首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic engineering of plants for osmotic stress resistance.   总被引:14,自引:0,他引:14  
Genes encoding critical steps in the synthesis of osmoprotectant compounds are now being expressed in transgenic plants. These plants generally accumulate low levels of osmoprotectants and have increased stress tolerance. The next priority is therefore to engineer greater osmoprotectant synthesis without detriment to the rest of metabolism. This will require manipulation of multiple genes, guided by thorough analysis of metabolite fluxes and pool sizes.  相似文献   

2.
Abiotic environmental stresses such as drought, salinity andlow temperature are major limitations for plant growth and cropproductivity. Certain plants, marine algae and bacteria haveevolved a number of adaptations to such abiotic stresses: someof these adaptations are metabolic and others structural. Accumulationof certain organic solutes (known as osmoprotectants) is a commonmetabolic adaptation found in diverse taxa. These solutes protectproteins and membranes against damage by high concentrationsof inorganic ions. Some osmoprotectants also protect the metabolicmachinery against oxidative damage. Many major crops lack theability to synthesize the special osmoprotectants that are naturallyaccumulated by stress-tolerant organisms. Therefore, it washypothesized that installing osmoprotectant synthesis pathwaysis a potential route to breed stress-tolerant crops. Provingthis, recent engineering efforts in model species led to modestbut significant improvements in stress tolerance of transgenicplants. Synthetic pathways to two kinds of osmoprotectants—polyolsand quaternary ammonium compounds—are discussed here.Results from the metabolic engineering experiments emphasizethe need for a greater understanding of primary metabolic pathwaysfrom which osmoprotectant synthesis pathways branch. Futureresearch avenues include the identification and exploitationof diverse osmoprotectants in naturally stress-tolerant organisms,and the use of multiple genes and reiterative engineering toincrease osmoprotectant flux in response to stress. High-throughputgenomic technologies offer a number of tools to refine thisby rapidly identifying genes, pathways, and regulatory controls.Copyright 2000 Annals of Botany Company Review, abiotic stress, osmoprotectant, compatible solute, genetic engineering  相似文献   

3.
Excess salt in the soil solution affects the plant either through osmotic or ionic effects. Poplar trees, as fast growing pioneer tree species, are thought to be potential suitable candidates for afforestation on saline soils. Osmotic and oxidative stress induced by salinity could be reduced by the production and accumulation of compatible solutes and osmoprotectants in the plant. In this respect, metabolites of this type could be interesting markers for the improvement of salt stress tolerance in breeding programmes. Results have shown that Populus tremula was able to cope with up to 150 mM NaCl without any effect on plant survival. During stress application, the endogenous level of malondialdehyde did not vary significantly between the treatments, indicating that the level of lipid peroxidation was similar in the control and in the stressed plants. However, proline, spermine, sucrose, mannitol, and raffinose levels increased temporarily or throughout the salt treatment. All these molecules are more or less closely related to antioxidant or osmoprotectant mechanisms during stress, suggesting a key role for these compatible solutes, osmoprotectants, and their metabolism for salt stress resistance. The accumulation of free proline, sucrose and mannitol, and the transitory increase in spermine level observable during low and high NaCl application must be considered as general salt stress reaction markers.  相似文献   

4.
Drought and salinity are the major factors that decrease crop yield. Organisms thriving in osmotic stress environments need adaptive mechanisms for adjusting their intracellular environment to external osmotic stress conditions. One such mechanism, to prevent water loss from the cells is to accumulate large amounts of low molecular weight organic compatible solutes such as proline, betaine and polyols to balance internal osmolarity of the cells. Accumulation of compatible solutes can be achieved by enhanced synthesis and/or reduced catabolism. Certain plants synthesize betaine in chloroplasts via a two-step oxidation of choline and betaine accumulation is associated with enhanced stress tolerance. Many important crop plants have low levels of betaine or none at all. Hence, betaine biosynthetic pathway is a target for metabolic engineering to enhance stress tolerance in crops. Introduction of betaine synthesis pathway into betaine non-accumulating plants has often improved stress tolerance. However, betaine levels of the engineered plants were generally low. To further enhance the betaine accumulation levels, we need to diagnose factors limitng betaine accumulation in engineered plants. Here we discuss recent progress on metabolic engineering of choline precursors for abiotic stress tolerance in plants.  相似文献   

