首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The combined effects of herbivory and fire on plant mortality were investigated using prescribed burns of tamarisk (Tamarix ramosissima Lebed) exposed to herbivory by the saltcedar leaf beetle (Chrysomelidae: Diorhabda carinulata Desbrocher). Tamarix stands in the Humboldt Sink (NV, USA) were divided into three treatments: summer burn (August 2006), fall burn (October 2006) and control (unburned), and litter depth was manipulated to vary fire intensity within burn seasons. A gradient of existing herbivory impact was described with three plant condition metrics prior to fire: reduced proportions of green canopy, percent root crown starch sampled at the height of the growing season (August 2006), and percent root crown starch measured during dormancy (December 2006). August root crown starch concentration and proportion green canopy were strongly correlated, although the proportion green canopy predicted mortality better than August root crown starch. December root crown starch concentration was more depleted in unburned trees and in trees burned during the summer than in fall burn trees. Mortality in summer burned trees was higher than fall burned trees due to higher fire intensity, but December root crown starch available for resprouting in the spring was also lower in summer burned trees. The greatest mortality was observed in trees with the lowest December root crown starch concentration which were exposed to high fire intensity. Disproportionate changes in the slope and curvature of prediction traces as fire intensity and December starch reach reciprocal maximum and minimum levels indicate that beetle herbivory and fire intensity are synergistic.  相似文献   

2.
Changes in structural and compositional attributes of shinnery oak (Quercus havardii Rydb.) plant communities have occurred in the twentieth century. These changes may in part relate to altered fire regimes. Our objective was to document effects of prescribed fire in fall (October), winter (February), and spring (April) on plant composition. Three study sites were located in western Oklahoma; each contained 12, 60 × 30‐m plots that were designated, within site, to be seasonally burned, annually burned, or left unburned. Growing season canopy cover for herbaceous and woody species was estimated in 1997–1998 (post‐treatment). At one year post‐fire, burning in any season reduced shrub cover, and spring burns reduced cover most. Winter and annual fires increased cover of rhizomatous tallgrasses, whereas burning in any season decreased little bluestem cover. Perennial forbs increased with fall and winter fire. Shrub stem density increased with fire in any season. Communities returned rapidly to pre‐burn composition with increasing time since fire. Fire effects on herbaceous vegetation appear to be manifested through increases in bare ground and reduction of overstory shrub dominance. Prescribed fire can be used as a tool in restoration efforts to increase or maintain within and between community plant diversity. Our data suggest that some plant species may require or benefit from fire in specific seasons. Additional research is needed to determine the long‐term effects of repeated fire over time.  相似文献   

3.
Fire is an important determinant of many aspects of savanna ecosystem structure and function. However, relatively little is known about the effects of fire on faunal biodiversity in savannas. We conducted a short‐term study to examine the effects of a replicated experimental burn on bird diversity and abundance in savanna habitat of central Kenya. Twenty‐two months after the burn, Shannon diversity of birds was 32% higher on plots that had been burned compared with paired control plots. We observed no significant effects of burning on total bird abundance or species richness. Several families of birds were found only on plots that had been burned; one species, the rattling cisticola (Cisticola chiniana), was found only on unburned plots. Shrub canopy area was negatively correlated with bird diversity on each plot, and highly correlated with grass height and the abundance of orthopterans. Our results suggest that the highest landscape‐level bird diversity might be obtained through a mosaic of burned and unburned patches. This is also most likely to approximate the historical state of bird diversity in this habitat, because patchy fires have been an important natural disturbance in tropical ecosystems for millennia.  相似文献   

