首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies demonstrate that by focusing on traits linked to fundamental plant life‐history trade‐offs, ecologists can begin to predict plant community structure at global scales. Yet, consumers can strongly affect plant communities, and means for linking consumer effects to key plant traits and community assembly processes are lacking. We conducted a global literature review and meta‐analysis to evaluate whether seed size, a trait representing fundamental life‐history trade‐offs in plant offspring investment, could predict post‐dispersal seed predator effects on seed removal and plant recruitment. Seed size predicted small mammal seed removal rates and their impacts on plant recruitment consistent with optimal foraging theory, with intermediate seed sizes most strongly impacted globally – for both native and exotic plants. However, differences in seed size distributions among ecosystems conditioned seed predation patterns, with relatively large‐seeded species most strongly affected in grasslands (smallest seeds), and relatively small‐seeded species most strongly affected in tropical forests (largest seeds). Such size‐dependent seed predation has profound implications for coexistence among plants because it may enhance or weaken opposing life‐history trade‐offs in an ecosystem‐specific manner. Our results suggest that seed size may serve as a key life‐history trait that can integrate consumer effects to improve understandings of plant coexistence.  相似文献   

2.
Life‐history theory posits that trade‐offs between demographic rates constrain the range of viable life‐history strategies. For coexisting tropical tree species, the best established demographic trade‐off is the growth‐survival trade‐off. However, we know surprisingly little about co‐variation of growth and survival with measures of reproduction. We analysed demographic rates from seed to adult of 282 co‐occurring tropical tree and shrub species, including measures of reproduction and accounting for ontogeny. Besides the well‐established fast–slow continuum, we identified a second major dimension of demographic variation: a trade‐off between recruitment and seedling performance vs. growth and survival of larger individuals (≥ 1 cm dbh) corresponding to a ‘stature–recruitment’ axis. The two demographic dimensions were almost perfectly aligned with two independent trait dimensions (shade tolerance and size). Our results complement recent analyses of plant life‐history variation at the global scale and reveal that demographic trade‐offs along multiple axes act to structure local communities.  相似文献   

3.
The seedling stage is generally the most important bottleneck for the successful regeneration of trees in forests. The traits of seedlings, particularly biomass allocation and root traits, are more easily quantified than the traits of adults. In this study, we tested the hypothesis that seedling traits vary and trade‐off tracking the changing environment during secondary succession. We measured the major morphological traits of 27 dominant species and the major environmental factors in a chronosequence (30‐yr‐old fallow, 60‐yr‐old fallow, and old growth forest) after shifting cultivation in a tropical lowland rain forest on Hainan Island, China. The 30‐yr‐old fallow had higher light and nutrient availability, and the older forests had higher soil water content. Redundancy analysis based on species abundance and environmental factors revealed groups of seedlings that dominate in different stages of succession. Seedlings in different stages of succession had different strategies of biomass allocation for harvesting resources that varied in availability. Species characteristic of younger forest had higher allocation to roots and higher specific leaf area, while species characteristic of older forest had higher allocation to leaves. Our study suggests that the variations and trade‐offs in the major functional traits of tree seedlings among successional classes may reflect changes in environmental conditions during succession.  相似文献   

4.
Functional diversity is critical for ecosystem dynamics, stability and productivity. However, dynamic global vegetation models (DGVMs) which are increasingly used to simulate ecosystem functions under global change, condense functional diversity to plant functional types (PFTs) with constant parameters. Here, we develop an individual‐ and trait‐based version of the DGVM LPJmL (Lund‐Potsdam‐Jena managed Land) called LPJmL‐ flexible individual traits (LPJmL‐FIT) with flexible individual traits) which we apply to generate plant trait maps for the Amazon basin. LPJmL‐FIT incorporates empirical ranges of five traits of tropical trees extracted from the TRY global plant trait database, namely specific leaf area (SLA), leaf longevity (LL), leaf nitrogen content (Narea), the maximum carboxylation rate of Rubisco per leaf area (), and wood density (WD). To scale the individual growth performance of trees, the leaf traits are linked by trade‐offs based on the leaf economics spectrum, whereas wood density is linked to tree mortality. No preselection of growth strategies is taking place, because individuals with unique trait combinations are uniformly distributed at tree establishment. We validate the modeled trait distributions by empirical trait data and the modeled biomass by a remote sensing product along a climatic gradient. Including trait variability and trade‐offs successfully predicts natural trait distributions and achieves a more realistic representation of functional diversity at the local to regional scale. As sites of high climatic variability, the fringes of the Amazon promote trait divergence and the coexistence of multiple tree growth strategies, while lower plant trait diversity is found in the species‐rich center of the region with relatively low climatic variability. LPJmL‐FIT enables to test hypotheses on the effects of functional biodiversity on ecosystem functioning and to apply the DGVM to current challenges in ecosystem management from local to global scales, that is, deforestation and climate change effects.  相似文献   

