首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Abstract Natural accumulation of wind‐borne sediments within or around the canopies of plants plays an important role in the ecological and evolutionary dynamics of many coastal and desert ecosystems. The formation of such phytogenic mounds (nebkhas) creates patches that can strongly influence the spatial distribution of plant and soil resources. In land restoration of arid and semiarid environments it is important to study the potential role of such biological patchiness that may provide sites for coexistence of species with different life and growth forms. Our main objective was to test whether the nebkhas of a leguminous shrub, Retama raetam (white broom), promote restoration of herbaceous vegetation and soil in the degraded rangelands of northern Sinai. Vegetation and microclimatic and edaphic characteristics within the nebkhas, as well as within internebkha spaces, were compared for ungrazed and grazed sites. Abundance and richness of herbaceous plants were positively related to nebkha area, which explained more of the variance of abundance and richness in the grazed site than in the ungrazed one. Protection from grazing, especially on nebkhas, was associated with an increase in abundance and richness of herbaceous plants, improved soil microclimate, and increased soil fine particles and nutrient concentrations. The results suggest that management (in casu protection from grazing) of nebkhas of woody perennial shrubs changes rangeland conditions and improves the resource regulatory processes. Furthermore, nebkhas of unpalatable plants have the potential to preserve plant diversity in overgrazed plant communities, because they are effective in capturing and retaining water, soil materials, and propagules within and from nearby areas, resources that would otherwise be lost.  相似文献   

2.
The nebkhas of woody plants represent distinct habitats in arid and semiarid ecosystems. Nebkhas are mounds composed of wind-borne sediment within or around shrub canopies. We studied the effects of widely spaced nebkhas of Retama raetam shrub on their microenvironment and associated herbaceous vegetation in the Mediterranean coast of Sinai Peninsula. Our measurements included nebkha size (height and width) and shrub size (canopy height and diameter). We identified four distinct microsites at each nebkha: crest, mid-slope, edge, and internebkha space. We measured soil temperature and moisture, photosynthetically active radiation (PAR), and soil properties. The plant species grown at each microsite were identified and their densities were measured. Average soil temperature and PAR were highest at internebkha space and lowest at nebkha crest. The maximum diurnal temperature and PAR of internebkhas exceeded that of nebkhas. Soil moisture and nutrient concentrations showed a gradient of spatial heterogeneity and were highest at the nebkha edge. Regression analysis indicated that total herbaceous plant density was significantly related to nebkha size, and to shrub canopy diameter and area. Detrended correspondence analysis indicated that patterns of species composition were correlated with the spatial variability in soil moisture and nutrient content along the gradient of increasing distance from the nebkha crest. It is assumed that shrub canopy and its nebkha interact in governing ecosystem functioning in this environment.  相似文献   

3.
《农业工程》2014,34(5):266-270
Because of the absence of natural records with high resolution, the study of environmental changes in arid and semi-arid desert regions, an important component of the global system, lags behind studies in other regions. In this paper, we summarize the literature on the evolution, forms, and profile features of nebkhas (coppice dunes), and discuss the environmental implications of their formation and development. Based on this review, we argue that future research should focus on the quantitative conversion of environmental proxies revealed by nebkha evolution into the corresponding environmental factors: quantitative definition of the stages of nebkha evolution, enhancing the precision of age-dating, strengthening of cross-disciplinary research, and the comparison of nebkha results with other natural records to provide stronger, more reliable conclusions.  相似文献   