5.
6.
This review summarizes the recent progress made towards the development of transgenic plants with improved tolerance to water stress and salinity. Of the various strategies employed, emphasis has been given to the genes engineered for the biosynthesis of osmoprotectants and osmolytes. This review also briefly discusses the importance of the use of specific stress inducible promoters and the future prospects of transgenic plants with improved agronomic traits.  相似文献   

7.
8.
Glycine betaine is known to be the preferred osmoprotectant in many bacteria, and glycine betaine accumulation has also been correlated with increased cold tolerance. Trehalose is often a minor osmoprotectant in bacteria and it is a major determinant for desiccation tolerance in many so-called anhydrobiotic organisms such as baker's yeast(Saccharomyces cerevisiae). Escherichia coli has two pathways for synthesis of these protective molecules; i.e., a two-step conversion of UDP-glucose and glucose-6-phosphate to trehalose and a two-step oxidation of externally-supplied choline to glycine betaine. The genes governing the choline-to-glycine betaine pathway have been studied inE. coli and several other bacteria and higher plants. The genes governing UDP-glucose-dependent trehalose synthesis have been studied inE. coli andS. cerevisiae. Because of their well-documented function in stress protection, glycine betaine and trehalose have been identified as targets for metabolic engineering of stress tolerance. Examples of this experimental approach include the expression of theE. coli betA andArthrobacter globiformis codA genes for glycine betaine synthesis in plants and distantly related bacteria, and the expression of theE. coli otsA and yeastTPS1 genes for trehalose synthesis in plants. The published data show that glycine betaine synthesis protects transgenic plants and phototrophic bacteria against stress caused by salt and cold. Trehalose synthesis has been reported to confer increased drought tolerance in transgenic plants, but it causes negative side effects which is of concern. Thus, the much-used model organismE. coli has now become a gene resource for metabolic engineering of stress tolerance.  相似文献   

9.
Viruses are obligate intracellular symbionts. Plant viruses are often discovered and studied as pathogenic parasites that cause diseases in agricultural plants. However, here it is shown that viruses can extend survival of their hosts under conditions of abiotic stress that could benefit hosts if they subsequently recover and reproduce. Various plant species were inoculated with four different RNA viruses, Brome mosaic virus (BMV), Cucumber mosaic virus (CMV), Tobacco mosaic virus and Tobacco rattle virus. The inoculated plants were stressed by withholding water. The onset of drought symptoms in virus-infected plants was compared with that in the plants that were inoculated with buffer (mock-inoculated plants). Metabolite profiling analysis was conducted and compared between mock-inoculated and virus-infected plants before and after being subjected to drought stress. In all cases, virus infection delayed the appearance of drought symptoms. Beet plants infected with CMV also exhibited significantly improved tolerance to freezing. Metabolite profiling analysis showed an increase in several osmoprotectants and antioxidants in BMV-infected rice and CMV-infected beet plants before and after drought stress. These results indicate that virus infection improves plant tolerance to abiotic stress, which correlates with increased osmoprotectant and antioxidant levels in infected plants.  相似文献   

10.
Agriculture productivity is severely hampered by soil salinity, drought and other environmental stresses. Studies on stress-resistant plants (halophytes, xerophytes, accumulating plants for specific toxic ions) have illuminated some mechanisms of stress tolerance in plants at metabolic or molecular levels, which gave some clues on how to genetically engineer stress-tolerant crops. With the isolation of more stress-responsive genes, genetic engineering with modified expression of stress responsive genes may be an effective way to produce stress-tolerant crops. In the present report, two genes (PEAMT and BADH) encoding the corresponding key enzymes for choline and glycine betaine (an important osmoprotectant) biosynthesis in plants were isolated in oilseed rape, an important oil crop in the world. Effects of salt stress on their expression were studied with quantitative PCR and their potential use in the genetic engineering of oilseed rape was discussed.  相似文献   