5.
Abstract One of the key environmental factors affecting plant species abundance, including that of invasive exotics, is nutrient resource availability. Plant functional response to nutrient availability, and what this tells us about plant interactions with associated species, may therefore give us clues about underlying processes related to plant abundance and invasion. Patterns of abundance of Hieracium lepidulum, a European herbaceous invader of subalpine New Zealand, appear to be related to soil fertility/nutrient availability, however, abundance may be influenced by other factors including disturbance. In this study we compare H. lepidulum and field co‐occurring species for growth performance across artificial nutrient concentration gradients, for relative competitiveness and for response to disturbance, to construct a functional profile of the species. Hieracium lepidulum was found to be significantly different in its functional response to nutrient concentration gradients. Hieracium lepidulum had high relative growth rate, high yield and root plasticity in response to nutrient concentration dilution, relatively low absolute yield, low competitive yield and a positive response to clipping disturbance relative to other species. Based on overall functional response to nutrient concentration gradients, compared with other species found at the same field sites, we hypothesize that H. lepidulum invasion is not related to competitive domination. Relatively low tolerance of nutrient dilution leads us to predict that H. lepidulum is likely to be restricted from invading low fertility sites, including sites within alpine vegetation or where intact high biomass plant communities are found. Positive response to clipping disturbance and relatively high nutrient requirement, despite poor competitive performance, leads us to predict that H. lepidulum may respond to selective grazing disturbance of associated vegetation. These results are discussed in relation to published observations of H. lepidulum in New Zealand and possible tests for the hypotheses raised here.  相似文献   

6.
Five sets of herbivore exclosures situated in mesic and semi‐arid savannas in Hluhluwe‐iMfolozi Park, South Africa were used to investigate the effects of mammal browsers and savanna type on plant traits relating to leaf nutrient content, defense, and growth in seven Acacia species. Mostly, browsing did not significantly affect leaf nutrient content but for a few species (i.e., increasing foliar N and P, decreasing C/N, and total polyphenols). Browser effects on structural defenses tended to be more pronounced than for leaf nutrient content and chemical defenses, particularly for semi‐arid species, resulting in longer, thicker, and denser spines, and a lower bite size index on browsed plants for most semi‐arid species. Browsing had no significant effect on growth rates for all species. Secondly, we investigated the effect of savanna type (mesic vs. semi‐arid) on the same set of plant traits and growth rates. A trade‐off in defense strategy was evident where mesic species had lower quality leaves and invested more heavily in growth and chemical defenses, while semi‐arid species generally had higher nutrient content leaves and invested more in structural defenses and higher levels of ramification. These findings suggest that the previously documented trade‐off in plant growth, resprouting ability and architecture between herbivore versus fire‐adapted savanna woody species can possibly be extended to include browse quality and defense type.  相似文献   