4.
Mu CC  Zhang BW  Han LD  Yu LL  Gu H 《应用生态学报》2011,22(4):857-865
By the methods of static chamber and gas chromatography, this paper studied the effects of fire disturbance on the seasonal dynamics and source/sink functions of CH4, CO2 and N2O emissions from Betula platyphylla-forested wetland as well as their relations with environmental factors in Xiaoxing' an Mountains of China. In growth season, slight fire disturbance on the wetland induced an increase of air temperature and ground surface temperature by 1.8-3.9 degrees C and a decrease of water table by 6.3 cm; while heavy fire disturbance led to an increase of air temperature and 0-40 cm soil temperature by 1.4-3.8 degrees C and a decrease of water table by 33.9 cm. Under slight or no fire disturbance, the CH4 was absorbed by the wetland soil in spring but emitted in summer and autumn; under heavy fire disturbance, the CH4 was absorbed in spring and summer but emitted in autumn. The CO2 flux had a seasonal variation of summer > spring = autumn under no fire disturbance, but of summer > autumn > spring under fire disturbance; and the N2O flux varied in the order of spring > summer > autumn under no fire disturbance, but of autumn > spring > summer under slight fire disturbance, and of summer > spring = autumn under heavy fire disturbance. At unburned site, the CO2 flux was significantly positively correlated with air temperature and ground surface temperature; at slightly burned site, the CO2 flux had significant positive correlations with air temperature, 5-10 cm soil temperature, and water table; at heavily burned sites, there was a significant positive correlation between CO2 flux and 5-40 cm soil temperature. Fire disturbance made the CH4 emission increased by 169.5% at lightly burned site or turned into weak CH4 sink at heavily burned site, and made the CO2 and N2O emissions and the global warming potential (GWP) at burned sites decreased by 21.2% -34.7%, 65.6% -95.8%, and 22.9% -36.6% respectively, compared with those at unburned site. Therefore, fire disturbance could decrease the greenhouse gases emission from Betula platyphylla-forested wetland, and planned firing could be properly implemented in wetland management.  相似文献   

5.
The effects of fire on forest structure and composition were studied in a severely fire-impacted landscape in the eastern Amazon. Extensive sampling of area forests was used to compare structure and compositional differences between burned and unburned forest stands. Burned forests were extremely heterogeneous, with substantial variation in forest structure and fire damage recorded over distances of <50 m. Unburned forest patches occurred within burned areas, but accounted for only six percent of the sample area. Canopy cover, living biomass, and living adult stem densities decreased with increasing fire inrensiry / frequency, and were as low as 10–30 percent of unburned forest values. Even light burns removed >70 percent of the sapling and vine populations. Pioneer abundance increased dramatically with burn intensity, with pioneers dominating the understory in severely damaged areas. Species richness was inversely related to burn severity, but no clear pattern of species selection was observed. Fire appears to be a cyclical event in the study region: <30 percent of the burned forest sample had been subjected to only one burn. Based on estimated solar radiation intensities, burning substantially increases fire susceptibility of forests. At least 50 percent of the total area of all burned forests is predicted to become flammable within 16 rainless days, as opposed to only 4 percent of the unburned forest. In heavily burned forest subjected to recurrent fires, 95 percent of the area is predicted to become flammable in <9 rain-free days. As a recurrent disturbance phenomenon, fire shows unparalleled potential to impoverish and alter the forests of the eastern Amazon.  相似文献   

6.
Abstract Research in Mediterranean‐climate shrublands in both South Africa and Australia shows that recruitment of proteoid shrubs (non‐sprouting, serotinous Proteaceae) is best after warm‐season (summer and autumn) fires and worst after cool‐season (winter and spring) ones. This pattern has been attributed to post‐dispersal seed attrition as well as size of pre‐dispersal seed reserves. Here we investigate patterns of post‐fire recruitment for four proteoid species in the eastern part of South Africa's fynbos biome, which has a bimodal (spring and autumn) rainfall regime. Despite the lack of significant differences in recruitment between cool‐ and warm‐season burns, we find some evidence for favourable recruitment periods following fires in spring and autumn, immediately before, and coinciding with, the bimodal rainfall peaks. This suggests that enhanced recruitment is associated with conditions of high soil moisture immediately after the fire, and that rapid germination may minimize post‐dispersal seed attrition. In two of the species, we also find a shift from peak flowering in winter and spring in the Mediterranean‐climate part of the fynbos biome, to summer and autumn flowering in the eastern part. Because these two species are only weakly serotinous, warm‐season flowering would result in maximal seed banks in spring, which could explain the spring recruitment peak, but not the autumn one. We conclude that eastern recruitment patterns differ significantly from those observed in the western and central parts of the biome, and that fire management protocols for the east, which are currently based on data and experience from the winter‐rainfall fynbos biome, need to be adjusted accordingly. Fire managers in the eastern fynbos biome should be less constrained by requirements to burn within a narrow seasonal range, and should therefore be in a better position to apply the required management burns.  相似文献   

