首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
The lack of detectable variable fluorescence from guard cell chloroplasts in both the albino and green portions of variegated leaves of St. Augustine grass (Stenotaphrum secundatum var variegatum A.S. Hitchc.) is reported. Fluorescence was measured either with a highly sensitive, modified fluorescence microscope which was capable of recording fluorescence induction curves from single chloroplasts, or with a spectrofluorometer. Both fast and slow fluorescence transients from S. secundatum guard cells showed a rapid rise and then remained at a steady level. Neither variable fluorescence increase (induction) nor decrease (quenching), properties normally associated with photosystem II, was observed from these chloroplasts. These fluorescence kinetics did not change either with alterations of the specimen preparation procedure or with alterations of the excitation light intensities and wavelengths. These results indicate that guard cell chloroplasts in this variety of S. secundatum do not conduct normal photosystem II electron transport. Light regulation of stomatal conductance in intact leaves of this plant did occur, however, and was similar to light regulation observed in other species. The conductance of the green portion of the leaves was much greater in the light than in the dark, and was much greater than the conductance of the albino portion of the leaves. Stomata in the green portion of the leaves also showed greater opening in blue light than in red light. These results provide evidence that stomatal regulation in this variety of S. secundatum does not rely on photosystem II electron transport in guard cell chloroplasts.  相似文献   

3.
The presence of chloroplasts in guard cells from leaf epidermis, coleoptile, flowers, and albino portions of variegated leaves was established by incident fluorescence microscopy, thus confirming the notion that guard cell chloroplasts are remarkably conserved. Room temperature emission spectra from a few chloroplasts in a single guard cell of Vicia faba showed one major peak at around 683 nanometers. Low-temperature (77 K) emission spectra from peels of albino portions of Chlorophytum comosum leaves and from mesophyll chloroplasts of green parts of the same leaves showed major peaks at around 687 and 733 nanometers, peaks usually attributed to photosystem II and photosystem I pigment systems, respectively. Spectra of peels of V. faba leaves showed similar peaks. However, fluorescence microscopy revealed that the Vicia peels, as well as those from Allium cepa and Tulipa sp., were contaminated with non-guard cell chloroplasts which were practically undetectable under bright field illumination. These observations pose restrictions on the use of epidermal peels as a source of isolated guard cell chloroplasts. Studies on the 3-(3,4-dichlorophenyl)-1,1-dimethylurea-sensitive variable fluorescence kinetics of uncontaminated epidermal peels of C. comosum indicated that guard cell chloroplasts operate a normal, photosystem II-dependent, linear electron transport. The above properties in combination with their reported inability to fix CO2 photosynthetically may render the guard cell chloroplasts optimally suited to supply the reducing and high-energy phosphate equivalents needed to sustain active ion transport during stomatal opening in daylight.  相似文献   

4.
A modified fluorescence microscope system was used to measure chlorophyll fluorescence and delayed light emission from mesophyll and bundle sheath cells in situ in fresh-cut sections from leaves of Panicum miliaceum L. The fluorescence rise in 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU)-treated leaves and the slow fluorescence kinetics in untreated leaves show that mesophyll chloroplasts have larger photosystem II unit sizes than do bundle sheath chloroplasts. The larger photosystem II units imply more efficient noncyclic electron transport in mesophyll chloroplasts. Quenching of slow fluorescence also differs between the cell types with mesophyll chloroplasts showing complex kinetics and bundle sheath chloroplasts showing a relatively simple decline. Properties of the photosynthetic system were also investigated in leaves from plants grown in soil containing elevated NaCl levels. As judged by changes in both fluorescence kinetics in DCMU-treated leaves and delayed light emission in leaves not exposed to DCMU, salinity altered photosystem II in bundle sheath cells but not in mesophyll cells. This result may indicate different ionic distributions in the two cell types or, alternatively, different responses of the two chloroplast types to environmental change.  相似文献   

