首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Retinular fine structure has been compared in the superposition compound eyes of three sphingid moths, one nocturnal, Cechenena, and two diurnal, Cephonodes and Macroglossum. Cechenena and Cephonodes have tiered retinas with three kinds of retinular cells: two distal, six regular and one basal. The distal retinular cells in Cechenena are special in having a complex partially intracellular rhabdomere not present in Cephonodes. Macroglossum lacks the distal retinular cell. In Cephonodes a unique rhabdom type, formed by the six regular retinular cells in the middle region of the retinula, is divided into three separate longitudinal plates arranged closely parallel to one another. Their constituent microvilli are consequently all nearly unidirectional. The ratio of rhabdom volume to retinular cell volume in the two diurnal sphingids is 10–27%; this is about the same as that (25%) of skipper butterflies, but significantly smaller than in the nocturnal Cechenena (60%). In the diurnal sphingids retinular cell membranes show elongate meandering profiles with septate junctions between adjacent retinular cells. From the comparative fine structure of their eyes the diurnal sphingids and the skippers would appear to be phylogenetically closely related.Supported in part by grants from Ministry of Education Japan (Special Project Research in Animal Behaviors)  相似文献   

2.
Nectar-feeding animals can use vision and olfaction to find rewarding flowers and different species may give different weight to the two sensory modalities. We have studied how a diurnal or nocturnal lifestyle affects the weight given to vision and olfaction. We tested naïve hawkmoths of two species in a wind tunnel, presenting an odour source and a visual stimulus. Although the two species belong to the same subfamily of sphingids, the Macroglossinae, their behaviour was quite different. The nocturnal Deilephila elpenor responded preferably to the odour while the diurnal Macroglossum stellatarum strongly favoured the visual stimulus. Since a nocturnal lifestyle is ancestral for sphingids, the diurnal species, M. stellatarum, has evolved from nocturnal moths that primarily used olfaction. During bright daylight visual cues may have became more important than odour.  相似文献   

3.
E.M. Home 《Tissue & cell》1976,8(2):311-333
Paired centrioles and associated ciliary root material occur in all eight retinula cells in the nine species investigated. In the diurnal Notiophilus, Elaphrus and Bembidion where the distal rhabdomere of cell 7 is fused with the proximal rhabdom formed by cells 1 to 6, the roots in cells 1 to 6 extend for the entire length of the retinula. In Notiophilus their arrangement around the rhabdom suggests a complementary mechanical relationship between the six large roots and the four Semper cell processes. In five relatively nocturnal species a retinula cell column separates the distal rhabdomere from the proximal rhabdom. In cells 1 to 6 root material is associated with the distally located centrioles as follows. In Leistus roots extend into the proximal rhabdom layer. In Loricera and Agonum roots at the level of the proximal rhabdom are not continuous with the rootlets or short roots associated with the centrioles. In Pseudophonus and Feronia, and in the diurnal Cicindela, short rootlets link the centrioles. Cell movements on dark-adaptation of Notiophilus and Cicindela include shortening of the crystalline tract. In Notiophilus the entire rhabdom is apparently displaced, whereas in Cicindela the narrow distal rhabdomere becomes dissociated from the proximal rhabdom.  相似文献   

4.
Pollination ofDianthus gratianopolitanus was studied in a population of the Swiss Jura mountains. Pollinators of this plant species are reported here for the first time. The flowers were not only visited by butterflies as postulated in the literature, but also by diurnal hawkmoths (Macroglossum stellatarum) and by diurnal and nocturnal noctuid moths. — Nectar is sucrose-dominant, the sugar concentration is moderate but the amino acid concentration is high. Nectar characteristics correspond well with the syndrome ofLepidoptera-pollinated flowers. — Field observations and flower characters (colour, range of the calyx length) suggest thatDianthus gratianopolitanus is an intermediate species in the transition of butterfly to moth pollination. — Lack of reproductive success inDianthus gratianopolitanus can not be attributed to lack of suitable pollinators.  相似文献   

