首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In order to elucidate the modes of interaction between lignin precursors and membranes, we have studied the influence of temperature, lipid composition and buffer composition on the partitioning of monolignol and dilignol model substances into phospholipid bilayers. The partitioning was determined by immobilized liposome chromatography, which is an established method for studies of pharmaceutical drugs but a new approach in studies of lignin synthesis. The temperature dependence of the retention and the effect of a high ammonium sulfate concentration in the mobile phase demonstrated that the interaction involved both hydrophobic effects and polar interactions. There was also a good correlation between the partitioning and the estimated hydrophobicity, in terms of octanol/water partitioning. The partitioning behavior of the model substances suggests that passive diffusion over the cell membrane is a possible transport route for lignin precursors. This conclusion is strengthened by comparison of the present results with the partitioning of pharmaceutical drugs that are known to pass cell membranes by diffusion.  相似文献   

2.
The structural complexity of the cell membrane makes analysis of membrane processes in living cells, as compared to model membrane systems, highly challenging. Living cells decorated with surface-attached colorimetric/fluorescent polydiacetylene patches might constitute an effective platform for analysis and visualization of membrane processes in situ. This work examines the biological and chemical consequences of plasma membrane labeling of promyelocytic leukemia cells with polydiacetylene. We show that the extent of fusion between incubated lipid/diacetylene vesicles and the plasma membrane is closely dependent upon the lipid composition of both vesicles and cell membrane. In particular, we find that cholesterol presence increased bilayer fusion between the chromatic vesicles and the plasma membrane, suggesting that membrane organization plays a significant role in the fusion process. Spectroscopic data and physiological assays show that decorating the cell membrane with the lipid/diacetylene patches reduces the overall lateral diffusion within the membrane bilayer, however polydiacetylene labeling does not adversely affect important cellular metabolic pathways. Overall, the experimental data indicate that the viability and physiological integrity of the surface-engineered cells are retained, making possible utilization of the platform for studying membrane processes in living cells. We demonstrate the use of the polydiacetylene-labeled cells for visualizing and discriminating among different membrane interaction mechanisms of pharmaceutical compounds.  相似文献   

3.
The pressure-dependent diffusion and partitioning of single lipid fluorophores in DMPC and DPPC monolayers were investigated with the use of a custom-made monolayer trough mounted on a combined fluorescence correlation spectroscopy (FCS) and wide-field microscopy setup. It is shown that lipid diffusion, which is essential for the function of biological membranes, is heavily influenced by the lateral pressure and phase of the lipid structure. Both of these may change dynamically during, e.g., protein adsorption and desorption processes. Using FCS, we measured lipid diffusion coefficients over a wide range of lateral pressures in DMPC monolayers and fitted them to a free-area model as well as the direct experimental observable mean molecular area. FCS measurements on DPPC monolayers were also performed below the onset of the phase transition (Π < 5 mN/m). At higher pressures, FCS was not applicable for measuring diffusion coefficients in DPPC monolayers. Single-molecule fluorescence microscopy and differential scanning calorimetry clearly showed that this was due to heterogeneous partitioning of the lipid fluorophores in condensed phases. The results were compared with dye partitioning in giant lipid vesicles. These findings are significant in relation to the application of lipid fluorophores to study diffusion in both model systems and biological systems.  相似文献   

4.
The cytotoxic and mutagenic properties of antitumor drugs such as adriamycin, acridines, diacridine, actinomycin D and Pt compounds are related to their interaction with nucleic acids and inhibition of protein synthesis. We have examined their interaction with human erythrocyte ghost membranes and murine mastocytoma cells using spin labeling techniques. These drugs induce changes in electron spin resonance of the spin labeled ghost membranes and in the mastocytoma cells. These alterations suggest that these drugs induce changes in protein conformation of the membranes. The membrane binding properties of these drugs may be important in their mechanism of action.  相似文献   