4.
两类植物型沙丘上植物群落的异同及其对沙丘形态的响应   总被引:1,自引:0,他引:1  
张萍  康经理  袁瑱  汤京  郝利霞  靳磊 《生态学报》2017,37(23):7920-7927
为探究相同环境条件下发育的两类植物型沙丘上植物群落的异同点,以及相异点与沙丘形态的关系,对毛乌素沙地南缘盐碱地上相间分布的抛物线形沙丘和白刺灌丛沙丘分别进行形态学、植物群落学及土壤理化性质的调查分析。结果显示:抛物线形沙丘的水平尺度虽为白刺灌丛沙丘的12-23倍,但两类沙丘上物种数相当,其植物分属12科31属39种和12科30属33种,均以菊科、藜科、禾本科、豆科植物为主(占70%以上),其中共有植物17种,群落相似度0.66;两类沙丘上的群落建群种不同,优势种的重叠度较低,抛物线形沙丘的不同部位共统计到7个植物群丛,可分为沙生植物群落和喜湿耐盐碱群落,白刺灌丛沙丘上均以白刺为建群种,油蒿、冰草、雾冰藜、沙蓬、狗尾草为主要优势种;沙丘形态造成其不同部位风沙活动及土壤水分、PH值和全盐含量的差异是两类沙丘上植物群落相异的重要影响因素。  相似文献   

5.
1. How herbivore plant diversity relationships are shaped by the interplay of biotic and abiotic environmental variables is only partly understood. For instance, plant diversity is commonly assumed to determine abundance and richness of associated specialist herbivores. However, this relationship can be altered when environmental variables such as temperature covary with plant diversity. 2. Using gall‐inducing arthropods as focal organisms, biotic and abiotic environmental variables were tested for their relevance to specialist herbivores and their relationship to host plants. In particular, the hypothesis that abundance and richness of gall‐inducing arthropods increase with plant richness was addressed. Additionally, the study asked whether communities of gall‐inducing arthropods match the communities of their host plants. 3. Neither abundance nor species richness of gall‐inducing arthropods was correlated with plant richness or any other of the tested environmental variables. Instead, the number of gall species found per plant decreased with plant richness. This indicates that processes of associational resistance may explain the specialised plant herbivore relationship in our study. 4. Community composition of gall‐inducing arthropods matched host plant communities. In specialised plant herbivore relationships, the presence of obligate host plant species is a prerequisite for the occurrence of its herbivores. 5. It is concluded that the abiotic environment may only play an indirect role in shaping specialist herbivore communities. Instead, the occurrence of specialist herbivore communities might be best explained by plant species composition. Thus, plant species identity should be considered when aiming to understand the processes that shape diversity patterns of specialist herbivores.  相似文献   

6.
Questions: Are negative invasion–diversity relationships due to biotic resistance of the invaded plant community or to post‐invasion displacement of less competitive species? Do invasion–diversity relationships change with habitat type or resident traits? Location/species: Lowlands and uplands of western and southern Germany, Heracleum mantegazzianum; mountain range in central Germany, Lupinus polyphyllus; and coastal dunes of northwest Germany, Rosa rugosa. Methods: We tested the significance and estimated regression slopes of invasion–diversity relationships using generalized linear (mixed effects) models relating invader cover and habitat type to species richness in different plant groups, stratified based on size, life cycle and community association. Results: We found negative, positive and neutral relationships between invader cover and species richness. There were negative linear correlations of invader cover with small plant species throughout, but no negative linear correlation with tall species. Invasion–diversity relationships tended to be more negative in early‐successional habitats, such as dunes or abandoned grasslands, than in late‐successional habitats. Conclusions: Invasion diversity–relationships are complex; they vary among habitat types and among different groups of resident species. Negative invasion–diversity relationships are due to asymmetric competitive displacement of inferior species and not due to biotic resistance. Small species are displaced in early‐successional habitats, while there is little effect on persistence of tall species.  相似文献   

7.
The tropical coastal dunes in central Gulf of Mexico have been stabilizing over the last decades resulting in reduced substrate mobility, and promoting primary succession. We describe changes in species richness and diversity in dune vegetation during 20?years. Our questions: (a) Do species richness and diversity increase over time as predicted by models of ecological succession or do they show a hump-backed manner similar to the observations in temperate coastal dunes?, (b) What is the interaction between vegetation cover and diversity and species richness?, (c) Is there a relationship between species diversity and succession rate and does succession rate change over time?, and (d) How do plant functional types change during succession? In order to answer these questions, we set 140 4?×?4?m permanent plots in a mobile dune area and monitored vegetation cover and species richness from 1991 to 2011. In time, diversity increased in a logistic manner toward an asymptotic value once vegetation cover surpassed 60?%. Species richness increased in a humped-back shape, also reaching a maximum peak at 60?% vegetation cover. The succession rate of diversity was measured by the Euclidean distance, and showed a significant humped-back relation, meaning that it was slower in early and late successional stages. The study supports the intermediate disturbance theory. The conservation of coastal dunes vegetation should focus on all, species-poor and species-rich habitats that help to maintain the ecological integrity of these ecosystems. The understanding of community dynamics and diversity patterns becomes an essential component of coastal dune management and conservation.  相似文献   