5.
The effects of drought stress and high irradiance and their combination were studied under laboratory conditions using young plants of a very drought-resistant variety, ICMH 451, of pearl millet (Pennisetum glaucum) and three varieties of sorghum (Sorghum bicolor)—one drought-resistant from India, one drought-tolerant from Texas, and one drought-sensitive variety from France. CO2 assimilation rates and photosystem II fluorescence in leaves were analyzed in parallel with photosynthetic electron transport, photosystem II fluorescence, and chlorophyll-protein composition in chloroplasts isolated from these leaves. High irradiance slightly increased CO2 assimilation rates and electron transport activities of irrigated plants but not fluorescence. Drought stress (less than −1 megapascal) decreased CO2 assimilation rates, fluorescence, and electron transport. Under the combined effects of drought stress and high irradiance, CO2 assimilation rates and fluorescence were severely inhibited in leaves, as were the photosynthetic electron transport activities and fluorescence in chloroplasts (but not photosystem I activity). The synergistic or distinctive effect of drought and high irradiance is discussed. The experiments with pearl millet and three varieties of sorghum showed that different responses of plants to drought and light stresses can be monitored by plant physiological and biochemical techniques. Some of these techniques may have a potential for selection of stress-resistant varieties using seedlings.  相似文献   

6.
Corollas of Petunia hybrida (cv. Hit Parade Rosa) flowers fixed 14CO2 under both light and dark conditions. Rates of light fixation were much higher in mature pink corollas than in young, green corollas [57 and 9 nmol (ngchl)1 min-1], paralleling the development of chloroplasts in these tissues. Stomatal conductance in corollas was only 12% of that in green leaves, mainly due to the presence of few, and non-functioning stomata in the corolla. The activity and concentration of ribulose bisphosphate carboxylase (EC 4.1.1.39) in corolla extracts were only about 30% (per unit Chi) of those in extracts from green leaves. These results, together with previous results, might indicate a coordinated reduction in activity of systems participating in photosynthesis in corollas. The fixation products following a 6 s pulse with 14CO2, were typical of C, plants in both corollas and green leaves, but a higher level of β-carboxylation products was found in the corollas. The activity of phosphoenol-pyruvate carboxylase (EC 4.1.1.31) (per unit protein) was similar in both tissues. Although the total carbon fixed by the corolla constituted only a small part of the metabolites required for flower development, certain photosynthetic metabolites might have a regulatory role in flower development.  相似文献   

7.
I. Isolated intact chloroplasts: Photosystem II, but not photosystem I, of the electron transport chain is rapidly photoinactivated even by very low intensities of red light when no large proton gradient can be formed and the electron transport chain becomes over-reduced in the absence of oxygen and other reducable substrates. Electron acceptors including oxygen provide protection against photoinactivation. Nevertheless, photosystem II is rapidly, and photosystem I more slowly, photoinactivated by high intensities of red light when oxygen is the only electron acceptor available. Increased damage is observed at increased oxygen concentrations although catalase is added to destroy H2O2 formed during oxygen reduction in the Mehler reaction. Photoinactivation can be decreased, but not prevented by ascorbate which reduces hydrogen peroxide inside the chloroplasts and increases coupled electron flow. II. Leaves: Simple measurements of chlorophyll fluorescence permit assessment of damage to photosystem II after exposure of leaves to high intensity illumination. In contrast to isolated chloroplasts, chloroplasts suffer more damage in situ at reduced than at elevated oxygen concentrations. The difference in the responses is due to photorespiration which is active in leaves, but not in isolated chloroplasts. After photosynthesis and photorespiration are inhibited by feeding glyceraldehyde to leaves, photoinactivation is markedly increased, although oxygen reduction in the Mehler reaction is not affected by glyceraldehyde. In the presence of reduced CO2 levels, photorespiratory reactions, but not the Mehler reaction, can prevent the overreduction of the electron transport chain. Over-reduction indicates ineffective control of photosystem II activity. Effective control is needed for protection of the electron transport chain against photoinactivation. It is suggested to be made possible by coupled cyclic electron flow around photosystem I which is facilitated by the redox poising resulting from the interplay between photorespiratory carbohydrate oxidation and the refixation of evolved CO2.  相似文献   

8.
Effects of oxygen on the electron transport chain of photosynthesis   总被引:1,自引:0,他引:1  
U. Heber  C. S. French 《Planta》1968,79(2):99-112
Summary Oxygen was taken up by both intact and broken chloroplasts when catalase was posioned. In confirmation of other work we found that oxygen enters the electron transport chain of isolated chloroplasts by oxidizing the primary photoreductant of system I. In isolated intact chloroplasts this reaction proceeds in addition to oxygen evolution by PGA reduction. The reductant produced by photosystem II does not react with oxygen at a significant rate.In normal leaves oxygen depresses chlorophyll fluorescence. However, this depression does not take place in DCMU poisoned leaves or in a mutant having a nonfunctional photosystem II; furthermore, another mutant with a weakly functioning photosystem I gave only a very small fluorescence depression with oxygen. This shows that the site of interaction of oxygen is at the reducing end of the electron transport chain. This view is supported by the extent of the fluorescence depression in leaves as a function of oxygen concentration which is very similar to the oxygen dependence of oxygen uptake by isolated chloroplasts.An oxygen requirement of isolated intact chloroplasts reducing PGA and nitrate was indicated by lower reaction rates and faster decay of activity under nitrogen than under air.Dedicated to Prof. Harder on his eightieth birthday.  相似文献   