7.
Prescribed fire has become a common tool of natural area managers for removal of non‐indigenous invasive species and maintenance of barrens plant communities. Certain non‐native species, such as tall fescue (Festuca arundinacea), tolerate fire and may require additional removal treatments. We studied changes in soil N and C dynamics after prescribed fire and herbicide application in remnant barrens in west central Kentucky. The effects of a single spring burn post‐emergence herbicide, combined fire and herbicide treatments, and an unburned no‐herbicide control were compared on five replicate blocks. In fire‐plus‐herbicide plots, fescue averaged 8% at the end of the growing season compared with 46% fescue cover in control plots. The extent of bare soil increased from near 0 in control to 11% in burned plots and 25% in fire‐plus‐herbicide plots. Over the course of the growing season, fire had little effect on soil N pools or processes. Fire caused a decline in soil CO2 flux in parallel to decreased soil moisture. When applied alone, herbicide increased plant‐available soil N slightly but had no effect on soil respiration, moisture, or temperature. Fire‐plus‐herbicide significantly increased plant‐available soil N and net N transformation rates; soil respiration declined by 33%. Removal of non‐native plants modified the chemical, physical, and biological soil conditions that control availability of plant nutrients and influence plant species performance and community composition.  相似文献   

8.
Pocket gopher (Geomyidae) disturbances are created in spatiallypredictable patterns. This may influence resource heterogeneity and affectgrassland vegetation in a unique manner. We attempt to determine the extent towhich density and spatial pattern of soil disturbances influence tallgrassprairie plant community structure and determine how these disturbances interactwith fire. To investigate the effects of explicit disturbance patterns we createdsimulated pocket gopher burrows and mounds in various spatial patterns.Simulated burrows were drilled into the soil at different densities inreplicated plots of burned and unburned prairie. Separate plots of simulatedmounds were created in burned and unburned prairie at low, medium, or high mounddensities in clumped, uniform, or random spatial dispersions. In both burned and unburned plots, increased burrow density decreasedgraminoid biomass and increased forb biomass. Total-plant and graminoid biomasswere higher in burned than unburned plots while forb biomass was higher inunburned plots. Total-plant species richness was not significantly affected byburrow density or burning treatments, but graminoid species richness increasedin unburned plots and forb species richness increased in burned plots. Plant species richness was temporarily reduced directly on mounddisturbances compared to undisturbed prairie. Over time and at larger samplingscales, the interaction of fire and mound disturbance patterns significantlyaffected total-plant and graminoid species richness. The principal effect inburned and unburned prairie was decreased total-plant and graminoid speciesrichness with increased mound disturbance intensity. Although species richness at small patch scales was not increased by anyintensity of disturbance and species composition was not altered by theestablishment of a unique guild of disturbance colonizing plants, our studyrevealed that interactions between soil disturbances and fire alter the plantcommunity dominance structure of North American tallgrass prairie primarily viachanges to graminoids. Moreover, these effects become increasingly pronouncedover time and at larger spatial sampling scales.  相似文献   