7.
Evolutionary adaptation to variation in resource supply has resulted in plant strategies that are based on trade‐offs in functional traits. Here, we investigate, for the first time across multiple species, whether such trade‐offs are also apparent in growth and morphology responses to past low, current ambient, and future high CO2 concentrations. We grew freshly germinated seedlings of up to 28 C3 species (16 forbs, 6 woody, and 6 grasses) in climate chambers at 160 ppm, 450 ppm, and 750 ppm CO2. We determined biomass, allocation, SLA (specific leaf area), LAR (leaf area ratio), and RGR (relative growth rate), thereby doubling the available data on these plant responses to low CO2. High CO2 increased RGR by 8%; low CO2 decreased RGR by 23%. Fast growers at ambient CO2 had the greatest reduction in RGR at low CO2 as they lost the benefits of a fast‐growth morphology (decoupling of RGR and LAR [leaf area ratio]). Despite these shifts species ranking on biomass and RGR was unaffected by CO2, winners continued to win, regardless of CO2. Unlike for other plant resources we found no trade‐offs in morphological and growth responses to CO2 variation, changes in morphological traits were unrelated to changes in growth at low or high CO2. Thus, changes in physiology may be more important than morphological changes in response to CO2 variation.  相似文献   

8.
Earth system models are incorporating plant trait diversity into their land components to better predict vegetation dynamics in a changing climate. However, extant plant trait distributions will not allow extrapolations to novel community assemblages in future climates, which will require a mechanistic understanding of the trade‐offs that determine trait diversity. In this study, we show how physiological trade‐offs involving leaf mass per unit area (LMA), leaf lifespan, leaf nitrogen, and leaf respiration may explain the distribution patterns of evergreen and deciduous trees in the temperate and boreal zones based on (1) an evolutionary analysis of a simple mathematical model and (2) simulation experiments of an individual‐based dynamic vegetation model (i.e., LM3‐PPA). The evolutionary analysis shows that these leaf traits set up a trade‐off between carbon‐ and nitrogen‐use efficiency at the scale of individual trees and therefore determine competitively dominant leaf strategies. As soil nitrogen availability increases, the dominant leaf strategy switches from one that is high in nitrogen‐use efficiency to one that is high in carbon‐use efficiency or, equivalently, from high‐LMA/long‐lived leaves (i.e., evergreen) to low‐LMA/short‐lived leaves (i.e., deciduous). In a region of intermediate soil nitrogen availability, the dominant leaf strategy may be either deciduous or evergreen depending on the initial conditions of plant trait abundance (i.e., founder controlled) due to feedbacks of leaf traits on soil nitrogen mineralization through litter quality. Simulated successional patterns by LM3‐PPA from the leaf physiological trade‐offs are consistent with observed successional dynamics of evergreen and deciduous forests at three sites spanning the temperate to boreal zones.  相似文献   

9.
Defense is one of the most important factors affecting life history. The relationship of defense to life history traits as well as its possible costs has been reviewed extensively for many groups, including plants. However, defense in social insects, such as honey bees, has never been examined from a trade‐off perspective, although defense in honey bees, Apis mellifera L. (Hymenoptera: Apidae), has been widely studied. In this review, we discuss the life history traits of honey bees, particularly traits related to defense. We then examine trade‐offs in the context of resource availability. Lastly, we offer suggestions for future research on trade‐offs in honey bees and other social insects.  相似文献   

10.
Evolutionary biologists have long predicted that evolutionary trade‐offs among traits should constrain morphological divergence and species diversification. However, this prediction has yet to be tested in a broad evolutionary context in many diverse clades, including ants. Here, we reconstruct an expanded ant phylogeny representing 82% of ant genera, compile a new family‐wide trait database, and conduct various trait‐based analyses to show that defensive traits in ants do exhibit an evolutionary trade‐off. In particular, the use of a functional sting negatively correlates with a suite of other defensive traits including spines, large eye size, and large colony size. Furthermore, we find that several of the defensive traits that trade off with a sting are also positively correlated with each other and drive increased diversification, further suggesting that these traits form a defensive suite. Our results support the hypothesis that trade‐offs in defensive traits significantly constrain trait evolution and influence species diversification in ants.  相似文献   