9.
Evolution of o(2) in brown algal chloroplasts   总被引:1,自引:1,他引:0       下载免费PDF全文
A method is described for the isolation of photosynthetically active chloroplasts from four species of brown algae: Fucus vesiculosis, Nereocystis luetkeana, Laminaria saccharina, and Macrocystis integrifolia. When compared to lettuce and spinach chloroplasts, the algal chloroplasts all showed lower activities for both photosystems II and I. Chloroplasts from all the plants produced H2O2, with photosystem I functioning as the O2 reductant in the light. In contrast to the green plants, however, brown algal chloroplasts strongly reduced O2 under conditions where both photosystems II and I remain active. Relative variable fluorescence values were lower both in intact plants and chloroplasts of the brown algae than for either spinach or lettuce. It is suggested that although light harvesting activities appear similar in all the plants, details of electron transport in brown algae may differ from those of green plants.  相似文献   

10.
Critchley C 《Plant physiology》1981,67(6):1161-1165
Cucumber plants (Cucumis sativus L.), grown at low quantum flux density (120-150 microeinsteins per square meter per second) were photoinhibited by a three-hour exposure in air to ten times the light intensity experienced during growth. Chloroplasts were isolated from photoinhibited and control leaves and the following activities determined: O2 evolution in the presence of ferricyanide, photosystem I activity, noncyclic and cyclic photophosphorylation, and light-induced proton uptake. Chlorophyll and chloroplast absorbance spectra, and chloroplast fluorescence were also measured. It was found that photosystem II electron transport and non-cyclic photophosphorylation were inhibited by about 50%, while cyclic photophosphorylation was less inhibited and photosystem I electron transport and light-induced proton uptake were unaffected. Electron transport to methylviologen could not be fully restored by electron donation to photosystem II. Chloroplast fluorescence induction at room temperature was strongly reduced following photoinhibition. There was no difference in the absorption spectra of the extracted chlorophylls from control and photoinhibited chloroplasts, but an increase of the absorption in the blue wavelength region was observed in the photoinhibited chloroplasts. It is suggested that high light stress does not result in alteration of the membrane properties, as is the case in low-temperature stress for example, but affects directly the photosynthetic reaction centers, primarily of photosystem II.  相似文献   

11.
In isolated barley chloroplasts, the presence of 2 millimolar ZnSO4 inhibits the electron transport activity of photosystem II, as measured by photoreduction of dichlorophenolindophenol, O2 evolution, and chlorophyll a fluorescence. The inhibition of photosystem II activity can be restored by the addition of the electron donor hydroxylamine or diphenylcarbazide, but not by benzidine and MnCl2. These observations suggest that Zn inhibits electron flow at the oxidizing side of photosystem II at a site prior to the electron donating site(s) of hydroxylamine and diphenylcarbazide. No inhibition of photosystem I-dependent electron transport by 3 millimolar ZnSO4 is observed. However, with concentrations of ZnSO4 above 5 millimolar, photosystem I activity is partially inactivated. Washing Zn2+-treated chloroplasts partially restores the O2-evolving activity.  相似文献   

12.
We previously reported (A Reinero, RN Beachy 1986 Plant Mol Biol 6:291-301) that coat protein (CP) of tobacco mosaic virus (TMV) accumulates in chloroplasts of systemically infected leaves. To determine the significance of such interaction we examined electron transport rates in chloroplasts containing different levels of TMV-CP. Tobacco (Nicotiana tabacum L.) plants were infected with either a TMV strain inducing chlorosis or with a strain inducing mild symptoms, and both the accumulation pattern of TMV-CP inside chloroplasts as well as the rates of photosynthetic electron transport were followed. The CP of the TMV strain inducing chlorosis was detected inside chloroplasts 3 days after infection, and thereafter accumulated at a rapid rate, first in the stroma and then in the thylakoid membranes. On the other hand, the CP of the TMV strain that caused only mild symptoms accumulated in chloroplasts to lower levels and little CP was associated with the thylakoids. In vivo and in vitro measurements of electron transport revealed that photosystem II activity was inhibited in plants infected with the aggressive TMV strain while no reduction was observed in plants infected with the mild strain. The capacity of chloroplasts to synthesize proteins was equivalent in organelles isolated from healthy and virus-infected leaves. The possibility that a large accumulation of TMV-CP inside chloroplasts may affect photosynthesis in virus-infected plants by inhibiting photosystem II activity is discussed.  相似文献   

