic changes of alpha-glucosidase from Saccharomyces cerevisiae in guanidinium chloride (GdmCl) and SDS solutions were investigated. The results showed both denaturants can lead conformational changes and loss of enzymatic activities. However, the concentrations of denaturants causing loss of activities were much lower than that of conformational changes, which suggested that the conformation of active site of α-glucosidase was more fragile than the whole molecular conformation in response to the two denaturants. According to the different kinetic process of the enzyme in the GdmCl and SDS solutions, the further investigation on the process of denaturation were made, it showed GdmCl and SDS had different types of inhibition and different types of interaction with the enzyme. Furthermore, the mechanisms of the two denaturants were discussed.  相似文献   

17.
Protein kinase C penetration into lipid bilayers   总被引:1,自引:0,他引:1  
Physical characteristics of the association and subsequent penetration of protein kinase C into defined lipid bilayers were analyzed using four different fluorescence probes. The enzyme demonstrated strong hydrophobic and electrostatic interactions with the bilayer as suggested by its ability to increase permeability of carboxyfluorescein-filled unilamellar vesicles. The intensity of interaction was dependent on the concentration of phosphatidylserine. The hydrophilic quencher, N-methylpicolinium perchlorate, was used to show that the tryptophan residues affected by ligand-induced conformational changes were in a hydrophobic region(s) of the enzyme. Using quenching of intrinsic tryptophan fluorescence, the enzyme was shown to penetrate the lipid bilayer to the C-16 position of labeled fatty acid probes. The association and subsequent penetration of the enzyme into the lipid bilayer was independent of divalent cations in these systems and had no significant effect on activator-independent substrate phosphorylation.  相似文献   

18.
Using steady-state fluorescence and nanosecond time-resolved fluorescence techniques, the Ca 2 -ATPase conformational changes induced by ganglioside GM3 were studied with different quenchers. The results showed that GM3 could significantly increase the lifetime of intrinsic fluorescence of Ca2 -ATPase reconstituted into proteoliposomes, and could also weaken the intrinsic fluorescence quenching by KI or hypocrellin B, HB. Further-more, by using quenching kinetic analysis of the time-resolved fluorescence, in the presence of GM3, the quenching constant (Ksv) and quenching efficiency were significantly lowered. The obtained results suggest that the oligosaccha-ride chain and the ceramide moieties of the GM3 molecule could interact with its counterparts of the Ca2 -ATPase re-spectively, thus change the conformation of the hydrophobic domain of the enzyme, making the tryptophan residues in different regions shift towards the hydrophilic-hydrophobic interface, and hence shorten the distance between the hy  相似文献   

19.
The visual cycle is a multi-step pathway to recycle 11-cis retinal, the chromophore for both rod and cone visual pigments. The isomerohydrolase RPE65, a membrane-associated enzyme, converts atRE (all-trans-retinyl ester) to 11-cis-retinol, a key step in the visual cycle. Previously, it has been shown that membrane association of RPE65 is essential for its catalytic activity. Using purified recombinant chicken RPE65 and an in vitro liposome-based floatation assay, we present evidence that the RPE65 membrane-binding affinity was significantly facilitated by incorporation of atRE, the substrate of RPE65, into liposomal membrane. Using tryptophan emission fluorescence quenching and CD spectroscopy, we showed that, upon membrane binding, RPE65 undergoes conformational changes at both the tertiary and secondary structural levels. Specifically, tryptophan fluorescence quenching showed that the tertiary RPE65 structure became more open towards the hydrophilic environment upon its association with the membrane. Simultaneously, a decrease in the α-helix content of RPE65 was revealed upon binding with the lipid membrane containing atRE. These results demonstrated that RPE65's functional activity depends on its conformational changes caused by its association with the membrane.  相似文献   

20.
经磷脂酶A2 去脂的肌质网Ca2 + - ATPase 重组于不同比例的二油酰磷脂酰胆碱(Dioleoylphophatidylcholine,DOPC) 和二油酰磷脂酰乙醇胺(Dioleoylphophatidylethanolamine,DOPE) 形成脂酶体,研究了不同磷脂环境中Ca2 + - ATPase 的ATP 水解和Ca2 + 转运活力。结果表明,DOPC 和DOPE 分别有利于ATP 水解和Ca2 + 的转运,DOPE 可以增强Ca2 + - ATPase 的ATP水解和Ca2 + 转运之间的偶联效率。利用内源荧光、荧光淬灭及Forster 能量转移原理测定Ca2 + -ATPase 相应的构象变化, 发现随着DOPE/ DOPC 比例的改变使Ca2 + - ATPase 构象发生相应的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号