5.
Lepidoptera (butterflies and moths) are one of the most taxonomically diverse insect orders with nearly 160,000 described species. They have been studied extensively for centuries and are found on nearly all continents and in many environments. It is often assumed that adult butterflies are strictly diurnal and adult moths are strictly nocturnal, but there are many exceptions. Despite the broad interest in butterflies and moths, a comprehensive review of diel (day-night) activity has not been conducted. Here, we synthesize existing data on diel activity in Lepidoptera, trace its evolutionary history on a phylogeny, and show where gaps lie in our knowledge. Diurnality was likely the ancestral condition in Lepidoptera, the ancestral heteroneuran was likely nocturnal, and more than 40 transitions to diurnality subsequently occurred. Using species diversity estimates across the order, we predict that roughly 75-85% of Lepidoptera are nocturnal. We also define the three frequently used terms for activity in animals (diurnal, nocturnal, crepuscular), and show that literature on the activity of micro-moths is significantly lacking. Ecological factors leading to nocturnality/diurnality is a compelling area of research and should be the focus of future studies.  相似文献   

6.
Assuming that bat-detection is the primary function of moth ears, the ears of moths that are no longer exposed to bats should be deaf to echolocation call frequencies. To test this, we compared the auditory threshold curves of 7 species of Venezuelan day-flying moths (Notodontidae: Dioptinae) to those of 12 sympatric species of nocturnal moths (Notodontidae: Dudusinae, Noctuidae and Arctiidae). Whereas 2 dioptines (Josia turgida, Zunacetha annulata) revealed normal ears, 2 (J. radians, J. gopala) had reduced hearing at bat-specific frequencies (20–80 kHz) and the remaining 3 (Thirmida discinota, Polypoetes circumfumata and Xenorma cytheris) revealed pronounced to complete levels of high-frequency deafness. Although the bat-deaf ears of dioptines could function in other purposes (e.g., social communication), the poor sensitivities of these species even at their best frequencies suggest that these moths represent a state of advanced auditory degeneration brought about by their diurnal life history. The phylogeny of the Notodontidae further suggests that this deafness is a derived (apomorphic) condition and not a retention of a primitive (pleisiomorphic), insensitive state. Accepted: 1 May 1997  相似文献   

7.
Summary The retina of the phalangid, Opilio ravennae, consists of retinula cells with distal rhabdomeres, arhabdomeric cells, and sheath cells. The receptive segment of retinula cells shows a clear separation into a Proximal rhabdom, organized into distinct rhabdom units formed by three or four retinula cells, and a Distal rhabdom, consisting of an uniterrupted layer of contiguous rhabdomeres. One of the cells comprising a retinula unit, the so-called distal retinula cell (DRC), has two or three branches that pass laterally alongside the rhabdom, thereby separating the two or three principal retinula cells of a unit. The two morphologically distinct layers of the receptive segment differ with respect to the cellular origin of rhabdomeral microvilli: DRC-branches contribute very few microvilli to the proximal rhabdom and develop extremely large rhabdomeres in the distal rhabdom only, causing the rhabdom units to fuse. Principal retinula cells, on the other hand, comprise the majority of microvilli of the proximal rhabdom, but their rhabdomeres diminish in the distal rhabdom. It is argued that proximal and distal rhabdoms serve different functions in relation to the intensity of incident light.In animals fixed 4 h after sunset, pigment granules retreat from the distal two thirds of the receptive segment. A comparison of retinae of day- and night-adapted animals shows that there is a slight (approximately 15%) increase in the cross-sectional area of rhabdomeral microvilli in dark-adapted animals, which in volume corresponds to the loss of pigment granules from the receptive segment. The length of the receptive segment as well as the pattern and shape of rhabdom units, however, remain unchanged.Each retinula unit is associated with one arhabdomeric cell. Their cell bodies are located close to those of retinula cells, but are much smaller and do not contain pigment granules. The most remarkable feature is a long, slender distal dendrite that extends up to the base of the fused rhabdom where it increases in diameter and develops a number of lateral processes interdigitating with microvilli of the rhabdom. The most distal dendrite portion extends through the center of the fused rhabdom and has again a smooth outline. All dendrites end in the distal third of the proximal rhabdom and are never present in the layer of the contiguous distal rhabdom. Arhabdomeric cells are of essentially the same morphology in day- and night-adapted animals. They are interpreted as photoinsensitive secondary neurons involved in visual information-processing that channel current collected from retinula cells of the proximal rhabdom along the optic nerve. A comparison is made with morphological equivalents of these cells in other chelicerate species.  相似文献   