13.
Caragana korshinskii Kom. is a perennial xerophytic shrub, well known for its ability to resist drought. In order to study ecophysiological responses of C. korshinskii under extreme drought stress and subsequent rehydration, diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem II as well as Chl content were analyzed. Plant responses to extreme drought included (1) leaf abscission and using stem for photosynthesis, (2) improved instantaneous water-use efficiency, (3) decreased photosynthetic rate and partly closed stomata owing to leaf abscission and low water status, (4) decreased maximum photochemical efficiency of photosystem II (PSII) (variable to maximum fluorescence ratio, Fv/Fm), quantum efficiency of noncyclic electron transport of PSII, and Chl a and Chl b. Four days after rehydration, new leaves budded from stems. In the rewatered plants, the chloroplast function was restored, the gas exchange and Chl fluorescence returned to a similar level as control plant. The above result indicated that maintaining an active stem system after leaf abscission during extreme drought stress may be the foundation which engenders these mechanisms rapid regrowth for C. korshinskii in arid environment.  相似文献   

14.
In this study, we have compared photosynthetic performance of barley leaves (Hordeum vulgare L.) grown under sun and shade light regimes during their entire growth period, under field conditions. Analyses were based on measurements of both slow and fast chlorophyll (Chl) a fluorescence kinetics, gas exchange, pigment composition; and of light incident on leaves during their growth. Both the shade and the sun barley leaves had similar Chl a/b and Chl/carotenoid ratios. The fluorescence induction analyses uncovered major functional differences between the sun and the shade leaves: lower connectivity among Photosystem II (PSII), decreased number of electron carriers, and limitations in electron transport between PSII and PSI in the shade leaves; but only low differences in the size of PSII antenna. We discuss the possible protective role of low connectivity between PSII units in shade leaves in keeping the excitation pressure at a lower, physiologically more acceptable level under high light conditions.  相似文献   

15.
Photosynthetic reactions of chloroplasts with unusual structures   总被引:17,自引:13,他引:4       下载免费PDF全文
Homann PH  Schmid GH 《Plant physiology》1967,42(11):1619-1632
Photosynthetic reactions of whole leaves and isolated chloroplasts from various mutants of Nicotiana tabacum have been correlated to the lamellar structure seen in electron micrographs of the chloroplasts. In this way it could be established that a fully active photosystem I can be associated with single unfolded thylakoids. The complete photosynthetic electron transport system including the oxygen evolving apparatus of photosystem II, on the other hand, appears to require a close packing of at least 2 thylakoids. The unusual high capacity for photosynthesis observed earlier for leaves of certain aurea mutants is reflected by a correspondingly high activity of the isolated chloroplasts in the Hill reaction. These chloroplasts contain extended areas where 2 thylakoids touch by forming simple lamellar overlappings instead of the familiar stacks of lamellar discs.  相似文献   

16.
Hardt H  Kok B 《Plant physiology》1977,60(2):225-229
Treatment of spinach chloroplasts with glutaraldehyde causes an inhibition in the electron transport chain between the two photosystems. Measurements of O2 flash yields, pH exchange, and fluorescence induction show that the O2 evolving apparatus, photosystem II and its electron acceptor pool are not affected. The behavior of P700 indicates that its reduction but not its oxidation, is severely inhibited. Cytochrome f is still reducible by photosystem II but also slowly oxidizable by photosystem I. The sensitivity of isolated plastocyanin to glutaraldehyde further supports the conclusion that glutaraldehyde inhibits at the plastocyanin level and thereby induces a break between P700 and cytochrome f.  相似文献   