11.
An Arabidopsis thaliana drought-tolerant mutant, altered expression of APX2 ( alx8 ), has constitutively increased abscisic acid (ABA) content, increased expression of genes responsive to high light stress and is reported to be drought tolerant. We have identified alx8 as a mutation in SAL1, an enzyme that can dephosphorylate dinucleotide phosphates or inositol phosphates. Previously identified mutations in SAL1, including fiery ( fry1-1 ), were reported as being more sensitive to drought imposed by detachment of rosettes. Here we demonstrate that alx8 , fry1-1 and a T-DNA insertional knockout allele all have markedly increased resistance to drought when water is withheld from soil-grown intact plants. Microarray analysis revealed constitutively altered expression of more than 1800 genes in both alx8 and fry1-1. The up-regulated genes included some characterized stress response genes, but few are inducible by ABA. Metabolomic analysis revealed that both mutants exhibit a similar, dramatic reprogramming of metabolism, including increased levels of the polyamine putrescine implicated in stress tolerance, and the accumulation of a number of unknown, potential osmoprotectant carbohydrate derivatives. Under well-watered conditions, there was no substantial difference between alx8 and Col-0 in biomass at maturity; plant water use efficiency (WUE) as measured by carbon isotope discrimination; or stomatal index, morphology or aperture. Thus, SAL1 acts as a negative regulator of predominantly ABA-independent and also ABA-dependent stress response pathways, such that its inactivation results in altered osmoprotectants, higher leaf relative water content and maintenance of viable tissues during prolonged water stress.  相似文献   

12.
13.
The accumulation of compatible solutes, such as betaines, proline and sugar alcohols, is a widespread response that may protect plants against environmental stress. It is not yet fully understood how these compounds are involved in the stress tolerance of whole plants. Some plants have been genetically engineered to express enzymes that catalyze the synthesis of various compatible solutes. Some interventions have increased the tolerance of some crop plants to abiotic stress. Furthermore, analysis of such transgenic plants has begun to clarify the roles of compatible solutes in stress tolerance.  相似文献   

14.
Engineering salt tolerance in plants   总被引:32,自引:0,他引:32  
Recent progress has been made in the identification and characterization of the mechanisms that allow plants to tolerate high salt concentrations. The understanding of metabolic fluxes and the main constraints for the production of compatible solutes (i.e. feedback inhibition and the limitation of substrate supply) open up the possibility of genetically engineering entire pathways that could lead to the production of osmoprotectants. This, together with the identification of the different sodium transporters (in particular vacuolar and plasma membrane Na(+)/H(+) antiporters) that could provide the needed ion homeostasis during salt stress, opens the possibility of engineering crop plants with improved salt tolerance.  相似文献   

15.
Growing in their natural environment, plants often encounter unfavorable environmental conditions that interrupt normal plant growth and productivity. Drought, high/low temperature and saline soils are the most common abiotic stresses that plants encounter in their natural environments. Molecular and genomic analyses have facilitated gene discovery and enabled genetic engineering using several functional or regulatory genes that are known to be involved in stress response and preliminary tolerance, to activate specific or broad pathways related to abiotic stress tolerance in plants. Through the use of transgenic technology, goals such as production of plants with desired traits that were unattainable with traditional selection programs are achieved. This review deals with recent advancement in understanding the role of various stress responsive genes and their critical importance for explaining the control mechanism of abiotic stress tolerance and engineering stress tolerant crops based on the expression of specific stress related genes.  相似文献   

16.
17.
Plant growth and productivity are greatly affected by various stress factors. The molecular mechanisms of stress tolerance in plant species have been well established. Metabolic pathways involving the synthesis of metabolites such as polyamines, carbohydrates, proline and glycine betaine have been shown to be associated with stress tolerance. Introduction of the stress-induced genes involved in these pathways from tolerant species to sensitive plants seems to be a promising approach to confer stress tolerance in plants. In cases where single gene is not enough to confer tolerance, metabolic engineering necessitates the introduction of multiple transgenes in plants.  相似文献   