11.
Life‐history theory predicts trade‐offs between reproductive and survival traits such that different strategies or environmental constraints may yield comparable lifetime reproductive success among conspecifics. Food availability is one of the most important environmental factors shaping developmental processes. It notably affects key life‐history components such as reproduction and survival prospect. We investigated whether food resource availability could also operate as an ultimate driver of life‐history strategy variation between species. During 13 years, we marked and recaptured young and adult sibling mouse‐eared bats (Myotis myotis and Myotis blythii) at sympatric colonial sites. We tested whether distinct, species‐specific trophic niches and food availability patterns may drive interspecific differences in key life‐history components such as age at first reproduction and survival. We took advantage of a quasi‐experimental setting in which prey availability for the two species varies between years (pulse vs. nonpulse resource years), modeling mark‐recapture data for demographic comparisons. Prey availability dictated both adult survival and age at first reproduction. The bat species facing a more abundant and predictable food supply early in the season started its reproductive life earlier and showed a lower adult survival probability than the species subjected to more limited and less predictable food supply, while lifetime reproductive success was comparable in both species. The observed life‐history trade‐off indicates that temporal patterns in food availability can drive evolutionary divergence in life‐history strategies among sympatric sibling species.  相似文献   

12.
Abstract We propose a rapid sampling method to assess the functional composition of herbaceous plant communities without prior knowledge of the floristic composition. To determine the community‐level value of traits (‘aggregated trait values’) for a plant community, a standardized population‐centred method exists, but requires substantial manpower and reliable botanical knowledge. We tested an alternative method, the trait transect, using four subalpine pastures in the Beaufortain region (Northern French Alps) selected along a fertility gradient. We applied both methods to measure five commonly used ‘soft traits’ known to be responsive to soil nutrient availability: plant vegetative and reproductive height, specific leaf area, leaf dry matter and nitrogen contents. We tested whether the variation of these traits along the gradient detected with the population‐centred method was also detected with the trait transect. Both methods detected expected trends in the traits in response to the fertility gradient. The trait transect method was as efficient as the population‐centred method and is recommended as an appropriate tool for monitoring ecosystem changes in response to environmental conditions and management, especially in species‐rich communities.  相似文献   

13.
Question: How do species traits respond to environmental conditions and what is their effect on ecosystem properties? Location: Salt marshes, Northwest Germany. Methods: On 113 plots along the German mainland coast and on one island, we measured environmental parameters (soil nutrient content, inundation frequency, groundwater level and salinity), collected traits from 242 individuals (specific leaf area [SLA], whole plant C:N ratio, and dry weights of plant organs) and sampled above‐ground biomass as an ecosystem property. We constructed a path model combining environmental parameters, functional traits at community level and above‐ground biomass, which was tested against a dependence model using path analysis; model fit was evaluated by structural equation modelling (SEM). Results: The final model showed good consistency with the data and highlights the major role of groundwater level, salinity and nutrient availability as the most important factors influencing biomass allocation in salt marshes. Above‐ground living biomass was mostly determined by stem biomass, which was mediated through an allometric allocation of biomass to all other plant organs, including leaf mass. C:N ratio and SLA were the major drivers for dead biomass. Conclusion: We emphasize an indirect link between standing biomass and environmental conditions and recognize stem biomass, plant C:N ratio and SLA as keystone markers of species functioning in determining the relationship between environment and ecosystem properties.  相似文献   

14.
Question: In the Northern Hemisphere, species with dispersal limitations are typically absent from secondary forests. In Australia, little is known about dispersal mechanisms and other traits that drive species composition within post‐agricultural, secondary forest. We asked whether mode of seed dispersal, nutrient uptake strategy, fire response, and life form in extant vegetation differ according to land‐use history. We also asked whether functional traits of Australian species that confer tolerance to grazing and re‐colonisation potential differ from those in the Northern Hemisphere. Location: Delatite Peninsula, NE Victoria, Australia. Methods: The vegetation of primary and secondary forests was surveyed using a paired‐plot design. Eight traits were measured for all species recorded. ANOSIM tests and Non‐metric Multi‐dimensional Scaling were used to test differences in the abundance of plant attributes between land‐use types. Results: Land‐use history had a significant effect on vegetation composition. Specific leaf area (SLA) proved to be the best predictor of response to land‐use change. Primary forest species were typically myrmecochorous phanerophytes with low SLA. In the secondary forest, species were typically therophytes with epizoochorous dispersal and high SLA. Conclusions: The attributes of species in secondary forests provide tolerance to grazing suggesting that disturbance caused by past grazing activity determined the composition of these forests. Myrmecochores were rare in secondary forests, suggesting that species had failed to re‐colonise due to dispersal limitations. Functional traits that resulted in species loss through disturbance and prevented re‐colonisation were different to those in the Northern Hemisphere and were attributable to the sclerophyllous nature of the primary forest.  相似文献   

