首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
The p53 protein plays a key role in the cellular response to stress by inducing cell growth arrest or apoptosis. The polyproline region of p53 has been shown to be important for its growth suppression activity. p53 protein lacking the polyproline region has impaired apoptotic activity and altered specificity for certain apoptotic target genes. Here we describe the role of this region in the regulation of p53 by its inhibitor Mdm2. p53 lacking the polyproline region was identified to be more susceptible to inhibition by Mdm2. Furthermore, the absence of this region renders p53 more accessible to ubiquitination, nuclear export, and Mdm2-mediated degradation. This increased sensitivity to Mdm2 results from an enhanced affinity of Mdm2 toward p53 lacking the polyproline region. Our results provide a new explanation for the impaired growth suppression activity of p53 lacking this region. The polyproline region is proposed to be important in the modulation of the inhibitory effects of Mdm2 on p53 activities and stability.  相似文献   

3.
4.
The p53 protein is kept labile under normal conditions. This regulation is governed largely by its major negative regulator, Mdm2. In response to stress however, p53 accumulates and becomes activated. For this to occur, the inhibitory effects of Mdm2 have to be neutralized. Here we investigated the role of the promyelocytic leukemia protein (PML) in the activation of p53 in response to stress. We found that PML is critical for the accumulation of p53 in response to DNA damage under physiological conditions. PML protects p53 from Mdm2-mediated ubiquitination and degradation, and from inhibition of apoptosis. PML neutralizes the inhibitory effects of Mdm2 by prolonging the stress-induced phosphorylation of p53 on serine 20, a site of the checkpoint kinase 2 (Chk2). PML recruits Chk2 and p53 into the PML nuclear bodies and enhances p53/Chk2 interaction. Our results provide a novel mechanistic explanation for the cooperation between PML and p53 in response to DNA damage.  相似文献   

5.
6.
The p53 protein is subject to Mdm2-mediated degradation by the ubiquitin-proteasome pathway. This degradation requires interaction between p53 and Mdm2 and the subsequent ubiquitination and nuclear export of p53. Exposure of cells to DNA damage results in the stabilization of the p53 protein in the nucleus. However, the underlying mechanism of this effect is poorly defined. Here we demonstrate a key role for c-Abl in the nuclear accumulation of endogenous p53 in cells exposed to DNA damage. This effect of c-Abl is achieved by preventing the ubiquitination and nuclear export of p53 by Mdm2, or by human papillomavirus E6. c-Abl null cells fail to accumulate p53 efficiently following DNA damage. Reconstitution of these cells with physiological levels of c-Abl is sufficient to promote the normal response of p53 to DNA damage via nuclear retention. Our results help to explain how p53 is accumulated in the nucleus in response to DNA damage.  相似文献   

7.
Mdm2 is an E3 ubiquitin ligase that promotes its own ubiquitination and also ubiquitination of the p53 tumour suppressor. In a bacterial two-hybrid screen, using Mdm2 as bait, we identified an Mdm2-interacting peptide that bears sequence similarity to the deubiquitinating enzyme USP2a. We have established that full-length USP2a associates with Mdm2 in cells where it can deubiquitinate Mdm2 while demonstrating no deubiquitinating activity towards p53. Ectopic expression of USP2a causes accumulation of Mdm2 in a dose-dependent manner and consequently promotes Mdm2-mediated p53 degradation. This differs from the behaviour of HAUSP, which deubiquitinates p53 in addition to Mdm2 and thus protects p53 from Mdm2-mediated degradation. We further demonstrate that suppression of endogenous USP2a destabilises Mdm2 and causes accumulation of p53 protein and activation of p53. Our data identify the deubiquitinating enzyme USP2a as a novel regulator of the p53 pathway that acts through its ability to selectively target Mdm2.  相似文献   

8.
Cyclin G1 is a p53-responsive gene that is induced in alternative reading frame (ARF)-arrested cells, yet its role in growth control is unclear. We tested its effects on growth and involvement in the ARF-Mdm2-p53 tumor suppressor pathway. We show that cyclin G1 interacts with ARF, Mdm2, and p53 in vitro and in vivo. At high levels, cyclin G1 induces a G(1)-phase arrest in mammalian cells that coincides with p53 activation. Conversely, lower levels of cyclin G1 lack intrinsic growth inhibitory effects yet potentiate ARF-mediated growth arrest. Notably, cyclin G1 is down-regulated by Mdm2 through proteasome-mediated degradation. These data suggest that cyclin G1 is a positive feedback regulator of p53 whose expression is restrained by Mdm2. Interestingly, growth inhibition by cyclin G1 does not require p53 but instead exhibits partial retinoblastoma protein (pRb) dependence. These findings reveal that cyclin G1 has growth inhibitory activity that is mechanistically linked to ARF-p53 and pRb tumor suppressor pathways.  相似文献   