9.
Abstract. We explore patterns of diversity of plant functional types (PFTs) in Mediterranean communities subjected to landscape‐scale fire disturbances in a mosaic of uncultivated and old fields stands. We use regenerative and growth form attributes to establish two sets of PFTs of perennial species living in shrublands and pine forests of NE Spain. We test the following hypotheses: 1. Fire frequency decreases regenerative PFTs diversity by negatively selecting attributes with low regenerative efficiency. 2. Fire history has more influence on regenerative than on growth form PFTs. 3. The lowest diversity of growth form PFTs will be in old fields without recent fires. We surveyed stands of different combinations of fire and land use histories. Fire history included areas without fires in the last twenty years (unburned), sites burned in 1982 (1‐burned), and sites burned in 1982 and 1994 (2‐burned). Land use histories considered terraced old fields, and uncultivated stands on stony soils. We analysed patterns of PFT abundance and diversity at the stand level, and across the landscape (among stands absolute deviations from sample medians of the relative cover of PFTs). At the stand level, fire had more influence on the diversity patterns of regenerative PFTs than on growth form PFTs. Fire decreased the diversity of regenerative PFTs, due to the elimination of the species without effective mechanisms to post‐fire regeneration. This effect was not observed across the landscape, but seeders showed more variation in stands with longer history without fire. Land use contributed to explain the diversity patterns of growth form PFT (i.e. the number of growth form PFTs was lower in uncultivated, unburned sites), but it did not influence regenerative PFTs diversity. Patterns of PFTs diversity reflect the response to ecological processes operating at the landscape level. Overall, regenerative and growth form PFTs appear to be more sensitive to the fire history than to the past land use.  相似文献   

10.
Objective: Our purpose was to characterize vegetation compositional patterns, tree regeneration, and plant diversity, and their relationships to landscape context, topography, and light availability across the margins of four stand‐replacing subalpine burns. Location: Four 1977 to 1978 burns east of the Continental Divide in Colorado: the Ouzel burn, a burn near Kenosha Pass, the Badger Mountain burn, and the Maes Creek burn. Methods: Vegetation and environmental factors were sampled in 200 0.01‐ha plots on transects crossing burn edges, and stratified by elevation. We utilized dissimilarity indices, mixed‐effects models, and randomization tests to assess relationships between vegetation and environment. Results: Three decades after wildfire, plant communities exhibited pronounced compositional shifts across burn edges. Tree regeneration decreased with increasing elevation and distance into burn interiors; concomitant increases in forbs and graminoids were linked to greater light availability. Richness was roughly doubled in high‐severity burn interiors due to the persistence of a suite of native species occurring primarily in this habitat. Richness rose with distance into burns, but declined with increasing elevation. Only three of 188 plant species were non‐native; these were widespread, naturalized species that comprised <1% total cover. Conclusions: These subalpine wildfires generated considerable, persistent increases in plant species richness at local and landscape scales, and a diversity of plant communities. The findings suggest that fire suppression in such systems must lead to reduced diversity. Concerns about post‐fire invasion by exotic plants appear unwarranted in high‐elevation wilderness settings.  相似文献   

11.
Abstract. Disturbance may be an important determinant of plant community composition and diversity owing to its effects on competitive interactions, resources, dominance and vigour. The effect of type, timing and frequency of disturbance on grass and forb species richness was examined using data from a long‐term (> 50 yr) grassland burning and mowing experiment in KwaZulu‐Natal, South Africa. Grass species richness declined considerably (> 50%) in the absence of disturbance, whereas forb species richness was unaffected. Annual burning in sites not mown in summer tended to increase grass species richness relative to triennial burning (22% increase) with the reverse being true in sites mown twice in summer (37% decline). Forb species richness declined by 25% in sites mown twice in summer relative to sites mown in early summer only. Disturbance was necessary to achieve maximum grass species richness presumably by removing litter and increasing the availability of light. The interaction of time of mowing in summer (early versus late) and time of burning during the dormant period (spring versus winter) had the most dramatic effect on species richness. Time of burning had no effect on richness in sites mown in early summer, but winter burning resulted in a dramatic decline (27–42%) in richness in sites mown in late summer. This effect may be related to possible greater soil desiccation with this combination of disturbances.  相似文献   