8.
Time since last fire and fire frequency are strong determinants of plant community composition in fire‐prone landscapes. Our study aimed to establish the influence of time since last fire and fire frequency on plant community composition and diversity of a south‐west Australian semi‐arid shrubland. We employed a space‐for‐time approach using four fire age classes: ‘young’, 8–15 years since last fire; ‘medium’, 16–34; ‘old’, 35–50; and ‘very old’, 51–100; and three fire frequency classes: burnt once, twice and three times within the last 50 years. Species diversity was compared using one‐way ANOVA and species composition using PERMANOVA. Soil and climatic variables were included as covariables to partition underlying environmental drivers. We found that time since last fire influenced species richness, diversity and composition. Specifically, we recorded a late successional transition from woody seeders to long‐lived, arid‐zone, resprouting shrub species. Fire frequency did not influence species richness and diversity but did influence species composition via a reduction in cover of longer‐lived resprouter species – presumably because of a reduced ability to replenish epicormic buds and/or sufficient starch stores. The distinct floristic composition of old and very old habitat, and the vulnerability of these areas to wildfires, indicate that these areas are ecologically important and management should seek to preserve them.  相似文献   

9.
Questions: Does plant species richness and composition of eastern Mediterranean dwarf shrubland (phrygana) correlate with soil pH? How important is the effect of pH on species diversity in relation to other environmental factors in this ecosystem? What is the evolutionary background of the diversity–pH relationship? Location: Western Crete, Greece. Methods: Species composition of vascular plants, soil and other environmental variables were sampled in 100‐m2 plots on acidic and basic bedrock in phrygana vegetation. The relationships between species composition and environmental variables (including climate) were tested using canonical correspondence analysis, and relationships between species richness and environment using correlation and regression analyses. Data were analysed separately for different plant functional types based on life form and life span. Results: Although soil pH varied across a narrow range (5.9‐8.1), species composition changed significantly along the pH gradient within all plant functional types. For most functional types, the effect of soil pH on species composition was stronger than that of other environmental variables. Species richness of annuals, geophytes and suffruticose chamaephytes increased with soil pH, while richness of hemicryptophytes and shrubs was not correlated with pH. Conclusions: The results are consistent with the evolutionary species pool hypothesis. High numbers of calcicole annuals, geophytes and suffruticose chamaephytes may be a result of the evolution of these groups on base‐rich dry soils in the Mediterranean climate. In contrast, hemicryptophytes, a life form typical of the temperate zone, evolved on both acidic and basic soils and therefore their species numbers do not respond to soil pH across the narrow range studied. The lack of a relationship between shrub species richness and pH is difficult to explain: it may reflect the more diverse or older origin of Mediterranean woody species and their conservative niches.  相似文献   

10.
Question: Is the expansion of Hippophaë rhamnoides in coastal dunes associated with a decline in plant species richness, and is this decline best described by a hump‐backed relationship between species number and shrub cover? Location: Grey and yellow dunes on the East Frisian islands Spiekeroog and Norderney. Methods: Total plant species richness as well as the number of herbaceous and cryptogam species were determined in 2001 using plots of 16 m2 size. We compared shrubland plots with varying cover of Hippophaë with neighbouring dune grassland plots without shrubs as reference sites. Soil samples were collected to determine the values of some important edaphic variables (pH, organic matter, nitrogen). Results: The shrubland plots with Hippophaë had or tended to have lower soil pH and C/N ratios and higher contents of organic matter and nitrogen than the grassland plots. Total species richness was marginally significantly related to the cover of Hippophaë in a hump‐backed manner on both islands. The pattern was more pronounced for mosses and lichens than for herbaceous species. For all species groups on Spiekeroog and for the herbaceous species on Norderney, the hump‐backed relationship was much improved when using the difference in species number between shrubland and grassland plot as a dependent variable. Relationships could be improved by including the soil parameters as co‐variables. Species richness was highest at moderate levels of shrub expansion, while it was much reduced in very dense shrubland. The decrease in species number is caused by the decline in grassland species typical of the open dunes, including some rare taxa. Conclusions: The expansion of Hippophaë rhamnoides is a serious threat to the plant species richness of open coastal dunes, and needs to be counteracted by management measures.  相似文献   