9.
Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms   总被引:2,自引:0,他引:2       下载免费PDF全文
The p53 protein maintains genomic integrity through its ability to induce cell cycle arrest or apoptosis in response to various forms of stress. Substantial regulation of p53 activity occurs at the level of protein stability, largely determined by the activity of the Mdm2 protein. Mdm2 targets both p53 and itself for ubiquitylation and subsequent proteasomal degradation by acting as an ubiquitin ligase, a function that needs an intact Mdm2 RING finger. For efficient degradation of p53 nuclear export appears to be required. The Mdmx protein, structurally homologous to Mdm2, does not target p53 for degradation, but even stabilizes both p53 and Mdm2, an activity most likely mediated by heterodimerization of the RING fingers of Mdm2 and Mdmx. Here we show that Mdmx expression leads to accumulation of ubiquitylated, nuclear p53 but does not significantly affect the Mdm2-mediated ubiquitylation of p53. In contrast, Mdmx stabilizes Mdm2 by inhibiting its self-ubiquitylation.  相似文献   

10.
Mdm2 regulates the p53 tumor suppressor by promoting its proteasome-mediated degradation. Mdm2 and p53 engage in an autoregulatory feedback loop that maintains low p53 activity in nonstressed cells. We now report that Mdm2 regulates p53 levels also by targeting ribosomal protein L26. L26 binds p53 mRNA and augments its translation. Mdm2 binds L26 and drives its polyubiquitylation and proteasomal degradation. In addition, the binding of Mdm2 to L26 attenuates the association of L26 with p53 mRNA and represses L26-mediated augmentation of p53 protein synthesis. Under nonstressed conditions, both mechanisms help maintain low cellular p53 levels by constitutively tuning down p53 translation. In response to genotoxic stress, the inhibitory effect of Mdm2 on L26 is attenuated, enabling a rapid increase in p53 synthesis. The Mdm2-L26 interaction thus represents an additional important component of the autoregulatory feedback loop that dictates cellular p53 levels and activity.  相似文献   

11.
Mdm2 and Mdmx are oncoproteins that have essential yet nonredundant roles in development and function as part of a multicomponent ubiquitinating complex that targets p53 for proteasomal degradation. However, in response to DNA damage, Mdm2 and Mdmx are phosphorylated and protect p53 through various mechanisms. It has been predicted that Mdm2-Mdmx complex formation modulates Mdm2 ligase activity, yet the mechanism that promotes formation of Mdm2-Mdmx complexes is unknown. Here, we show that optimal Mdm2-Mdmx complex formation requires c-Abl phosphorylation of Mdm2 both in vitro and in vivo. In addition, Abl phosphorylation of Mdm2 is required for efficient ubiquitination of Mdmx in vitro, and eliminating c-Abl signaling, using c-Abl(-/-) knock-out murine embryonic fibroblasts, led to a decrease in Mdmx ubiquitination. Further, p53 levels are not induced as efficiently in c-Abl(-/-) murine embryonic fibroblasts following DNA damage. Overall, these results define a direct link between genotoxic stress-activated c-Abl kinase signaling and Mdm2-Mdmx complex formation. Our results add an important regulatory mechanism for the activation of p53 in response to DNA damage.  相似文献   

12.
13.
14.
The product of the Mdm2 oncogene directly interacts with p53 and promotes its ubiquitination and proteasomal degradation. Initial biological studies identified nuclear export sequences (NES), similar to that of the Rev protein from the human immunodeficiency virus, both in Mdm2 and p53. The reported phenotypes resulting from mutation of these NESs, together with results obtained using the nuclear export inhibitor leptomycin B (LMB), have led to a model according to which nuclear export of p53 (via either the NES of Mdm2 or its own NES) is required for efficient p53 degradation. In this study we demonstrate that Mdm2 can promote degradation of p53 in the nucleus or in the cytoplasm, provided both proteins are colocalized. We also investigated if nuclear export is an obligate step on the p53 degradation pathway. We find that (1) when proteasome activity is inhibited, ubiquitinated p53 accumulates in the nucleus and not in the cytoplasm; (2) Mdm2 with a mutated NES can efficiently mediate degradation of wild type p53 or p53 with a mutated NES; (3) the nuclear export inhibitor LMB can increase the steady-state level of p53 by inhibiting Mdm2-mediated ubiquitination of p53; and (4) LMB fails to inhibit Mdm2-mediated degradation of the p53NES mutant, demonstrating that Mdm2-dependent proteolysis of p53 is feasible in the nucleus in the absence of any nuclear export. Therefore, given cocompartmentalization, Mdm2 can promote ubiquitination and proteasomal degradation of p53 with no absolute requirement for nuclear to cytoplasmic transport.  相似文献   