15.
The leaf economics spectrum (LES) describes a major axis of plant functional trait variation worldwide, defining suites of leaf traits aligned with resource‐acquisitive to resource‐conservative ecological strategies. The LES has been interpreted to arise from leaf‐level trade‐offs among ecophysiological traits common to all plants. However, it has been suggested that the defining leaf‐level trade‐offs of the LES may not hold within specific functional groups (e.g., herbs) nor within many groups of closely related species, which challenges the usefulness of the LES paradigm across evolutionary scales. Here, we examine the evolution of the LES across 28 species of the diverse herbaceous genus Helianthus (the sunflowers), which occupies a wide range of habitats and climate variation across North America. Using a phylogenetic comparative approach, we find repeated evolution of more resource‐acquisitive LES strategies in cooler, drier, and more fertile environments. We also find macroevolutionary correlations among LES traits that recapitulate aspects of the global LES, but with one major difference: leaf mass per area is uncorrelated with leaf lifespan. This indicates that whole‐plant processes likely drive variation in leaf lifespan across Helianthus, rather than leaf‐level trade‐offs. These results suggest that LES patterns do not reflect universal physiological trade‐offs at small evolutionary scales.  相似文献   

16.
In competition‐dominated communities, traits promoting resource conservation and competitive ability are expected to have an important influence on species relative abundance (SRA). Yet, few studies have tested the trait‐abundance relations in the line of species trade‐off in resource conservation versus acquisition, indicating by multiple traits coordination. We measured SRA and key functional traits involving leaf economic spectrum (SLA, specific leaf area; LDMC, leaf dry matter content; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; Hs, mature height) for ten common species in all plots subjected to addition of nitrogen fertilizer (N), phosphorus fertilizer (P), or both of them (NP) in a Tibetan alpine meadow. We test whether SRA is positively related with traits promoting plant resource conservation, while negatively correlated with traits promoting plant growth and resource acquisition. We found that species were primarily differentiated along a trade‐off axis involving traits promoting nutrient acquisition and fast growth (e.g., LPC and SLA) versus traits promoting resource conservation and competition ability (e.g., large LDMC). We further found that SRA was positively correlated with plant height, LDMC, and LCC, but negatively associated with SLA and leaf nutrient concentration irrespective of fertilization. A stronger positive height‐SRA was found in NP‐fertilized plots than in other plots, while negative correlations between SRA and SLA and LPC were found in N or P fertilized plots. The results indicate that species trade‐off in nutrient acquisition and resource conservation was a key driver of SRA in competition‐dominated communities following fertilization, with the linkage between SRA and traits depending on plant competition for specific soil nutrient and/or light availability. The results highlight the importance of competitive exclusion in plant community assembly following fertilization and suggest that abundant species in local communities become dominated at expense of growth while infrequent species hold an advantage in fast growth and dispersals to neighbor meta‐communities.  相似文献   

17.
Carotenoid‐based colours in animals are valuable models for testing theories of sexual selection and life‐history trade‐offs because the pigments used in coloration are chemically tractable in the diet and in the body, where they serve multiple purposes (e.g. health enhancement, photoprotection). An important assumption underlying the hypothesized signalling value of carotenoid coloration is that there is a trade‐off in carotenoid pigment allocation, such that not all individuals can meet the physiological/morphological demands for carotenoids (i.e. carotenoids are limited) and that only those who have abundant supplies or fewer demands become the most colourful. Studies of carotenoid trade‐offs in colourful animals have been limited largely to domesticated species, which may have undergone artificial selection that changed the historical/natural immunomodulatory roles of carotenoids, to young animals lacking carotenoid‐based signals or to species displaying carotenoid‐based skin and bare parts. We studied the health benefits of carotenoids during moult in house finches (Carpodacus mexicanus), which display sexually selected, carotenoid‐based plumage coloration. We manipulated dietary carotenoid availability during both winter (nonmoult) and autumn (moult) in captive males and females and found that carotenoid‐supplemented birds mounted stronger immune responses (to phytohemagglutinin injection and to a bacterial inoculation in blood) than control birds only during moult. This study provides experimental, seasonal support for a fundamental tenet of Lozano's ‘carotenoid trade‐off’ hypothesis and adds to a growing list of animal species that benefit immunologically from ingesting higher dietary carotenoid levels. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 560–572.  相似文献   