11.
Questions: Does grazing have the same effect on plant species richness at different spatial scales? Does the effect of spatial scale vary under different climatic conditions and vegetation types? Does the slope of the species‐area curve change with grazing intensity similarly under different climatic conditions and vegetation types? Location: Pastures along a climatic gradient in northeastern Spain. Methods: In zones under different regimes of sheep grazing (high‐, low‐pressure, abandonment), plant species richness was measured in different plot sizes (from 0.01 to 100 m2) and the slope of the species‐area curves was calculated. The study was replicated in five different locations along a climatic gradient from lowland semi‐arid rangelands to upland moist grasslands. Results: Species richness tended to increase with grazing intensity at all spatial scales in the moist upland locations. On the contrary, in the most arid locations, richness tended to decrease, or remain unchanged, with grazing due to increased bare soil. Grazing differentially affected the slope (z) of the species‐area curve (power function S=c Az) in different climatic conditions: z tended to increase with grazing in arid areas and decrease in moist‐upland ones. ß‐diversity followed similar pattern as z. Conclusions: Results confirm that the impact of grazing on plant species richness are spatial‐scale dependent. However, the effects on the species‐area relationship vary under different climatic conditions. This offers a novel insight on the patterns behind the different effects of grazing on diversity in moist vs. arid conditions reported in the literature. It is argued that the effect of spatial scale varies because of the different interaction between grazing and the intrinsic spatial structure of the vegetation. Variations in species‐area curves with grazing along moisture gradients suggest also a different balance of spatial components of diversity (i.e. a‐ and ß‐diversity).  相似文献   

12.
Question: What is the impact of grazing and/or afforestation on grassland diversity, species composition and cover parameters? Location: Semi‐arid Mediterranean grasslands of Jordan. Methods: Vegetation, litter, bare soil and rock cover were compared among four management types – free grazing and protected from grazing with three levels of tree cover. Species composition, plant cover, species richness and evenness were used to evaluate differences in vegetation among management types. Species composition differences among management types were also investigated. Results: Semi‐arid Mediterranean grasslands harbour appreciable levels of plant biodiversity. Grazing did not affect plant diversity, indicating the high resilience against and adaptation to grazing; however,grazing affected species composition and cover parameters. Afforestation seems to protect soil through higher litter cover but its impact on plant biodiversity was negative and markedly affected species composition. Conclusions: Neither protection from grazing or massive afforestation alone are sufficient for conserving biodiversity in this system. A management model is suggested where the landscape should be maintained as a mosaic of four management types: complete protection from grazing, grazing rotation, planting sparse trees in eroded areas and revegetating degraded areas using native, herbaceous and grazing tolerant species.  相似文献   

13.
Questions: What is the contribution of management continuity during the last 30–40 years to variation in species diversity and composition of a calcareous wooded meadow plant community? Is tree cover related to species diversity and composition of the herbaceous layer? What are the effects of local soil gradients on species diversity? Location: Laelatu calcareous wooded meadow, Western Estonian coastal zone. Methods: Plant community composition was assessed in 150 1 m × 1 m plots, located at 30 sites with known management history within Laelatu meadow (7 ha). Light and soil conditions and relative altitude were measured at each plot. DCA was used to analyse variation in species composition and general linear mixed models to analyse the effects of management and environmental parameters on diversity. Results: Management continuity was the primary determinant of plant community composition, followed by light conditions and soil parameters. Species richness, diversity and evenness are positively dependent on management continuity. Spatial autocorrelation is important as well. Diversity started to decline under the tree canopy where 50% or less irradiation reached the level of the herbaceous layer. We did not find significant effects of soil conditions on small‐scale diversity. Conclusions: Management continuity, together with the cover of the tree layer, are the most important determinants of diversity. Despite grassland stands with different management history are located side by side, the regeneration of diversity and composition of plant communities after restoring regular management practices is a slow process.  相似文献   