8.
With a body length of only 2 mm, the nepticulid Stigmella microtheriella (Stainton, 1854) is one of the smallest moths known to date. We investigated the optical design of its lemon‐shaped compound eyes, which measure 83.60 μm in anterior–posterior and 119.77 μm in dorso‐ventral direction. The eyes consist of about 123 facets, each of the latter just 9.9 μm in diameter. Transmission electron microscopy reveals an optical design with features intermediate between apposition and superposition optics similar to that known from two other small species of moths (one Nepticulid and one Gracillarid). Size‐related evolutionary adaptations of the ommatidial organization include (1) the involvement of only five rhabdomeres in the formation of the distal rhabdom (2) the complete absence of a rhabdomere of the eighth (= basal) retinula cell, (3) the “hourglass” shape of the rhabdom with a characteristic narrow waist separating distal from proximal portion, and (4) the reduction to one single layer of tracheoles as an adaptation to the overall restricted space available in this minute eye. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Generalized pollination systems may be favored in early spring flowering plants, as during this period pollinator activity is unpredictable. Many previous studies have concentrated on the importance of diurnal visitors in pollination, and consequently, information on the contribution of nocturnal visitors to pollination in early spring is limited. This study was conducted to evaluate the relative importance of diurnal and nocturnal pollinators in the early spring flowering dioecious shrub Stachyurus praecox (Stachyuraceae), in two temperate forests in central Japan. Visitors to the female and male flowers were observed during day and night, and their relative contributions to seed set were compared. The pollinator observations revealed that the diurnal and nocturnal insects visited both male and female flowers, and that the main flower visitors were diurnal small bees and flies as well as nocturnal settling moths. The diurnal and nocturnal flower visitors also acted as pollinators, as the pollen grains of S. praecox were attached to the insects collected from the female flowers. Pollination experiments demonstrated that the contributions of diurnal pollinators to the seed set were higher than those of the nocturnal pollinators. The results of this study indicate that S. praecox has a generalized pollination system, comprising both diurnal insects and nocturnal settling moths. Although the roles of diurnal insects are more important in the pollination of S. praecox, nocturnal settling moths may have a complementary role in early spring.  相似文献   

10.
Flowers that are open for >12 h may be visited by both diurnal and nocturnal pollinators. I compared the effectiveness (measured as seed production and pollen movement distance) of diurnal and nocturnal pollinators of Silene alba, a species whose flowers open in evening but close by midmorning the following day. By bagging flowers either during evening hours or during daylight hours or both day and night, I compared seed production caused by diurnal and nocturnal pollinators. Flowers exposed only to nocturnal visitors (mostly sphingid and noctuid moths) produced significantly more seeds than flowers exposed only to diurnal visitors (bees, flies, and wasps). Fluorescent dye applied to anthers moved significantly further and to more stigmas at night than during the day. In both measures of pollination effectiveness, nocturnal-visiting moths are better pollinators of S. alba than are the diurnal-visiting bees, flies, and wasps. These data support the hypothesis that floral phenology is an adaptation to expose flowers to the most effective pollinators.  相似文献   