5.
6.
β淀粉样蛋白(amyloid β peptide,Aβ)与细胞膜间的相互作用很可能是阿尔茨海默症病(Alzheimer disease, AD)重要的风险因素。模型膜研究方法在该领域的应用和更新持续至今,但仍存在一些问题有待解决,例如,Aβ插膜后聚集状态与Aβ融合到脂质体膜聚集状态的差异,Aβ插膜后形成微通道的时间及与磷脂成分的关系等。本文试图解析这两个问题,同时,系统地总结出常用的和更新的模型膜研究方法,这些方法包括单层膜插膜及电镜样品的制备,脂质体制备方法的改进,脂质体膜上Aβ42经过高盐及酸清洗后的Western 印迹检测,ANTS-DPX研究脂质体泄漏等。研究结果显示:(1)胞外及膜内Aβ42单体与脂质体膜作用后的聚集状态存在差异,Aβ42单体插膜后更容易聚集成纤维,而膜内融合的Aβ42呈现寡聚体形式;(2) Sepharose CL-4B柱过滤比微型挤出器制备的脂质体更加均一分散;(3)Aβ42在膜上形成微通道很可能是一个缓慢的过程,且与脂质体的磷脂种类相关。这些方法为Aβ42与细胞膜的相互作用提供了实用的研究手段,同时也为其他膜蛋白质与细胞膜的相互作用提供了可以借鉴的办法。研究结果使β淀粉样蛋白代谢过程更加清晰。  相似文献   

7.
β淀粉样蛋白(amyloid β peptide,Aβ)与细胞膜间的相互作用很可能是阿尔茨海默症病(Alzheimer disease, AD)重要的风险因素。模型膜研究方法在该领域的应用和更新持续至今,但仍存在一些问题有待解决,例如,Aβ插膜后聚集状态与Aβ融合到脂质体膜聚集状态的差异,Aβ插膜后形成微通道的时间及与磷脂成分的关系等。本文试图解析这两个问题,同时,系统地总结出常用的和更新的模型膜研究方法,这些方法包括单层膜插膜及电镜样品的制备,脂质体制备方法的改进,脂质体膜上Aβ42经过高盐及酸清洗后的Western 印迹检测,ANTS-DPX研究脂质体泄漏等。研究结果显示:(1)胞外及膜内Aβ42单体与脂质体膜作用后的聚集状态存在差异,Aβ42单体插膜后更容易聚集成纤维,而膜内融合的Aβ42呈现寡聚体形式;(2) Sepharose CL-4B柱过滤比微型挤出器制备的脂质体更加均一分散;(3)Aβ42在膜上形成微通道很可能是一个缓慢的过程,且与脂质体的磷脂种类相关。这些方法为Aβ42与细胞膜的相互作用提供了实用的研究手段,同时也为其他膜蛋白质与细胞膜的相互作用提供了可以借鉴的办法。研究结果使β淀粉样蛋白代谢过程更加清晰。  相似文献   

8.
Chalcones are precursors of flavonoids and have been shown to have anti-cancer activity. Here, we identify the synthetic chalcone derivative 4′-acetoamido-4-hydroxychalcone (AHC) as a potential therapeutic agent for the treatment of glioma. Treatment with AHC reduced glioma cell invasion, migration, and colony formation in a concentration-dependent manner. In addition, AHC inhibited vascular endothelial growth factor-induced migration, invasion, and tube formation in HUVECs. To determine the mechanism underlying the inhibitory effect of AHC on glioma cell invasion and migration, we investigated the effect of AHC on the gene expression change and found that AHC affects actin dynamics in U87MG glioma cells. In actin cytoskeleton regulating system, AHC increased tropomyosin expression and stress fiber formation, probably through activation of PKA. Suppression of tropomyosin expression by siRNA or treatment with the PKA inhibitor H89 reduced the inhibitory effects of AHC on glioma cell invasion and migration. In vivo experiments also showed that AHC inhibited tumor growth in a xenograft mouse tumor model. Together, these data suggest that the synthetic chalcone derivative AHC has potent anti-cancer activity through inhibition of glioma proliferation, invasion, and angiogenesis and is therefore a potential chemotherapeutic candidate for the treatment of glioma.  相似文献   