18.
We combined the use of low inoculation titers (300 +/- 100 CFU/ml) and enumeration of culturable cells to measure the osmoprotective potentialities of dimethylsulfoniopropionate (DMSP), dimethylsulfonioacetate (DMSA), and glycine betaine (GB) for salt-stressed cultures of Escherichia coli. Dilute bacterial cultures were grown with osmoprotectant concentrations that encompassed the nanomolar levels of GB and DMSP found in nature and the millimolar levels of osmoprotectants used in standard laboratory osmoprotection bioassays. Nanomolar concentrations of DMSA, DMSP, and GB were sufficient to enhance the salinity tolerance of E. coli cells expressing only the ProU high-affinity general osmoporter. In contrast, nanomolar levels of osmoprotectants were ineffective with a mutant strain (GM50) that expressed only the low-affinity ProP osmoporter. Transport studies showed that DMSA and DMSP, like GB, were taken up via both ProU and ProP. Moreover, ProU displayed higher affinities for the three osmoprotectants than ProP displayed, and ProP, like ProU, displayed much higher affinities for GB and DMSA than for DMSP. Interestingly, ProP did not operate at substrate concentrations of 200 nM or less, whereas ProU operated at concentrations ranging from 1 nM to millimolar levels. Consequently, proU(+) strains of E. coli, but not the proP(+) strain GM50, could also scavenge nanomolar levels of GB, DMSA, and DMSP from oligotrophic seawater. The physiological and ecological implications of these observations are discussed.  相似文献   

19.
Various compatible solutes enable plants to tolerate abiotic stress, and glycinebetaine (GB) is one of the most-studied among such solutes. Early research on GB focused on the maintenance of cellular osmotic potential in plant cells. Subsequent genetically engineered synthesis of GB-biosynthetic enzymes and studies of transgenic plants demonstrated that accumulation of GB increases tolerance of plants to various abiotic stresses at all stages of their life cycle. Such GB-accumulating plants exhibit various advantageous traits, such as enlarged fruits and flowers and/or increased seed number under non-stress conditions. However, levels of GB in transgenic GB-accumulating plants are relatively low being, generally, in the millimolar range. Nonetheless, these low levels of GB confer considerable tolerance to various stresses, without necessarily contributing significantly to cellular osmotic potential. Moreover, low levels of GB, applied exogenously or generated by transgenes for GB biosynthesis, can induce the expression of certain stress-responsive genes, including those for enzymes that scavenge reactive oxygen species. Thus, transgenic approaches that increase tolerance to abiotic stress have enhanced our understanding of mechanisms that protect plants against such stress.  相似文献   

20.
Dissecting the roles of osmolyte accumulation during stress   总被引:38,自引:0,他引:38  
Many plants accumulate organic osmolytes in response to the imposition of environmental stresses that cause cellular dehydration. Although an adaptive role for these compounds in mediating osmotic adjustment and protecting subcellular structure has become a central dogma in stress physiology, the evidence in favour of this hypothesis is largely correlative. Transgenic plants engineered to accumulate proline, mannitol, fructans, trehalose, glycine betaine or ononitol exhibit marginal improvements in salt and/or drought tolerance. While these studies do not dismiss causative relationships between osmolyte levels and stress tolerance, the absolute osmolyte concentrations in these plants are unlikely to mediate osmotic adjustment. Metabolic benefits of osmolyte accumulation may augment the classically accepted roles of these compounds. In re-assessing the functional significance of compatible solute accumulation, it is suggested that proline and glycine betaine synthesis may buffer cellular redox potential. Disturbances in hexose sensing in transgenic plants engineered to produce trehalose, fructans or mannitol may be an important contributory factor to the stress-tolerant phenotypes observed. Associated effects on photoassimilate allocation between root and shoot tissues may also be involved. Whether or not osmolyte transport between subcellular compartments or different organs represents a bottleneck that limits stress tolerance at the whole-plant level is presently unclear. None the less, if osmolyte metabolism impinges on hexose or redox signalling, then it may be important in long-range signal transmission throughout the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号