11.
Because visual genes likely evolved in response to their ambient photic environment, the dichotomy between closely related nocturnal moths and diurnal butterflies forms an ideal basis for investigating their evolution. To investigate whether the visual genes of moths are associated with nocturnal dim-light environments or not, we cloned long-wavelength (R), blue (B) and ultraviolet (UV) opsin genes from 12 species of wild-captured moths and examined their evolutionary functions. Strong purifying selection appeared to constrain the functions of the genes. Dark-treatment altered the levels of mRNA expression in Helicoverpa armigera such that R and UV opsins were up-regulated after dark-treatment, the latter faster than the former. In contrast, B opsins were not significantly up-regulated. Diel changes of opsin mRNA levels in both wild-captured and lab-reared individuals showed no significant fluctuation within the same group. However, the former group had significantly elevated levels of expression compared with the latter. Consequently, environmental conditions appeared to affect the patterns of expression. These findings and the proportional expression of opsins suggested that moths potentially possessed color vision and the visual system played a more important role in the ecology of moths than previously appreciated. This aspect did not differ much from that of diurnal butterflies.  相似文献   

12.
Summary The fine structure of an ommatidium of a skipper butterfly, Parnara guttata, has been studied using the electron microscope. Each ommatidium has nine retinula cells, which were classified into three groups: two distal, six medial and one basal retinula cells. The rhabdomeres of the distal retinula cells are localized in the distal part of the rhabdom, while those of the six medial retinula cells appear throughout most of the rhabdom. The rhabdomere of the basal retinula cell occupies only the basal part of the rhabdom. The rhabdomeres of four medial cells are constructed of parallel microvilli, while fan-like microvilli form the rhabdomeres of other two medial retinula cells. The distal and basal retinula cells have rhabdomeres consisting of both parallel and fan-like microvilli. This is the first time the construction of the rhabdomeres of the distal and basal retinula cells has been described in such fine detail for a skipper butterfly. Nine retinula cell axons of each ommatidium extend to the first neuropile of the optic lobe, the lamina ganglionaris. No difference was found in the number of retinula cells of an ommatidium or the shape of the rhabdom between the dorsal and ventral regions of the compound eye.  相似文献   

13.
Summary Light and dark adaptations were studied in the eye of Squilla mantis. Light adaptation is characterized by (1) a proximal shift of the distal pigment sheath (DPS) surrounding the proximal portion of the crystalline cone above its zone of contact with the rhabdom; (2) flattening of the distal pigment sheath; (3) lengthening of the crystalline cone correlated with shortening of the rhabdom; (4) a migration of screening pigment granules in retinula cells in the protoplasmic bridges crossing the perirhabdomal space. In animals kept in constant darkness, longitudinal displacements of the distal pigment sheath were found to be subject to a circadian rhythm characterized by a maximal light adaptation state at about 5 p.m. and a minimal one at 5 a.m. Screening pigment granule translocation in retinula cells does not show such rhythmic activity.Abbreviations a, b maximal incidence angles in L.A., and D.A., respectively - Cc crystalline cone - Dps distal pigment sheath - I extreme incident light beam - Prs perirhabdomal space - Rh rhabdom - Rp reflecting pigment This research has been supported by grant 3.012-76 of the Swiss National Science Foundation  相似文献   

14.
THE MICROSTRUCTURE OF THE COMPOUND EYES OF INSECTS   总被引:2,自引:5,他引:2       下载免费PDF全文
The apposition eyes of two diurnal insects, Sarcophaga bullata (Diptera) and Anax junius (Odonata), have been examined with the electron microscope. In the latter case only the rhabdom is described. The rhabdom of the fly consists of a central matrix and seven rhabdomeres, one for each retinula cell. The rhabdomeres show an ordered internal structure built up of transverse tubes, hexagonal in cross-section. These slender compartments running the width of the rhabdomere are 370 A in diameter. After fixation with osmium tetroxide the walls of the compartments are more electron dense than the interiors. The retinula cells contain mitochondria, and pigment granules smaller than those found in the pigment cells. These granules tend to cluster close behind the membranes which separate the retinula cells from their rhabdomeres. The rhabdom of the dragonfly is a single structure which appears to be composed of three fused "rhabdomeres," each similar to a rhabdomere of Sarcophaga. Reasons are given for believing that the rhabdom may be the site of photoreception, as well as the organ for analyzing plane-polarized light, as suggested by other workers.  相似文献   