9.
Glycosphingolipids (GSLs) are important constituents of lipid rafts and caveolae, are essential for the normal development of cells, and are adhesion sites for various infectious agents. One strategy for modulating GSL composition in lipid rafts is to selectively transfer GSL to or from these putative membrane microdomains. Glycolipid transfer protein (GLTP) catalyzes selective intermembrane transfer of GSLs. To enable effective use of GLTP as a tool to modify the glycolipid content of membranes, it is imperative to understand how the membrane regulates GLTP action. In this study, GLTP partitioning to membranes was analyzed by monitoring the fluorescence resonance energy transfer from tryptophans and tyrosines of GLTP to N-(5-dimethyl-aminonaphthalene-1-sulfonyl)-1,2-dihexadecanoyl-sn-glycero-3-phospho-ethanolamine present in bilayer vesicles. GLTP partitioned to POPC vesicles even when no GSL was present. GLTP interaction with model membranes was nonpenetrating, as assessed by protein-induced changes in lipid monolayer surface pressure, and nonperturbing in that neither membrane fluidity nor order were affected, as monitored by anisotropy of 1,6-diphenyl-1,3,5-hexatriene and 6-dodecanoyl-N,N-dimethyl-2-naphthylamine, even though the tryptophan anisotropy of GLTP increased in the presence of vesicles. Ionic strength, vesicle packing, and vesicle lipid composition affected GLTP partitioning to the membrane and led to the following conclusion: Conditions that increase the ratio of bound/unbound GLTP do not guarantee increased transfer activity, but conditions that decrease the ratio of bound/unbound GLTP always diminish transfer. A model of GLTP interaction with the membrane, based on the partitioning equilibrium data and consistent with the kinetics of GSL transfer, is presented and solved mathematically.  相似文献   

10.
Because of the constantly increasing demand for optically pure drugs it is of great importance to elucidate factors affecting stereochemistry, in order to provide a stable formulation with a high chiral quality of the desired isomer. Therefore, the effects of cyclodextrins (CyDs) and their alkylated and hydroxyalkylated derivatives on racemization and hydrolysis of (?)-(S)-hyoscyamine and (?)-(S)-scopolamine were examined kinetically and spectroscopically (NMR). Direct methods, based on a chiral and achiral chromatographic phase system, were used to determine their degradation products and enantiomer composition during stability tests. All different CyDs, except α-CyD, retarded racemization and hydrolysis. The inclusion of the drug substances in CyDs inhibits the attack of hydroxyl ions and/or water molecules and thus retards the racemization and hydrolysis. The racemization of the tropic acid alkaloids is dependent on the pH and temperature. NMR studies were used to evidence the formation of a soluble 1:1 complex in aqueous solution. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Neutral sugar composition of cell walls of suspension-cultured tobacco cells was examined with the advance of culture age by an anion-exchange chromatography. Isolated cell walls gave on hydrolysis the following sugars: 2% of l-rhamnose, 6% of d-mannose, 26% of l-arabinose, 13% of d-galactose, 8% of d-xylose and 47% of d-glucose as neutral sugars. Little changes in composition of cell wall polysaccharides were recognized with the advance of culture age. Sugar composition of the extra-cellular polysaccharides was similar to that of hemicellulose fraction from cell walls. Pectinic acid gave on hydrolysis 2-O-(α-d-galactopyranosyluronic acid)-l-rhamnose, d-galacturonic acid and its oligosaccharides.  相似文献   

12.
Cellular functions are usually associated with the activity of proteins and nucleic acids. Recent studies have shown that lipids modulate the localization and activity of key membrane-associated signal transduction proteins, thus regulating the cell's physiology. Membrane Lipid Therapy aims to reverse cell dysfunctions (i.e., diseases) by modulating the activity of membrane signaling proteins through regulation of the lipid bilayer structure. The present work shows the ability of a series of 2-hydroxyfatty acid (2OHFA) derivatives, varying in the acyl chain length and degree of unsaturation, to regulate the membrane lipid structure. These molecules have shown greater therapeutic potential than their natural non-hydroxylated counterparts. We demonstrated that both 2OHFA and natural FAs induced reorganization of lipid domains in model membranes of POPC:SM:PE:Cho, modulating the liquid-ordered/liquid-disordered structures ratio and the microdomain lipid composition. Fluorescence spectroscopy, confocal microscopy, Fourier transform infrared spectroscopy and differential detergent solubilization experiments showed a destabilization of the membranes upon addition of the 2OHFAs and FAs which correlated with the observed disordering effect. The changes produced by these synthetic fatty acids on the lipid structure may constitute part of their mechanism of action, leading to changes in the localization/activity of membrane proteins involved in signaling cascades, and therefore modulating cell responses.  相似文献   