14.
Phytogenic mounds (nebkhas) often are symptoms of desertification in arid regions. Interactions among nebkhas and between nebkhas and their environment are however poorly examined. To this end, three main hypotheses of nebkha pattern formation were evaluated in this study. These state that nebkha patterns are either shaped by: (i) biologically induced recruitment inhibiting zones, (ii) biologically induced recruitment encouraging zones, or (iii) by the spatial distribution of abiotic factors which are not biologically driven. Contrasting nebkha landscapes were examined: a highly dense New Mexican mesquite (Prosopis glandulosa) and snakeweed (Gutierrezia sarothrae and Gutierrezia microcephala) ecosystem, and a low-density mixed Tamarix aphylla and Calligonum comosum field in central Libya. Spatial second-order statistics of strategically chosen nebkha subpatterns were compared with those of null models in which observed patches were spatially randomized without overlap. Null model deviations were assessed with goodness-of-fit tests, and interpreted in terms of hypothesized mechanisms of nebkha pattern formation. Our results suggest that biologically induced recruitment inhibiting zones surround adult mesquite nebkhas. The configuration of Calligonum and Tamarix nebkhas may be driven by spatial dynamics of abiotic microsites which are not caused by nebkha interactions. Hence we conclude that both biotic and abiotic drivers can shape nebkha spatial patterns.  相似文献   

15.
Declining plant diversity alters ecological networks, such as plant–herbivore interactions. However, our knowledge of the potential mechanisms underlying effects of plant species loss on plant–herbivore network structure is still limited. We used DNA barcoding to identify herbivore–host plant associations along declining levels of tree diversity in a large‐scale, subtropical biodiversity experiment. We tested for effects of tree species richness, host functional and phylogenetic diversity, and host functional (leaf trait) and phylogenetic composition on species, phylogenetic and network composition of herbivore communities. We found that phylogenetic host composition and related palatability/defence traits but not tree species richness significantly affected herbivore communities and interaction network complexity at both the species and community levels. Our study indicates that evolutionary dependencies and functional traits of host plants determine the composition of higher trophic levels and corresponding interaction networks in species‐rich ecosystems. Our findings highlight that characteristics of the species lost have effects on ecosystem structure and functioning across trophic levels that cannot be predicted from mere reductions in species richness.  相似文献   

16.
In this study we examine whether stabilization of denuded coastal foredunes in southeastern Australia with the exotic grass species Ammophila arenaria (marram grass) restores plant and ground‐active arthropod assemblages characteristic of undisturbed foredunes. Vascular plants and arthropods were sampled from foredunes that had been stabilized with marram grass in 1982, and from foredunes with no obvious anthropogenic disturbance (control dunes). All arthropods collected were sorted to Order, and ants (81.5% of all specimens) were further sorted to morphospecies. Abundance within arthropod Orders, as well as richness, composition, and structure of the plant and ant assemblages from control and stabilized dunes, were compared. The abundance of Diptera was significantly greater on stabilized dunes, while the abundance of Isopoda was significantly greater on control dunes. There were no significant differences in morphospecies richness or composition of ant assemblages on the two dunes types, although some differences in the abundances of individual morphospecies were observed. By contrast, stabilized dunes exhibited lower plant species richness and highly significant differences in plant species composition, due mainly to the large projected foliage cover of marram grass. The study revealed that after 12 years, the vegetation composition and structure of stabilized dunes was still dominated by marram grass and, as a result, invertebrate assemblages had not been restored to those characteristic of undisturbed foredunes.  相似文献   