15.
We investigated the reproductive biology, including the floral biology, pollination biology, breeding system and reproductive success, of Pachira aquatica, a native and dominant tropical tree of fresh water wetlands, throughout the coastal plain of the Gulf of Mexico. The flowers present nocturnal anthesis, copious nectar production and sugar concentration (range 18–23%) suitable for nocturnal visitors such as bats and sphingid moths. The main nocturnal visitors were bats and sphingid moths while bees were the main diurnal visitors. There were no differences in legitimate visitation rates among bats, moths and honey bees. Bats and honey bees fed mainly on pollen while moths fed on nectar, suggesting resource partitioning. Eight species of bats carried pollen but Leptonycteris yerbabuenae is probably the most effective pollinator due to its higher pollen loads. The sphingid moths Manduca rustica, Cocytius duponchel and Eumorpha satellitia were recorded visiting flowers. Hand pollination experiments indicated a predominant outcrossing breeding system. Open pollination experiments resulted in a null fruit set, indicating pollen limitation; however, mean reproductive success, according to a seasonal census, was 17 ± 3%; these contrasting results could be explained by the seasonal availability of pollinators. We conclude that P. aquatica is an outcrossing species with a pollination system originally specialized for bats and sphingid moths, which could be driven to a multimodal pollination system due to the introduction of honey bees to tropical America.  相似文献   

16.
The compound eyes of the wingless adults of the Madagascar ‘hissing cockroach’Gromphadorhina portentosa Sachum, 1853 were examined by light and electron microscopy. Each eye contains 2 400‐2 500 mostly hexagonal facets. However, irregularities affecting both shape and size of the ommatidia are relatively common, especially towards the margins of the eye. An individual ommatidium of this eucone type of apposition eye contains eight retinula cells, which give rise to a centrally‐fused, tiered rhabdom. The distal end of the latter is funnel‐shaped and accommodates the proximal end of the cone in its midst. Further below, the rhabdom (then formed by the rhabdomeres of four retinula cells) assumes a squarish profile with microvilli aligned in two directions at right‐angle to each other. Cross sections through the proximal regions of the rhabdom display triangular rhabdom outlines and microvilli (belonging to 3‐4 retinula cells different from those involved in the squarish more distal rhabdom) that run in three directions inclined to one another by 120°. Overall the organization of the eye conforms to the orthopteroid pattern and particularly closely resembles that of the American cockroach Periplaneta americana. However, since G. portentosa possesses fewer ommatidia, this could be a consequence of its inability to fly. On the other hand, the large size of the facets and the voluminous rhabdoms suggest considerable absolute sensitivity and an ability to detect the plane of linearly polarized light. Based on the pattern of microvillus orientations in combination with the crepuscular lifestyle G. portentosa leads and the habitat it occurs in, the prediction is made that this insect uses its green receptors for e‐vector discrimination in the environment of down‐welling light that reaches the forest floor.  相似文献   