17.
Transient time courses ("induction") and the intensity of thedelayed fluorescence of chlorophyll a (measured between 0.1and 3.9 msec after a 0.9 msec excitation period) were studiedwith a phosphoroscope at temperatures between 40 and –170°Cin Tris-washed chloroplasts. Tris-washing of chloroplasts changed the temperature dependenciesof the induction and the intensity of the delayed fluorescence.From the analysis of the induction each photosystem II reactioncenter appears to be linked to a donor pool which can supplyone electron to the acceptor pool in Tris-washed chloroplasts. An artificial electron donor, diphenylcarbazide affected thedelayed fluorescence above –100°C evidence that electronsare donated to photosystem II in at least two different ways. An electron transport inhibitor, 3-(3',4'-dichlorophenyl)-l,l-dimethylurea,changed the induction of the delayed fluorescence at temperaturesabove –60°C. The temperature dependence of the electron transport in thevicinity of photosystem II was characterized from these results. (Received May 27, 1980; )  相似文献   

18.
Chloroplast Reactions of Photosynthetic Mutants in Zea mays   总被引:8,自引:5,他引:3       下载免费PDF全文
Three seedling lethal mutants of Zea mays with impaired photosynthesis are described. These recessive mutants were selected on the basis of high chlorophyll fluorescence. They have normal chlorophyll pigmentation but are unable to fix CO2 fully. Evidence is presented from fluorescence characteristics of isolated chloroplasts that both photosystem I and II mutants were isolated. Using conventional measures of photosynthetic electron transport, we suggest that the photosystem I mutant has limited ability to reduce NADP. The other two mutants are clearly blocked in photosystem II, one possibly lacking the primary electron acceptor.  相似文献   

19.
Accompanying the CAM induction of Mesembryanthemum crystallinum L. grown in high salinity there are changes in the enzymes of carbon metabolism. However, there are no changes in the electron transport activities, Chla/b ratios or in the distribution of chlorophyll amongst the various pigment-protein complexes of isolated thylakoids. Hence with CAM induction there are no changes in the photochemical apparatus of M. crystallinum thylakoids. Despite comparable amounts of chlorophylla/b-proteins of photosystem II to those found in typical C3 sun plants, both the C3 and CAM M. crystallinum chloroplasts have relatively more photosystem II, and, concommitantly, less photosystem I complex. This is consistent with greater fluorescence emission at 685 and 695 nm, and lower emission at 735 nm (measured at 77 K) than typically found for C3 plants, whether sun or shade species. Photoinhibition of isolated C3 and CAM thylakoids by white light led to comparable decreases in electron transport capacities and fluorescence emission at 77 K with photosystem II being more affected than PSI. We suggest however, that the presence of more core PSII complexes relative to PSI complexes in this CAM-inducible plant, may provide an additional strategy to mitigate photoinhibition in the short-term.  相似文献   

20.
When the shrub Nerium oleander L., growing under full natural daylight outdoors, was subjected to water stress, stomatal conductance declined, and so did non-stomatal components of photosynthesis, including the CO2-saturated rate of CO2 uptake by intact leaves and the activity of electron transport by chloroplasts isolated from stressed plants. This inactivation of photosynthetic activity was accompanied by changes in the fluorescence characteristics determined at 77 K (-196°C) for the upper leaf surface and from isolated chloroplasts. The maximum (F M) and the variable (F V) fluorescence yield at 692 nm were strongly quenched but there was little effect on the instantaneous (F O) fluorescence. There was a concomitant quenching of the maximum and variable fluorescence at 734 nm. These results indicate an inactivation of the primary photochemistry associated with photosystem II. The lower, naturally shaded surfaces of the same leaves were much less affected than the upper surfaces and water-stress treatment of plants kept in deep shade had little or no effect on the fluorescence characteristics of either surface, or of chloroplasts isolated from the water-stressed leaves. The effects of subjecting N. oleander plants, growing in full daylight, to water stress are indistinguishable from those resulting when plants, grown under a lower light regime, are exposed to full daylight (photoinhibition). Both kinds of stress evidently cause an inactivation of the primary photochemistry associated with photosystem II. The results indicate that water stress predisposes the leaves to photoinhibition. Recovery from this inhibition, following restoration of favorable water relations, is very slow, indicating that photoinhibition is an important component of the damage to the photosynthetic system that takes place when plants are exposed to water stress in the field. The underlying causes of this water-stress-induced susceptibility to photoinhibition are unknown; stomatal closure or elevated leaf temperature cannot explain the increased susceptibility.Abbreviations and symbols Chl chlorophyll - PFD photon flux area density - PSI, PSII photosystem I, II - F M, F O, F V maximum, instantaneous, variable fluorescence emission - leaf water potential C.I.W.-D.P.B. Publication No. 775  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号