17.
18.
In this contribution, we report on patterns of spider species richness in large complexes of coastal grey dunes of northern France, Belgium and the Netherlands. Since grey dunes are considered a priority in Annex I of the EU Habitat Directive, conservation needs attention. Spider diversity is determined by the amount of nutrients available in grey dune patches. The richness of specific xerotherm species, however, is dependent only on the distance of the patches to the sea. Earlier investigation revealed that the richness of these species depends on the patch size. Since coastal dune management aims to focus on the conservation of dune-specific and xerotherm species, patch enlargement and grey dune restoration should receive priority attention and not internal grey dune management. Total spider richness and diversity is hence related to the functioning of the grey dune ecosystem. Eolic dynamics act as typical disturbance factors and are negatively related to species richness, as a result of the low but significant covariation with nutrient availability. The intermediate disturbance hypothesis is not applicable for spider diversity in grey dunes, possibly due to the narrow range of investigated environmental variation.  相似文献   

19.
Abstract. The fragmentation and deterioration of old‐growth forest habitat by modern forestry have become a major threat to species diversity in Fennoscandia. In order to develop a conservation strategy for the remaining diversity it is essential to identify the existing diversity and to develop appropriate conservation and monitoring programs. For these purposes indicators of conservation value for administrative prioritization are required. This study examines the predictability of plant and fungal species richness on two spatial scales on 46 isolated old‐growth forest islands (0.17 ‐ 12 ha) in a forest‐wetland mosaic. We explore (1) to what extent area, isolation and stand structure variables can explain the variation in species richness and (2) if richness patterns of individual species groups correlate. Isolation showed no relation to species richness. Area explained 50 ‐ 70% of the variation in total species richness and was positively related to the density of crustose lichens and Red‐list species in island interiors. Stand structure variables explained 28 ‐ 66% of the residual variation in total species richness after controlling for island size, and 15 ‐ 73% of the variation in density of species in island interiors. The highest predictability of species richness was found among substrate‐specific fungi and Red‐list species. Different stand structure variables were found to explain richness in the different species groups, and only among a few species groups species richness correlated. Thus, species richness of one single species group is unlikely to be a good indicator for total biodiversity. The results show that measurements of stand size and stand structure variables may be a strong complementary tool, and sometimes a substitute to extensive species inventories when one aims to estimate and monitor plant and fungal species diversity in old‐growth Picea abies forests.  相似文献   

20.
Aim This study aims to determine the underlying causes of local and regional patterns of variation in community structure of spiders in coastal grey dunes, and especially whether ecological time constrains the species composition in young and isolated grey dune habitats. Location The study was conducted in coastal dunes from northern France (Boulonnais, Nord‐Pas‐de‐Calais), Belgium (Flemish coastal dunes) and the Netherlands [Amsterdam Water Supply (AWD) dunes and Dunes from the Provincial Water Company North‐Holland]. Methods Spiders were collected with pitfall traps in twenty‐eight grey dune patches in the four areas under investigation. Species composition and environmental parameters (vegetation structure, distance to the sea and the patch‐edge, eolic dynamics and lime richness) were determined. Assemblage composition was related to the regional and local environmental factors with the Primer software package to determine the assemblage‐determining parameters. Differences in species presence were analysed as a function of their habitat preference and distribution range. Results Differences in grey dune spider assemblage structure can mainly be attributed to differences in local sand dynamics and the region. Species from dynamic dunes are mainly present in grey dunes from Belgium and France, while species from non‐dunal xerothermic habitats (chalk grasslands and heathland) occur in both the Boulonnais and the north Holland dune region. These species are absent from geologically young or other xerotherm habitat isolated Flemish coastal dunes. Main conclusion The data show that regional variation in spider assemblage composition results from local landscape characteristics (dynamics in the dune area), the latitude and the connectivity to non‐dunal xerothermic habitats. The strong and moderate geological isolation of dune areas from the Flemish coast and the AWD dunes, respectively, results in the absence of (at least some) species that are primarily bound to heathland and/or chalk grassland. This indicates the importance of ecological time for the assemblage structure. The limited dispersal capacity of the heathland and/or chalk grassland species is probably the main reason for their absence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号