15.
16.
The influence of zinc status on the expression of proteins known to be involved in the stability of p53, the human tumor suppressor gene product, was examined in hepatoblastoma (HepG2) cells. Cells were cultured in zinc-deficient (ZD0.2, ZD0.4), zinc normal (ZN), zinc adequate (ZA), or zinc-supplemented (ZS) medium, which contained 0.2, 0.4, 4, 16, or 32 microM zinc, respectively. Nuclear p53 levels were almost 100% and 40% higher in ZD0.2 and ZD0.4 cells, respectively, than in ZN cells. Mdm2 protein, which mediates p53 degradation, was 174% and 148% higher in the nucleus of ZD0.2 and ZD0.4 cells, respectively, than in ZN cells. In addition, the observed reductions of nuclear c-Abl in ZD0.2 and ZD0.4 cells to 50% and 60% of ZN cells, respectively, may be a cellular response attempting to normalize nuclear p53 accumulation because nuclear c-Abl is known to down-regulate ubiquitination and nuclear export of p53. Moreover, no changes in total cellular p53, Mdm2, and c-Abl or nuclear Mdmx were observed among the treatment groups. Furthermore, in ZD0.2 and ZD0.4 cells, the reduction in total and nuclear p300, which is known to complex with CREB-binding protein and Mdm2 in the nucleus for the generation of degradable polyubiquitinated form of p53, may have depressed the degradation pathway for p53 and Mdm2, and contributed to the nuclear accumulation of these proteins in ZD cells.  相似文献   

17.
18.
MdmX binding to ARF affects Mdm2 protein stability and p53 transactivation   总被引:4,自引:0,他引:4  
Regulation of p53 involves a complex network of protein interactions. The primary regulator of p53 protein stability is the Mdm2 protein. ARF and MdmX are two proteins that have recently been shown to inhibit Mdm2-mediated degradation of p53 via distinct associations with Mdm2. We demonstrate here that ARF is capable of interacting with MdmX and in a manner similar to its association with Mdm2, sequestering MdmX within the nucleolus. The sequestration of MdmX by ARF results in an increase in p53 transactivation. In addition, the redistribution of MdmX by ARF requires that a nucleolar localization signal be present on MdmX. Although expression of either MdmX or ARF leads to Mdm2 stabilization, coexpression of both MdmX and ARF results in a decrease in Mdm2 protein levels. Similarly, increasing ARF protein levels in the presence of constant MdmX and Mdm2 leads to a dose-dependent decrease in Mdm2 levels. Under these conditions, ARF can synergistically reverse the ability of Mdm2 and MdmX to inhibit p53-dependent transactivation. Finally, the association and redistribution of MdmX by ARF has no effect on the protein stability of either ARF or MdmX. Taken together, these results demonstrate that the interaction between MdmX and ARF represents a novel pathway for regulating Mdm2 protein levels. Additionally, both MdmX and Mdm2, either individually or together, are capable of antagonizing the effects of the ARF tumor suppressor on p53 activity.  相似文献   

19.
The ability of Mdm2 to inhibit the activities of a C-terminal truncated p53 mutant, p53-Delta30, which can bind Mdm2 but is resistant to Mdm2-mediated protein degradation was investigated. The inhibitory function of an Mdm2 mutant, Mdm2-Delta(222-437), which can bind p53 but is defective in targeting p53 for degradation was also studied. We have demonstrated that targeting p53 for degradation is the most effective way for Mdm2 to inhibit the apoptotic function of p53. However, we have also shown that Mdm2 can inhibit the transactivation function of p53 without targeting it for degradation, although Mdm2 releases the transrepression ability of p53 mainly by targeting it for degradation. The ability of Mdm2 to inhibit the apoptotic function of p53 was linked to its ability to inhibit the transrepression but not the transactivation function of p53. Furthermore, we have demonstrated that the transrepression function of p53 was specific to p53-induced apoptosis and was not simply a result of cell death.  相似文献   

20.
We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4α. A direct association of Mdm2 protein with the HNF4α protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4α activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4α to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号