17.
Ipomoea habeliana is an endemic, night‐flowering member of the Galápagos flora. Pollination experiments, flower‐visitor observations, nectar sampling, pollen transfer, and pollen to ovule ratio and pollen size studies were included in this project. The large, white flowers of this species set fruit via open pollination (55%), autonomous autogamy (51%), facilitated autogamy (91%), cross‐pollination (80%), diurnal open pollination (60%) and nocturnal open pollination (60%). Fruit set is pollen‐limited. Ants, beetles, crickets and hawk moths regularly visit the flowers. Ants are the most frequent visitors, but hawk moths are the only effective pollinators. Nectar is available throughout the night, but is most abundant early in the evening when hawk moth visits are most frequent. Experiments with fluorescent dust demonstrate intra‐ and inter‐plant pollen movement by hawk moths. Although this species is adapted for hawk moth pollination, it readily sets fruit via autonomous autogamy when no visits are made. Thus, it is concluded that it is facultatively xenogamous. Additional support for this conclusion is provided by the pollen to ovule ratio of 1407 and by the fact that the plants grow in a region that has few or no faithful pollinators. Conservation efforts for I. habeliana should include hand pollinations, which could significantly increase seed set. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 11–20.  相似文献   

18.
Abstract The ommatidia of the compound eyes of Artemia salina L. are normally composed of four crystalline cone cells containing glycogen. The cells are enveloped by two so-called “cellules épidermiques juxta-cristallines”. There are also six pigmented retinula cells, all contributing to the rhabdom. A peculiar feature of the Artemia crystalline cone cells is that their elongated parts, the so-called cone cell roots, widen and flatten proximally, forming interdigitating “endfeet”. The basement membrane thus consists of a cellular portion combined with the basal lamina. The main mass of the rhabdom of the Artemia eye is built up by five retinula cells, two contributing a smaller part. The microvilli are oriented in four directions, two being orthogonal. The sixth cell contributes on two small portions to the rhabdom in the distalmost and a more proximal position. The rest of it runs axon-like outside the omnatidium. Where the sixth cell wedges in, the direction of the microvilli is changed and has no orthogonal pattern. Two rhabdom types of compound eyes are distinguished: the decapod or banded or layered rhabdom: and the anostracan rhabdom with continuous rhabdomeres.  相似文献   

19.
Abstract The stemmata of last–instar Nannochoristalarvae are compound eyes composed of 10 or more ommatidia. Each ommatidium has four Semper cells, four distal and four proximal retinula cells which form a cruciform and layered rhabdom. The ommatidia are separated by epidermal cells (possibly rudimentary pigment cells). Corneal lenses are lacking. At the posterior edge, aberrant stemma units may be present which lack a dioptric apparatus and have a star–shaped rhabdom composed of at least six retinula cells. The stemmata of Nannochoristaappear to be derived from stemmata of the Panorpa-type (Mecoptera-Panorpidae). Differences between the stemmata of Nannochoristaand Panorpacan be explained as adaptations to aquatic life (flat cornea) or as regression. A compound larval eye is ascribed to the ground plan of the Mecoptera sensu latoand is considered a genuine plesiomorphy. The identical basic number (seven) of stemmata in the Neuropteroid/Coleoptera assemblage, Amphiesmenoptera and some Mecoptera (Bittacidae, Boreidae) is attributed to parallel evolution.  相似文献   

20.
Stemmata are peculiar visual organs of most larvae in holometabolous insects. In Hymenoptera, Symphyta larvae exclusively possess a pair of stemmata, whose cellular organizations have not been thoroughly elucidated to date. In this paper, the morphology and fine structure of stemmata were investigated in the large rose sawfly Arge pagana (Panzer, 1798) using light and electron microscopy. The larvae possess a pair of stemmata, which belong to the “unicorneal composite eye” or single-chamber stemmata. Each stemma is composed of a biconvex cornea lens, a layer of corneagenous cells, numerous pigment cells, and hundreds of retinula cells. According to the number of retinula cells forming a rhabdom, the stemma can be divided into two regions, the larger Region I and the smaller Region II. The former occupies the largest area of the stemma and contains the majority of rhabdoms, each of which is formed by the rhabdomeres of eight retinula cells. The latter occupies a narrow posterior margin, where each rhabdom consists of nine retinula cells. Based on the different cellular organizations of rhabdoms, the stemma of Argidae is likely developed by the fusion of two types of ommatidial units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号