12.
Plant community diversity, measured as species richness, is typically highest in the early post‐fire years in California shrublands. However, this generalization is overly simplistic and the present study demonstrates that diversity is determined by a complex of temporal and spatial effects. Ninety sites distributed across southern California were studied for 5 years after a series of fires. Characteristics of the disturbance event, in this case fire severity, can alter post‐fire diversity, both decreasing and increasing diversity, depending on life form. Spatial variability in resource availability is an important factor explaining patterns of diversity, and there is a complex interaction between landscape features and life form. Temporal variability in resource availability affects diversity, and the diversity peak in the immediate post‐fire year (or two) appears to be driven by factors different from subsequent diversity peaks. Early post‐fire diversity is influenced by life‐history specialization, illustrated by species that spend the bulk of their life cycle as a dormant seed bank, which is then triggered to germinate by fire. Resource fluctuations, precipitation in particular, may be associated with subsequent post‐fire diversity peaks. These later peaks in diversity comprise a flora that is compositionally different from the immediate post‐fire flora, and their presence may be due to mass effects from population expansion of local populations in adjacent burned areas.  相似文献   

13.
Rare species can play important functional roles, but human‐induced changes to disturbance regimes, such as fire, can inadvertently affect these species. We examined the influence of prescribed burns on the recruitment and diversity of plant species within a temperate forest in southeastern Australia, with a focus on species that were rare prior to burning. Floristic composition was compared among plots in landscapes before and after treatment with prescribed burns differing in the extent of area burnt and season of burn (before–after, control‐impact design). Floristic surveys were conducted before burns, at the end of a decade of drought, and 3 years postburn. We quantified the effect of prescribed burns on species grouped by their frequency within the landscape before burning (common, less common, and rare) and their life‐form attributes (woody perennials, perennial herbs or geophytes, and annual herbs). Burn treatment influenced the response of rare species. In spring‐burn plots, the recruitment of rare annual herbs was promoted, differentiating this treatment from both autumn‐burn and unburnt plots. In autumn‐burn plots, richness of rare species increased across all life‐form groups, although composition remained statistically similar to control plots. Richness of rare woody perennials increased in control plots. For all other life‐form and frequency groups, the floristic composition of landscapes changed between survey years, but there was no effect of burn treatment, suggesting a likely effect of rainfall on species recruitment. A prescribed burn can increase the occurrence of rare species in a landscape, but burn characteristics can affect the promotion of different life‐form groups and thus affect functional diversity. Drought‐breaking rain likely had an overarching effect on floristic composition during our study, highlighting that weather can play a greater role in influencing recruitment and diversity in plant communities than a prescribed burn.  相似文献   

14.
Schwilk  D.W.  Keeley  J.E.  Bond  W.J. 《Plant Ecology》1997,132(1):77-84
The intermediate disturbance hypothesis is a widely accepted generalization regarding patterns of species diversity, but may not hold true where fire is the disturbance. In the Mediterranean-climate shrublands of South Africa, called fynbos, fire is the most importance disturbance and a controlling factor in community dynamics. The intermediate disturbance hypothesis states that diversity will be highest at sites that have had an intermediate frequency of disturbance and will be lower at sites that have experienced very high or very low disturbance frequencies. Measures of diversity are sensitive to scale; therefore, we compared species richness for three fire regimes in South African mountain fynbos to test the intermediate disturbance hypothesis over different spatial scales from 1 m2 to 0.1 hectares. Species diversity response to fire frequency was highly scale-dependent, but the relationship between species diversity and disturbance frequency was opposite that predicted by the intermediate disturbance hypothesis. At the largest spatial scales, species diversity was highest at the least frequently burned sites (40 years between fires) and lowest at the sites of moderate (15 to 26 years between fires) and high fire frequency (alternating four and six year fire cycle). Community heterogeneity, measured both as the slope of the species-area curve for a site and as the mean dissimilarity in species composition among subplots within a site, correlated with species diversity at the largest spatial scales. Community heterogeneity was highest at the least frequently burned sites and lowest at the sites that experienced an intermediate fire frequency.  相似文献   