13.
Lipid structure critically dictates the molecular interactions of drugs with membranes influencing passive diffusion, drug partitioning and accumulation, thereby underpinning a lipid-composition specific interplay. Spurring selective passive drug diffusion and uptake through membranes is an obvious solution to combat growing antibiotic resistance with minimized toxicities. However, the spectrum of complex mycobacterial lipids and lack thereof of suitable membrane platforms limits the understanding of mechanisms underlying drug-membrane interactions in tuberculosis. Herein, we developed membrane scaffolds specific to mycobacterial outer membrane and demonstrate them as improvised research platforms for investigating anti-tubercular drug interactions. Combined spectroscopy and microscopy results reveal an enhanced partitioning of model drug Rifabutin in trehalose dimycolate-containing mycobacterial membrane systems. These effects are apportioned to specific changes in membrane structure, order and fluidity leading to enhanced drug interaction. These findings on the membrane biophysical consequences of drug interactions will offer valuable insights for guiding the design of more effective antibiotic drugs coupled with tuned toxicity profiles.  相似文献   

14.
It is known that ceramides can influence the lateral organization in biological membranes. In particular ceramides have been shown to alter the composition of cholesterol and sphingolipid enriched nanoscopic domains, by displacing cholesterol, and forming gel phase domains with sphingomyelin. Here we have investigated how the bilayer content of ceramides and their chain length influence sterol partitioning into the membranes. The effect of ceramides with saturated chains ranging from 4 to 24 carbons in length was investigated. In addition, unsaturated 18:1- and 24:1-ceramides were also examined. The sterol partitioning into bilayer membranes was studied by measuring the distribution of cholestatrienol, a fluorescent cholesterol analogue, between methyl-β-cyclodextrin and large unilamellar vesicle with defined lipid composition. Up to 15 mol% ceramide was added to bilayers composed of DOPC:PSM:cholesterol (3:1:1), and the effect on sterol partitioning was measured. Both at 23 and 37 °C addition of ceramide affected the sterol partitioning in a chain length dependent manner, so that the ceramides with intermediate chain lengths were the most effective in reducing sterol partitioning into the membranes. At 23 °C the 18:1-ceramide was not as effective at inhibiting sterol partitioning into the vesicles as its saturated equivalent, but at 37 °C the additional double bond had no effect. The longer 24:1-ceramide behaved as 24:0-ceramide at both temperatures. In conclusion, this work shows how the distribution of sterols within sphingomyelin-containing membranes is affected by the acyl chain composition in ceramides. The overall membrane partitioning measured in this study reflects the differential partitioning of sterol into ordered domains where ceramides compete with the sterol for association with sphingomyelin.  相似文献   

15.
16.
Annexin A2 (AnxA2) and S100A10 are known to form a molecular complex. Using fluorescence-based binding assays, we show that both proteins are localised on the cell surface, in a molecular form that allows mutual interaction. We hypothesized that binding between these proteins could facilitate cell–cell interactions. For cells that express surface S100A10 and surface annexin A2, cell–cell interactions can be blocked by competing with the interaction between these proteins. Thus an annexin A2-S100A10 molecular bridge participates in cell–cell interactions, revealing a hitherto unexplored function of this protein interaction.  相似文献   

17.
Many soluble proteins are known to interact with membranes in partially disordered states, and the mechanism and relevance of such interactions in cellular processes are beginning to be understood. Bovine α-lactalbumin (BLA) represents an excellent prototype for monitoring membrane interaction due to its conformational plasticity. In this work, we comprehensively monitored the interaction of apo-BLA with zwitterionic and negatively charged membranes utilizing a variety of approaches. We show that BLA preferentially binds to negatively charged membranes at acidic pH with higher binding affinity. This is supported by spectral changes observed with a potential-sensitive membrane probe and fluorescence anisotropy measurements of a hydrophobic probe. Our results show that BLA exhibits a molten globule conformation when bound to negatively charged membranes. We further show, using the parallax approach, that BLA penetrates the interior of negatively charged membranes, and tryptophan residues are localized at the membrane interface. Red edge excitation shift (REES) measurements reveal that the immediate environment of tryptophans in membrane-bound BLA is restricted, and the restriction is dependent on membrane lipid composition. We envision that understanding the mechanism of BLA–membrane interaction would help in bioengineering of α-lactalbumin, and to address the mechanism of tumoricidal and antimicrobial activities of BLA–oleic acid complex.  相似文献   