18.
Across taxa, individuals vary in how far they disperse, with most individuals staying close to their origin and fewer dispersing long distances. Costs associated with dispersal (e.g., energy, risk) are widely believed to trade off with benefits (e.g., reduced competition, increased reproductive success) to influence dispersal propensity. However, this framework has not been applied to understand variation in dispersal distance, which is instead generally attributed to extrinsic environmental factors. We alternatively hypothesized that variation in dispersal distances results from trade‐offs associated with other aspects of locomotor performance. We tested this hypothesis in the stream salamander Gyrinophilus porphyriticus and found that salamanders that dispersed farther in the field had longer forelimbs but swam at slower velocities under experimental conditions. The reduced swimming performance of long‐distance dispersers likely results from drag imposed by longer forelimbs. Longer forelimbs may facilitate moving longer distances, but the proximate costs associated with reduced swimming performance may help to explain the rarity of long‐distance dispersal. The historical focus on environmental drivers of dispersal distances misses the importance of individual traits and associated trade‐offs among traits affecting locomotion.  相似文献   

19.
1. Life history trade‐offs emerge when limited resources are allocated to multiple functions of an organism. Under highly competitive conditions trade‐offs can result in alternative phenotypes that differ morphologically and physiologically. Such is the case in insect species that grow under high densities, where competition for resources but also the risk of disease contagion is high, prompting important adjustments in immune response and melanic cuticular pigmentation, with consequent sacrifices in other fitness‐related traits. 2. In the present study, the potential trade‐offs between total‐ and active phenoloxidase (PO), body size and body pigmentation in Sepsis thoracica black scavenger flies that show alternative male morphs differing in cuticular pigmentation, and body size were evaluated. 3. As expected, small/dark (obsidian) males showed higher total‐PO activity than larger/orange (amber) males. A negative relationship was found between total‐PO activity and body size in females and obsidian but not amber males, suggesting that growth and immunity are more costly for the former. In contrast, density did not affect PO activity, as predicted by the density‐dependent prophylaxis hypothesis, which had not been tested in dipterans before. However, rearing density did affect the body size negatively in females and amber but not obsidian males, showing that male morph is largely determined by condition‐dependent plasticity rather than genes. 4. This study provides good evidence that trade‐offs between different life‐history traits can result in alternative resource allocation strategies, even within one species. These strategies can produce strikingly different alternative phenotypes, evincing that there is not only one optimal solution to address fitness optimisation.  相似文献   

20.
A central tenet of evolutionary biology states that life‐history traits are linked via trade‐offs, as classically exemplified by the van Noordwijk and de Jong model. This model, however, assumes that the relative resource allocation to a biological function varies independently of the total resource acquisition. Based on current empirical evidence, we first explored the dependency between the total resource acquisition and the relative resource allocation to reproduction and showed that such dependency is the rule rather than the exception. We then derived the expression of the covariance between traits when the assumption of independence is relaxed and used simulations to quantify the importance of such dependency on the detection of trade‐offs between current reproduction and future survival. We found that the dependency between the total energy acquisition and the relative allocation to reproduction can influence the probability to detect trade‐offs between survival and reproduction. As a general rule, a negative dependency between the total energy acquisition and the relative allocation to reproduction should lead to a higher probability of detecting a trade‐off in species with a fast pace of life, whereas a positive dependency should lead to a higher probability of detecting a trade‐off in species with a slow pace of life. In addition to confirming the importance of resource variation to reveal trade‐offs, our finding demonstrates that the covariance between resource allocation and resource acquisition is generally not null and also plays a fundamental role in the detection of trade‐offs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号