15.
Grasslands dominated by exotic annual grasses have replaced native perennial vegetation types in vast areas of California. Prescribed spring fires can cause a temporary replacement of exotic annual grasses by native and non‐native forbs, but generally do not lead to recovery of native perennials, especially where these have been entirely displaced for many years. Successful reintroduction of perennial species after fire depends on establishment in the postfire environment. We studied the effects of vegetation changes after an April fire on competition for soil moisture, a key factor in exotic annual grass dominance. As an alternative to fire, solarization effectively kills seeds of most plant species but with a high labor investment per area. We compared the burn to solarization in a study of establishment and growth of seeds and transplants of the native perennial grass Purple needlegrass (Nassella pulchra) and coastal sage species California sagebrush (Artemisia californica). After the fire, initial seed bank and seedling densities and regular percent cover and soil moisture (0–20 cm) data were collected in burned and unburned areas. Burned areas had 96% fewer viable seeds of the dominant annual grass, Ripgut brome (Bromus diandrus), leading to replacement by forbs from the seed bank, especially non‐native Black mustard (Brassica nigra). In the early growing season, B. diandrus dominating unburned areas consistently depleted soil moisture to a greater extent between rains than forbs in burned areas. However, B. diandrus senesced early, leaving more moisture available in unburned areas after late‐season rains. Nassella pulchra and A. californica established better on plots treated with fire and/or solarization than on untreated plots. We conclude that both spring burns and solarization can produce conditions where native perennials can establish in annual grasslands. However, the relative contribution of these treatments to restoration appears to depend on the native species being reintroduced, and the long‐term success of these initial restoration experiments remains to be determined.  相似文献   

16.
Fire Season and Dominance in an Illinois Tallgrass Prairie Restoration   总被引:3,自引:0,他引:3  
North American prairie remnants and restorations are normally managed with dormant‐season prescribed fires. Growing‐season fire is of interest because it suppresses dominant late‐flowering grasses and forbs, thereby making available light and other resources used by subdominant grasses and forbs that comprise most prairie diversity. Here we report a twofold increase in mean frequency and richness of subdominant species after late‐summer fire. Stimulation of subdominants was indiscriminate; richness of prairie and volunteer species increased in species that flowered in early, mid‐, or late season. Early spring fire, the management tool used on this site until this experiment, had no effect on subdominant richness or frequency. Neither burn treatment affected reproductive tillering of the tallgrasses Sorghastrum nutans or Panicum virgatum. Flowering of Andropogon gerardii increased 4‐fold after early‐spring fires and 11‐fold after late‐summer fires. These preliminary results suggest that frequency and species richness of subdominants can be improved by late growing‐season fire without compromising vigor of warm‐season tallgrasses.  相似文献   

17.
The Wallow Fire, the largest wildfire in Arizona history, encompassed 2,170 km2 and provided a rare opportunity to examine habitat selection and home ranges of American black bears (Ursus americanus) before and after a wildfire. We had fitted global positioning system (GPS) collars on 47 bears from 2005 to April 2011, and 10 of these were still collared when the fire started in May 2011. We captured and collared an additional 7 black bears within the fire perimeter post-fire (Jul–Sep 2011 and Jun 2012). To evaluate how black bears were affected by the fire, we fit a step selection function using a conditional mixed effects Poisson regression model to estimate the relative strength of black bear habitat selection in response to burn severity. Additionally, we estimated home range sizes using an autocorrelated kernel density estimator by means of a continuous-time movement model. We then used a generalized linear model with a negative binomial error distribution and mixed effects to estimate the effect of the burn severity on black bear home range size, while controlling for sex and drought. In spring and summer in years prior to the fire, bears selected areas that later burned in the fire. After the fire, bears used all burn severities, but their selection for high-severity burns decreased significantly in summer 2011 and fall 2012. Home range sizes were 3.06 times larger pre-fire than post-fire. Our study demonstrates that black bears continued to use all burn severities after a major wildfire, and that post-fire conditions did not result in expanded black bear home ranges.  相似文献   