18.
Lipids that are labeled with the NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl) group are widely used as fluorescent analogues of native lipids in biological and model membranes to monitor a variety of processes. The NBD group of acyl chain labeled NBD lipids is known to loop up to the membrane interface in fluid phase membranes. However, the organization of these lipids in gel phase membranes is not resolved. In this paper, we monitored the influence of the membrane phase state on the looping up behavior of acyl chain labeled NBD lipids utilizing red edge excitation shift (REES) and other sensitive fluorescence approaches. Interestingly, our REES results indicate that NBD group of lipids, which are labeled at the fatty acyl region, resides in the more hydrophobic region in gel phase membranes, and complete looping of the NBD group occurs only in the fluid phase. This is supported by other fluorescence parameters such as polarization and lifetime. Taken together, our results demonstrate that membrane packing, which depends on temperature and the phase state of the membrane, significantly affects the localization of acyl chain labeled NBD lipids. In view of the wide ranging use of NBD-labeled lipids in cell and membrane biology, these results could have potentially important implications in future studies involving these lipids as tracers.  相似文献   

19.
The properties of vesicle membranes prepared from 16:0-SM, 16:0-DHSM, or DPPC were characterized using steady-state and time-resolved fluorescence spectroscopy and different fluorescent reporter molecules. The acyl-chain region was probed using free and phospholipid-bound 1,6-diphenyl-1,3,5-hexatriene. 16:0-DHSM was found to be the more ordered than both DPPC and 16:0-SM 5°C below and above melting temperature. Interfacial properties of the phospholipid bilayers were examined using 6-dodecanoyl-2-dimethyl-aminonaphthalene (Laurdan), 6-propionyl-2-dimethyl-amino-naphthalene (Prodan), and dansyl-PE. Laurdan and Prodan reported that the two sphingomyelin (SM) membrane interfaces were clearly different from the DPPC membrane interface, whereas the two SM membrane interfaces had more similar properties (both in gel and liquid-crystalline phase). Prodan partition studies showed that membrane resistance to Prodan partitioning increased in the order: 16:0-SM < DPPC < 16:0-DHSM. The degree to which dansyl-PE is exposed to water reflects the structural properties of the membrane-water interface. By comparing the lifetime of dansyl-PE in water and deuterium oxide solution, we could show that the degree to which the dansyl moiety was exposed to water in the membranes increased in the order: 16:0-SM < DPPC < 16:0-DHSM. In conclusion, this study has shown that DHSM forms more ordered bilayers than acyl-chain matched SM or phosphatidylcholine, even in the liquid-crystalline state.  相似文献   

20.
During the past few years a significant rise in aspergillosis caused by filamentous fungus Aspergillus fumigatus has been recorded particularly in immunocompromised patients. At present, there are limited numbers of antifungal agents to combat these infections and the situation has become more complex due to emergence of antifungal resistance and side-effects of antifungal drugs. These situations have increased the demand for novel drug targets. Recent studies have revealed that the β-1,3-endoglucanase (ENGL1) plays an essential role in cell wall remodeling that is absolutely required during growth and morphogenesis of filamentous fungi and thus is a promising target for the development of antifungal agents. Unfortunately no structural information of fungal β- glucanases has yet been available in the Protein Databank (PDB). Therefore in the present study, 3D structure of β-(1,3)- endoglucanase (ENGL1) was modeled by using I-TASSER server and validated with PROCHECK and VERIFY 3D. The best model was selected, energy minimized and used to analyze structure function relationship with substrate β-(1,3)-glucan by C-DOCKER (Accelrys DS 2.0). The results indicated that amino acids (GLU 380, GLN 383, ASP 384, TYR 395, SER 712, and ARG 713) present in β-1,3-endoglucanase receptor are of core importance for binding activities and these residues are having strong hydrogen bond interactions with β-(1,3)-glucan. The predicted model and docking studies permits initial inferences about the unexplored 3D structure of the β-(1,3)-endoglucanase and may be promote in relational designing of molecules for structure-function studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号