18.
Understanding the effects of disturbances such as fire on plant demography helps elucidate the mechanisms that cause changes in community composition. I studied the effects of spring and fall fires on Silene spaldingii, an endangered perennial herb of grasslands in northwest Montana. Individual S. spaldingii plants were mapped, and size and flowering were recorded for 1 yr prior and 5 yr subsequent to the burn treatments. Enhanced seedling recruitment (70–410%) and a 22% increase in population size were the principal effects of fire on S. spaldingii, and fall burn plots had lower recruitment than spring burn plots. These effects were apparent for 2–3 yr following the treatments. Fire had no detectable effect on the survival of adults or recruits of S. spaldingii. Silene spaldingii exhibits prolonged dormancy in which plants do not produce aboveground vegetation for one to several consecutive years. Results suggest that fire has a positive effect on the population dynamics of S. spaldingii by removing litter and creating safe sites for recruitment. Prescribed fire should be an important tool for managing populations of this rare plant.  相似文献   

19.
Recruitment, establishment and survivorship of seed- and vegetatively-derived shoots were quantified biweekly in annually burned and infrequently burned tallgrass prairie to investigate the contributions of seed and vegetative reproduction to the maintenance and dynamics of tallgrass prairie plant populations, the demography of seedlings and ramets, and the influence of fire on the demography of grasses and forbs. Clonally produced grass and forb ramets comprised >99%of all established shoots present at the end of the growing season, whereas established seedlings accounted for <1%,emphasizing the rarity of successful seedling establishment and the importance of vegetative reproduction in driving the annual regeneration and dynamics of aboveground plant populations in tallgrass prairie. Most recruitment from vegetative reproduction occurred early in the growing season and was higher in annually burned than infrequently burned sites, although low levels of new stem recruitment occurred continuously throughout the growing season. Peak recruitment on annually burned prairie coincided with peak recruitment of the dominant C4 grasses Andropogon gerardii and Sorghastrum nutans prior to prescribed spring fire, with a second peak in recruitment occurring following fire. On infrequently burned prairie, grass and forb recruitment was highest in early April and declined steadily through May. The naturalized C3 grass, Poa pratensis, was responsible for most of the early recruitment on unburned sites, whereas A. gerardii contributed most to recruitment later in May. Infrequently burned prairie was dominated by these two grasses and contained a larger forb component than annually burned prairie. The principal demographic effect of fire was on ramet natality rather than mortality. Fire regime, plant functional group, or timing of cohort emergence before or after fire did not affect ramet survivorship. C4 grass shoots that emerged early and were damaged by fire showed similar survivorship patterns to tillers that emerged after fire. Differences in species composition between annually burned and infrequently burned prairie are driven by fire effects on vegetative reproduction and appear to be related principally to the effect of fire and detritus accumulation on the development of belowground vegetative meristems of C4 grasses and their emergence dynamics.  相似文献   

20.
ABSTRACT. Influences of annual climatic variation on fire occurrence were examined along a rainfall gradient from temperate rainforest to xeric woodlands in northern Patagonia, Argentina. Fire chronologies were derived from fire scars on trees and related to tree-ring proxy records of climate over the period 1820–1974. Similarly, fire records of four Patagonian national parks for the period 1940–1988 were compared to instrumental weather data. Finally, the influences of broad-scale synoptic weather patterns on fire occurrence in northern Patagonia were explored.
Fire in Nothofagus rainforests is highly dependent on drought during the spring and summer of the same year in which fires occur and is less strongly favoured by drought during the spring of the previous year. The occurrence of fire in dry vegetation types near the steppe ecotone is less dependent on drought because even during years of normal weather fuels are thoroughly desiccated during the dry summer. In xeric Austrocedrus woodlands, fire occurrence and spread are promoted by droughts during the fire season and also appear to be favoured by above-average moisture conditions during the preceding 1 to 2 growing seasons which enhances fuel production. Thus, in the xeric woodlands fire is not simply dependent on drought but is favoured by greater climatic variability over time scales of several years.
Fire activity in northern Patagonia is greatly influenced by the intensity and latitudinal position of the subtropical high pressure cell of the southeast Pacific. Greater fire activity is associated with a more intense and more southerly located high pressure cell which blocks the influx of Pacific moisture into the continent. Although long-term changes in fire occurrence along the rainforest-to-xeric woodland gradient have been greatly influenced by human activities, annual variation in fire frequency and extent is also strongly influenced by annual climatic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号